Humic Substances from Waste-Based Fertilizers for Improved Soil Fertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feeding Materials
- (1)
- 90% of olive pomace obtained from traditional three phases olive oil extraction process and 10% straw, as structuring material, named Compost 1 (C1); Olive pomace contained lignin (43%), hemicellulose (11.29%), cellulose (9.55%)
- (2)
- 90% of orange wastes coming from the orange food industry, 10% straw as structuring material and manure, named Compost 2 (C2). Orange wastes contained lignin (19%), hemicellulose (7%) and cellulose (35%).
2.2. Composting Process Set Up
2.3. Vermicomposting Process Set Up
- (1)
- 45% of olive wastes, 45% organic food wastes, 45% straw (45:45:10) and earthworm 20%, named vermicompost 1 (V1),
- (2)
- 45% orange wastes, 45% organic food wastes, 45% straw (45:45:10) and earthworm 20% named vermicompost 2 (V2),
2.4. Digestate Process Set Up
2.5. Assessment of Chemical Characteristics of Composts, Vermicompost and Digestates
2.6. Humic Substances Detection
2.7. Soil Experiments
- Composts: 15 g per pot
- Vermicompost: 12.5 g per pot
- Digestate: 15 g per pot
- Unfertilized pots have been used for comparison.
2.8. Soil Analyses
2.9. Statistical Analysis
3. Results
3.1. Characteristics of Composts, Vermicompost and Digestates
3.2. Effect of Composts, Vermicompost and Digestates on Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation—Pesticides and Chemical Fertilizers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–54. [Google Scholar] [CrossRef]
- Schrama, M.; De Haan, J.J.; Kroonen, M.; Verstegen, H.; Van Der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef] [PubMed]
- Thanigaivel, S.; Vinayagam, S.; Gnanasekaran, L.; Suresh, R.; Soto-Moscoso, M.; Chen, W.-H. Environmental fate of aquatic pollutants and their mitigation by phycoremediation for the clean and sustainable environment: A review. Environ. Res. 2023, 240, 117460. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Kaushik, P.; Bhayana, S.; Kapoor, S. Impact of organic farming on soil health and nutritional quality of crops. J. Saudi Soc. Agric. Sci. 2023, 22, 560–569. [Google Scholar] [CrossRef]
- Costa, C.; García-Lestón, J.; Costa, S.; Coelho, P.; Silva, S.; Pingarilho, M.; Valdiglesias, V.; Mattei, F.; Dall’Armi, V.; Bonassi, S.; et al. Is organic farming safer to farmers’ health? A comparison between organic and traditional farming. Toxicol. Lett. 2014, 230, 166–176. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for world population and global food availability for global health. In The Role of Functional Food Security in Global Health; Academic Press: Cambridge, MA, USA, 2018; pp. 3–24. [Google Scholar] [CrossRef]
- Lou, X.F.; Nair, J. The impact of landfilling and composting on greenhouse gas emissions—A review. Bioresour. Technol. 2009, 100, 3792–3798. [Google Scholar] [CrossRef]
- PROSODOL. Presented at the Olive Oil Mills Wastes and Environmental Protection Symposium, Chania, Greece, October 2012; pp. 16–18. Available online: https://www.prosodol.gr/ (accessed on 12 June 2024).
- Panuccio, M.R.; Marra, F.; Maffia, A.; Muscolo, A. Recycling of agricultural (orange and olive) bio-wastes into ecofriendly fertilizers for improving soil and garlic quality. Resour. Conserv. Recycl. Adv. 2022, 15, 200083. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Kumar, R.; Kumar, A. Environmental waste management strategies and vermi transformation for sustainable development. Environ. Chall. 2023, 13, 100747. [Google Scholar] [CrossRef]
- Maffia, A.; Marra, F.; Celano, G.; Oliva, M.; Mallamaci, C.; Hussain, M.I.; Muscolo, A. Exploring the Potential and Obstacles of Agro-Industrial Waste-Based Fertilizers. Land 2024, 13, 1166. [Google Scholar] [CrossRef]
- Silva, M.E.F.; De Lemos, L.T.; Nunes, O.C.; Cunha-Queda, A.C. Influence of the composition of the initial mixtures on the chemical composition, physicochemical properties and humic-like substances content of composts. Waste Manag. 2013, 34, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ou, Y.-L.; Lin, J.-G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.; Madan, S.; Sahoo, J.; Ali, M.; Pathania, R.; Kazmi, A.A. Diversity of bacterial isolates during full scale rotary drum composting. Waste Manag. 2013, 33, 1595–1601. [Google Scholar] [CrossRef]
- Jurado, M.M.; Suárez-Estrella, F.; López, M.J.; Vargas-García, M.C.; López-González, J.A.; Moreno, J. Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour. Technol. 2015, 186, 15–24. [Google Scholar] [CrossRef]
- Manzoor, A.; Naveed, M.S.; Ali, R.M.A.; Naseer, M.A.; Ul-Hussan, M.; Saqib, M.; Hussain, S.; Farooq, M. Vermicompost: A potential organic fertilizer for sustainable vegetable cultivation. Sci. Hortic. 2024, 336, 113443. [Google Scholar] [CrossRef]
- Klassen, V.; Blifernez-Klassen, O.; Wobbe, L.; Schlüter, A.; Kruse, O.; Mussgnug, J.H. Efficiency and biotechnological aspects of biogas production from microalgal substrates. J. Biotechnol. 2016, 234, 7–26. [Google Scholar] [CrossRef]
- Guo, X.-X.; Liu, H.-T.; Wu, S.-B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Loffredo, E.; Senesi, N. In vitro and in vivo assessment of the potential of compost and its humic acid fraction to protect ornamental plants from soil-borne pathogenic fungi. Sci. Hortic. 2009, 122, 432–439. [Google Scholar] [CrossRef]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2013, 34, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-T.; Huo, W.; Chen, Y.; Zhang, Q.; Hu, M.; Zheng, W.; Shao, Y.; Pan, Z.; Li, X.; Zhao, J. Humic substances derived from biomass waste during aerobic composting and hydrothermal treatment: A review. Front. Bioeng. Biotechnol. 2022, 10, 878686. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Yang, J.; Hao, Z.; Shi, Z.; Liu, X.; Xu, Q.; Wang, Y.; Wang, D.; Ni, B.-J. Multiple roles of humic substances in anaerobic digestion systems: A review. J. Clean. Prod. 2023, 418, 138066. [Google Scholar] [CrossRef]
- Lanno, M.; Klavins, M.; Purmalis, O.; Shanskiy, M.; Kisand, A.; Kriipsalu, M. Properties of humic substances in composts comprised of different organic source material. Agriculture 2022, 12, 1797. [Google Scholar] [CrossRef]
- Liang, C.; Das, K.C.; McClendon, R.W. The Influence of Temperature and Moisture Contents Regimes on the Aerobic Microbial Activity of a Biosolids Composting Blend. Bioresour. Technol. 2003, 86, 131–137. [Google Scholar] [CrossRef]
- ANPA (Agenzia Nazionale per la Protezione dell’Ambiente). Metodi di analisi del compost. In Manuali e Linee Guida; ISPRA: Rome, Italy, 2001; Volume 3. [Google Scholar]
- Box, J.D. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 1983, 17, 511–525. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M.; Wang, Z.; She, Z.; Hu, B.; Wang, Y.; Zhao, C. Comparison of physicochemical parameters during the forced-aeration composting of sewage sludge and maize straw at different initial C/N ratios. J. Air Waste Manag. Assoc. 2013, 63, 1130–1136. [Google Scholar] [CrossRef]
- Sommer, S.G.; Kjellerup, V.; Kristjansen, O. Determination of total ammonium nitrogen in pig and cattle slurry: Sample preparation and analysis. Acta Agric. Scand. Sect. B—Soil Plant Sci. 1992, 42, 146–151. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Reniero, F.; Rascio, N. Chemical and Biochemical Properties of Humic Substances Isolated from Forest Soils and Plant Growth. Soil Sci. Soc. Am. J. 2000, 64, 639–645. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M. Carboxyl and phenolic humic fractions affect Pinus nigra callus growth and metabolism. Soil Sci. Soc. Am. J. 2009, 73, 1119–1129. [Google Scholar] [CrossRef]
- Bellamy, J.L. The Infrared Spectra of Complex Molecules; Chapman & Hall: London, UK, 1975. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Francioso, O.; Sánchez-Cortés, S.; Casarini, D.; Garcia-Ramos, J.V.; Ciavatta, C.; Gessa, C. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration. J. Mol. Struct. 2002, 609, 137–147. [Google Scholar] [CrossRef]
- Schnitzer, M.; Khan, S.U. Humic Substances in the Environment; CABI: Wallingford, UK, 1972. [Google Scholar]
- Perdue, E.M. Acidic Functional Groups of Humic Substances; CABI: Wallingford, UK, 1985; pp. 493–526. [Google Scholar]
- Ciavatta, C.; Govi, M.; Antisari, L.V.; Sequi, P. Characterization of humified compounds by extraction and fractionation on solid polyphnilpyrrolidone. J. Chromatogr. 1990, 509, 141–146. [Google Scholar] [CrossRef]
- FAO. Methods of Analysis for Soils of Arid and Semi-Arid Regions; Food and Agricultural Organization: Rome, Italy, 2007; p. 57. [Google Scholar]
- Maffia, A.; Marra, F.; Battaglia, S.; Oliva, M.; Mallamaci, C.; Muscolo, A. Influence of Agro-Industrial Waste Composts on Soil Characteristics, Growth Dynamics, and Yield of Red Cabbage and Broccoli. Soil Syst. 2024, 8, 53. [Google Scholar] [CrossRef]
- Muscolo, A.; Papalia, T.; Settineri, G.; Mallamaci, C.; Jeske-Kaczanowska, A. Are raw materials or composting conditions and time that most influence the maturity and/or quality of composts? Comparison of obtained composts on soil properties. J. Clean. Prod. 2018, 195, 93–101. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoff in organishen Kopern. Anal. Chem. 1883, 22, 354–358. [Google Scholar]
- Bragança, A.; Fernandes, R.; de Carvalho Junior, I.A.; Silva Ribeiro, J.E.; de Sá Mendonça, E. Comparison of different methods for the determination of total organic carbon and humic substances in Brazilian soils. Rev. Ceres 2015, 62, 496–501. Available online: https://www.redalyc.org/articulo.oa?id=305241509011. (accessed on 4 July 2024).
- Mehlich, A. Rapid Determination of Cation and Anion Exchange Properties and pHe of Soils. J. Assoc. Off. Agric. Chem. 1953, 36, 445–457. [Google Scholar] [CrossRef]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Von Mersi, W.; Schinner, F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol. Fertil. Soils 1991, 11, 216–220. [Google Scholar] [CrossRef]
- AS 3741-1990; Recommended Practice for Chemical Analysis by Ion Chromatography. Standards Australia: Sidney, Australia, 1990.
- Niemeyer, J.; Chen, Y.; Bollag, J.-M. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 1992, 56, 135–140. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Che, Z.; Xue, L. Succession of the bacterial communities and functional characteristics in sheep manure composting. Biology 2022, 11, 1181. [Google Scholar] [CrossRef] [PubMed]
- Niya, B.; Yaakoubi, K.; Beraich, F.Z.; Arouch, M.; Kadmiri, I.M. Current status and future developments of assessing microbiome composition and dynamics in anaerobic digestion systems using metagenomic approaches. Heliyon 2024, 10, e28221. [Google Scholar] [CrossRef]
- Rastogi, M.; Nandal, M.; Khosla, B. Microbes as vital additives for solid waste composting. Heliyon 2020, 6, e03343. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Fang, P.; Low, H.; Yap, K.; Looi, J.; Chian-Yee, M.G.; Lai, J.; et al. Food waste composting and microbial community structure profiling. Processes 2020, 8, 723. [Google Scholar] [CrossRef]
- Cesaro, A.; Conte, A.; Belgiorno, V.; Siciliano, A.; Guida, M. The evolution of compost stability and maturity during the full-scale treatment of the organic fraction of municipal solid waste. J. Environ. Manag. 2018, 232, 264–270. [Google Scholar] [CrossRef]
- Lin, C.; Cheruiyot, N.K.; Bui, X.-T.; Ngo, H.H. Composting and its application in bioremediation of organic contaminants. Bioengineered 2022, 13, 1073–1089. [Google Scholar] [CrossRef]
- Ciavatta, C.; Govi, M.; Antisari, L.V.; Sequi, P. An enzymatic approach to the determination of the degree of stabilization of organic carbon in fertilizers. Fertil. Res. 1990, 25, 167–174. [Google Scholar] [CrossRef]
- Mehta, C.; Sirari, K. Comparative study of aerobic and anaerobic compostingfor better understanding of organic waste management: A mini review. Plant Arch. 2018, 18, 44–48. [Google Scholar]
- Fornes, F.; Mendoza-Hernandez, D.; Belda, R.M. Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Span. J. Agric. Res. 2013, 11, 518–528. [Google Scholar] [CrossRef]
Chemical Characteristics | C1 | C2 | V1 | V2 | D1 | D2 |
---|---|---|---|---|---|---|
pH (H2O) | 6.3 c ± 0.05 | 7.6 b ± 0.5 | 7.49 b ± 0.03 | 7.61 b ± 0.02 | 8.5 a ± 0.2 | 8.3 a ± 0.8 |
BD (kg × m−3) | 598 c ± 9.0 | 558 c ± 12 | 554 b ± 9 | 577 b ± 8 | 788 a ± 9.2 | 768 a ± 11 |
EC (mS × cm−1) | 1.3 b ± 0.25 | 1.8 b ± 0.2 | 3.18 a ± 0.2 | 2.5a b ± 0.4 | 1.3 b ± 0.2 | 1.5 b ± 0.4 |
WC (%) | 47 b ± 3.2 | 44 b ± 3 | 49.6 b ± 2 | 42.3 b ± 1 | 64 a ± 7 | 69 a ± 6 |
TC (%) | 44 b ± 2.40 | 49 b ± 2.4 | 52.8 a ± 1.2 | 59.5 a ± 2 | 45 b ± 1.4 | 47 b ± 1.4 |
TN (%) | 2.5 ab ± 0.22 | 2.7 ab ± 0.8 | 2.13 b ± 0.03 | 2.66 ab ± 0.02 | 3.7 a ± 0.2 | 2.2 a ± 0.9 |
C/N | 17.6 ab ± 1.6 | 18.1 ab ± 1.6 | 19.19 ab ± 0.6 | 22.03 a ± 0.8 | 12.1 b ± 0.5 | 21.4 a ± 0.9 |
Na+ (mg g−1 dw) | 1.1 c ± 0.06 | 0.9 c ± 0.02 | 4.69 a ± 0.09 | 2.39 b ± 0.07 | 0.9 c ± 0.08 | 0.8 c ± 0.1 |
NH4+ (mg g−1 dw) | 0.7 b ± 0.02 | 0.6 b ± 0.01 | 0.5 a ± 0.04 | 0.33 b ± 0.04 | 1.5 a ± 0.02 | 1.53 a ± 0.01 |
K+ (mg g−1 dw) | 17 a ± 1.50 | 18 a ± 1.3 | 7.57 b ± 0.2 | 9.65 b ± 0.3 | 0.5 d ± 0.02 | 3.6 c ± 0.5 |
Mg2+ (mg g−1 dw) | 1.1a b ± 0.1 | 1.8 a ± 0.2 | 0.37 b ± 0.02 | 1.22 ab ± 0.04 | 0.53 b ± 0.08 | 0.85 b ± 0.06 |
Ca2+ (mg g−1 dw) | 2.4 a ± 0.3 | 2.9 a ± 0.2 | 0.21 b ± 0.03 | 2.3 a ± 0.06 | 1.7 a ± 0.2 | 1.8 a ± 0.1 |
Cl− (mg g−1 dw) | nd | nd | 11.12 a ± 0.9 | 9.23 a ± 1.1 | nd | 0.48 b ± 0.05 |
NO2− (mg g−1 dw) | nd | nd | nd | 0.33 ± 1.1 | nd | nd |
NO3− (mg g−1 dw) | 0.42 b ± 0.002 | 0.51 a ± 0.01 | nd | 0.87 a ± 1.1 | 0.21 b ± 0.03 | 0.42 a ± 0.02 |
PO43− (mg g−1 dw) | 0.43 b ± 0.03 | 0.90 ab ± 0.03 | 1.25 a ± 0.01 | 1.44 a ± 0.02 | 0.47 b ± 0.06 | 0.63 b ± 0.04 |
SO42− (mg g−1 dw) | 0.27 b ± 0.02 | 0.87 ab ± 0.02 | 0.93a b ± 0.02 | 1.33 a ± 0.02 | 0.11 b ± 0.01 | 0.44 ab ± 0.02 |
WSP (mg TAE g−1 dw) | 2.42 ab ± 0.06 | 1.0 b ± 0.6 | 2.17 b ± 0.03 | 1.77 b ± 0.05 | 5.4 a ± 1 | 2.1 b ± 0.5 |
ON/TN | 93 a ± 5 | 99 a ± 3 | 95.3 a ± 2 | 96.1 a ± 3 | 92 a ± 8 | 93 a ± 5 |
NH4+-N/NO3−-N | 1.66 c ± 0.13 | 1.17 c ± 0.13 | nd | 0.37 c ± 0.05 | 7.14 a ± 0.07 | 3.64 b ± 0.05 |
Variables | pH | BD | EC | WC | TC | TN | C/N | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | Cl− | NO2− | NO3− | PO43− | SO42− | WSP | ON/TN | NH4+-N/NO3−-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | 0.686 | −0.062 | 0.679 | 0.048 | 0.403 | −0.188 | −0.153 | −0.386 | −0.798 | −0.291 | −0.197 | −0.074 | −0.015 | 0.222 | 0.007 | −0.092 | 0.421 | −0.146 | −0.776 |
BD | 0.686 | 1 | −0.622 | 0.939 | −0.521 | 0.472 | −0.41 | −0.534 | −0.891 | −0.775 | −0.424 | −0.05 | −0.527 | −0.288 | −0.055 | −0.63 | −0.705 | 0.709 | −0.74 | −0.382 |
EC | −0.062 | −0.622 | 1 | −0.455 | 0.785 | −0.477 | 0.465 | 0.942 | 0.588 | 0.002 | −0.239 | −0.613 | 0.955 | 0.368 | 0.069 | 0.897 | 0.785 | −0.389 | 0.455 | −0.469 |
WC | 0.679 | 0.939 | −0.455 | 1 | −0.528 | 0.205 | −0.278 | −0.345 | −0.909 | −0.791 | −0.543 | −0.278 | −0.418 | −0.456 | −0.32 | −0.57 | −0.669 | 0.574 | −0.707 | −0.497 |
TC | 0.048 | −0.521 | 0.785 | −0.528 | 1 | −0.269 | 0.622 | 0.585 | 0.568 | 0.024 | 0.111 | −0.136 | 0.837 | 0.841 | 0.629 | 0.968 | 0.945 | −0.439 | 0.525 | −0.411 |
TN | 0.403 | 0.472 | −0.477 | 0.205 | −0.269 | 1 | −0.82 | −0.445 | −0.103 | −0.326 | −0.049 | 0.264 | −0.397 | 0.01 | 0.435 | −0.368 | −0.415 | 0.776 | −0.258 | 0.029 |
C/N | −0.188 | −0.41 | 0.465 | −0.278 | 0.622 | −0.82 | 1 | 0.286 | 0.155 | 0.236 | 0.271 | 0.022 | 0.468 | 0.497 | 0.132 | 0.604 | 0.692 | −0.813 | 0.379 | −0.164 |
Na+ | −0.153 | −0.534 | 0.942 | −0.345 | 0.585 | −0.445 | 0.286 | 1 | 0.444 | −0.081 | −0.483 | −0.79 | 0.922 | 0.181 | −0.138 | 0.714 | 0.551 | −0.187 | 0.199 | −0.434 |
NH4+ | −0.386 | −0.891 | 0.588 | −0.909 | 0.568 | −0.103 | 0.155 | 0.444 | 1 | 0.639 | 0.476 | 0.127 | 0.472 | 0.337 | 0.29 | 0.667 | 0.724 | −0.512 | 0.854 | 0.261 |
K+ | −0.798 | −0.775 | 0.002 | −0.791 | 0.024 | −0.326 | 0.236 | −0.081 | 0.639 | 1 | 0.764 | 0.549 | −0.112 | 0.018 | −0.061 | 0.089 | 0.288 | −0.686 | 0.624 | 0.836 |
Mg2+ | −0.291 | −0.424 | −0.239 | −0.543 | 0.111 | −0.049 | 0.271 | −0.483 | 0.476 | 0.764 | 1 | 0.879 | −0.34 | 0.229 | 0.34 | 0.081 | 0.333 | −0.63 | 0.703 | 0.616 |
Ca2+ | −0.197 | −0.05 | −0.613 | −0.278 | −0.136 | 0.264 | 0.022 | −0.79 | 0.127 | 0.549 | 0.879 | 1 | −0.611 | 0.219 | 0.437 | −0.258 | −0.019 | −0.258 | 0.307 | 0.662 |
Cl− | −0.074 | −0.527 | 0.955 | −0.418 | 0.837 | −0.397 | 0.468 | 0.922 | 0.472 | −0.112 | −0.34 | −0.611 | 1 | 0.539 | 0.218 | 0.886 | 0.754 | −0.255 | 0.266 | −0.504 |
NO2− | −0.015 | −0.288 | 0.368 | −0.456 | 0.841 | 0.01 | 0.497 | 0.181 | 0.337 | 0.018 | 0.229 | 0.219 | 0.539 | 1 | 0.881 | 0.685 | 0.712 | −0.229 | 0.257 | −0.182 |
NO3− | 0.222 | −0.055 | 0.069 | −0.32 | 0.629 | 0.435 | 0.132 | −0.138 | 0.29 | −0.061 | 0.34 | 0.437 | 0.218 | 0.881 | 1 | 0.45 | 0.493 | 0.031 | 0.245 | −0.122 |
PO43− | 0.007 | −0.63 | 0.897 | −0.57 | 0.968 | −0.368 | 0.604 | 0.714 | 0.667 | 0.089 | 0.081 | −0.258 | 0.886 | 0.685 | 0.45 | 1 | 0.964 | −0.509 | 0.622 | −0.41 |
SO42− | −0.092 | −0.705 | 0.785 | −0.669 | 0.945 | −0.415 | 0.692 | 0.551 | 0.724 | 0.288 | 0.333 | −0.019 | 0.754 | 0.712 | 0.493 | 0.964 | 1 | −0.677 | 0.752 | −0.226 |
WSP | 0.421 | 0.709 | −0.389 | 0.574 | −0.439 | 0.776 | −0.813 | −0.187 | −0.512 | −0.686 | −0.63 | −0.258 | −0.255 | −0.229 | 0.031 | −0.509 | −0.677 | 1 | −0.745 | −0.243 |
ON/TN | −0.146 | −0.74 | 0.455 | −0.707 | 0.525 | −0.258 | 0.379 | 0.199 | 0.854 | 0.624 | 0.703 | 0.307 | 0.266 | 0.257 | 0.245 | 0.622 | 0.752 | −0.745 | 1 | 0.169 |
NH4+-N/NO3−-N | −0.776 | −0.382 | −0.469 | −0.497 | −0.411 | 0.029 | −0.164 | −0.434 | 0.261 | 0.836 | 0.616 | 0.662 | −0.504 | −0.182 | −0.122 | −0.41 | −0.226 | −0.243 | 0.169 | 1 |
C1 | C2 | V1 | V2 | D1 | D2 | |
---|---|---|---|---|---|---|
TOC (%) | 44 b ± 1.4 | 49 ab ± 1.9 | 53 a ± 2.4 | 59 ba ± 1.9 | 45 b ± 1.5 | 47 b ± 1.2 |
TEC (%) | 17 b ± 1 | 22 a ± 1.4 | 24 a ± 1.1 | 28 a ± 1.5 | 18 b ± 1 | 20 ab ± 1.5 |
HA + FA | 11 c ± 1 | 18 b ± 1.6 | 19 b ± 1.5 b | 25 a ± 1.4 | 11 c ± 1 | 12 c ± 1 |
HA | 6 c ± 0.5 | 10 a ± 1.4 | 8 b ± 0.9 | 9 ab ± 0.9 | 9 ab ± 1 | 10 a ± 1 |
FA | 5 d ± 0.3 | 8 c ± 0.4 | 11 b ± 1.0 | 16 a ± 1.1 | 2 e ± 0.2 | 2 e ± 0.1 |
HR (%) | 25 b ± 1.8 | 36 a ± 1.5 | 35 a ± 1 | 39 a ± 1.5 | 24 b ± 1.4 | 26 b ± 1.5 |
HD (%) | 64 b ± 1.9 | 80 a ± 2.9 | 81 a ± 2.5 | 87 a ± 2 | 61 b ± 1.9 | 63 b ± 2 |
HI (%) | 0.57 a ± 0.01 | 0.25 b ± 0.04 | 0.22 b ± 0.04 | 0.15 b ± 0.03 | 0.63 a ± 0.06 | 0.58 a ± 0.05 |
E4/E6 | 7.3 a ± 0.9 a | 4.5 b ± 0.6 b | 6.1 a ± 0.8 | 4.2 b ± 0.7 | 9.3 a ± 1.0 | 7.1 a ± 0.9 |
TA (mol kg−1) | 9.5 ab ± 0.8 | 8.9 b ± 0.4 | 10.1 a ± 0.5 | 11.4 a ± 0.6 | 6.5 c ± 0.8 | 6.9 c ± 0.8 |
OH (mol kg−1) | 5.4 a ± 0.1 | 2.1 b ± 0.5 | 4.9 a ± 0.4 | 4.2 a ± 0.4 | 5.1 a ± 0.3 | 4.9 a ± 0.2 |
COOH (mol kg−1) | 4.1 b ± 0.5 | 6.8 a ± 0.4 | 5.2 ab ± 0.6 | 7.4 a ± 0.3 | 1.4 c ± 0.5 | 2 c ± 0.7 |
Variables | TOC | TEC | HA + FA | HA | FA | HR | HD | HI | E4/E6 | TA | OH | COOH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC | 1 | 0.992 | 0.970 | 0.235 | 0.933 | 0.889 | 0.900 | −0.880 | −0.755 | 0.759 | −0.261 | 0.738 |
TEC | 0.992 | 1 | 0.978 | 0.325 | 0.916 | 0.922 | 0.922 | −0.907 | −0.801 | 0.725 | −0.360 | 0.760 |
HA + FA | 0.970 | 0.978 | 1 | 0.235 | 0.964 | 0.965 | 0.971 | −0.954 | −0.857 | 0.807 | −0.450 | 0.867 |
HA | 0.235 | 0.325 | 0.235 | 1 | −0.032 | 0.277 | 0.181 | −0.185 | −0.248 | −0.354 | −0.575 | 0.014 |
FA | 0.933 | 0.916 | 0.964 | −0.032 | 1 | 0.917 | 0.949 | −0.931 | −0.813 | 0.927 | −0.306 | 0.888 |
HR | 0.889 | 0.922 | 0.965 | 0.277 | 0.917 | 1 | 0.994 | −0.992 | −0.918 | 0.776 | −0.617 | 0.920 |
HD | 0.900 | 0.922 | 0.971 | 0.181 | 0.949 | 0.994 | 1 | −0.997 | −0.896 | 0.828 | −0.547 | 0.926 |
HI | −0.880 | −0.907 | −0.954 | −0.185 | −0.931 | −0.992 | −0.997 | 1 | 0.893 | −0.813 | 0.558 | −0.918 |
E4/E6 | −0.755 | −0.801 | −0.857 | −0.248 | −0.813 | −0.918 | −0.896 | 0.893 | 1 | −0.759 | 0.687 | −0.940 |
TA | 0.759 | 0.725 | 0.807 | −0.354 | 0.927 | 0.776 | 0.828 | −0.813 | −0.759 | 1 | −0.173 | 0.875 |
OH | −0.261 | −0.360 | −0.450 | −0.575 | −0.306 | −0.617 | −0.547 | 0.558 | 0.687 | −0.173 | 1 | −0.628 |
COOH | 0.738 | 0.760 | 0.867 | 0.014 | 0.888 | 0.920 | 0.926 | −0.918 | −0.940 | 0.875 | −0.628 | 1 |
CTR0 | CTR | C1 | C2 | V1 | V2 | D1 | D2 | |
---|---|---|---|---|---|---|---|---|
pH (H2O) | 8.3 a ± 0.55 | 8.3 a ± 0.52 | 7.5 a ± 0.80 | 8.0 a ± 0.80 | 7.6 ab ± 0.40 | 7.3 b ± 0.40 | 7.1 b ± 0.40 | 7.4 b ± 0.40 |
EC (dS/m) | 320 c ± 10 | 340 c ± 12 | 444 a ± 9 | 410 a ± 10 | 380 b ± 12 | 367 b ± 12 | 419 a ± 12 | 437 a ± 12 |
WC (%) | 21.0 b ± 2.6 | 22 b ± 2.1 | 27 a ± 1.7 | 29.4 a ± 0.79 | 27.2 a ± 1.70 | 29.2 a ± 1.70 | 24 a ± 1.70 | 21 a ± 1.70 |
WSP (µg TAE g−1 ds) | 18 b ± 2.0 | 14 b ± 2.8 | 46 a ± 1.7 | 40 a ± 1.60 | 39 a ± 3.3 | 34 a ± 3.1 | 40 a ± 3.26 | 39 a ± 3.26 |
TOC (%) | 1.0 bc ± 0.16 | 0.9 c ± 0.16 | 1.7 b ± 0.15 | 2.1 a ± 0.15 | 2.1 a ± 0.25 | 2.5 a ± 0.25 | 1.3 b ± 0.25 | 1.5 b ± 0.25 |
TN (%) | 0.13 c ± 0.01 | 0.14 c ± 0.01 | 0.30 a ± 0.02 | 0.33 a ± 0.02 | 0.22 b ± 0.04 | 0.23 b ± 0.04 | 0.21 b ± 0.04 | 0.25 b ± 0.04 |
C/N | 7.6 ab ± 0.35 | 6.4 b ± 0.4 | 5.7 c ± 1 | 6.3 b ± 0.3 | 9.5 a ± 0.4 | 10.9 a ± 0.5 | 6.2 b ± 0.5 | 6.1 b ± 0.3 |
SOM (%) | 1.72 c ± 0.3 | 1.55 c ± 0.27 | 2.92 b ± 0.25 | 3.62 ab ± 0.3 | 3.6 ab ± 0.13 | 4.3 a ± 0.4 | 2.24 cb ± 0.13 | 2.58 cb ± 0.4 |
HC (%) | 0.60 a± 0.06 | 0.61 a ± 0.05 | 0.43 b ± 0.02 | 0.44 b ± 0.02 | 0.70 a ± 0.01 | 0.75 a ± 0.01 | 0.66 a ± 0.01 | 0.65 a ± 0.01 |
FC (%) | 0.40 a ± 0.06 | 0.45 a ± 0.08 | 0.26 b ± 0.05 | 0.22 b ± 0.05 | 0.38 a ± 0.03 | 0.35 a ± 0.05 | 0.62 a ± 0.03 | 0.60 a ± 0.03 |
HC/FC | 1.5 b ± 0.12 | 1.33 bc ± 0.12 | 1.65 b ± 0.10 | 2 a ± 0.10 | 1.84 b ± 0.04 | 2.14 a ± 0.04 | 1.06 c ± 0.04 | 1.08 c ± 0.04 |
CEC (cmol(+) kg−1) | 18.9 b ± 1.6 | 18.7 b ± 1.4 | 22 a ± 1.6 | 24 a ± 1.5 | 23 a ± 1.23 | 25 a ± 1.3 | 22 a ± 1.23 | 23 a ± 1.3 |
Variables | pH | EC | WC | WSP | TOC | TN | C/N | SOM | FDA | DHA | MBC | HC | FC | HC/FC | CEC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | −0.675 | −0.316 | −0.767 | −0.465 | −0.41 | −0.146 | −0.464 | −0.225 | 0.067 | −0.764 | −0.364 | −0.358 | 0.096 | −0.639 |
EC | −0.675 | 1 | 0.275 | 0.893 | 0.296 | 0.804 | −0.477 | 0.297 | 0.367 | 0.392 | 0.515 | −0.348 | 0.077 | −0.185 | 0.487 |
WC | −0.316 | 0.275 | 1 | 0.568 | 0.888 | 0.689 | 0.414 | 0.889 | 0.487 | 0.396 | 0.675 | −0.155 | −0.687 | 0.836 | 0.845 |
WSP | −0.767 | 0.893 | 0.568 | 1 | 0.604 | 0.844 | −0.109 | 0.603 | 0.414 | 0.289 | 0.74 | −0.196 | −0.113 | 0.146 | 0.738 |
TOC | −0.465 | 0.296 | 0.888 | 0.604 | 1 | 0.652 | 0.599 | 1 | 0.693 | 0.38 | 0.883 | 0.139 | −0.495 | 0.795 | 0.95 |
TN | −0.41 | 0.804 | 0.689 | 0.844 | 0.652 | 1 | −0.212 | 0.654 | 0.612 | 0.701 | 0.593 | −0.517 | −0.46 | 0.38 | 0.737 |
C/N | −0.146 | −0.477 | 0.414 | −0.109 | 0.599 | −0.212 | 1 | 0.597 | 0.261 | −0.232 | 0.494 | 0.692 | −0.193 | 0.644 | 0.432 |
SOM | −0.464 | 0.297 | 0.889 | 0.603 | 1 | 0.654 | 0.597 | 1 | 0.692 | 0.383 | 0.882 | 0.138 | −0.495 | 0.795 | 0.951 |
FDA | −0.225 | 0.367 | 0.487 | 0.414 | 0.693 | 0.612 | 0.261 | 0.692 | 1 | 0.724 | 0.645 | −0.104 | −0.47 | 0.544 | 0.593 |
DHA | 0.067 | 0.392 | 0.396 | 0.289 | 0.38 | 0.701 | −0.232 | 0.383 | 0.724 | 1 | 0.175 | −0.611 | −0.581 | 0.403 | 0.375 |
MBC | −0.764 | 0.515 | 0.675 | 0.74 | 0.883 | 0.593 | 0.494 | 0.882 | 0.645 | 0.175 | 1 | 0.343 | −0.104 | 0.446 | 0.905 |
HC | −0.364 | −0.348 | −0.155 | −0.196 | 0.139 | −0.517 | 0.692 | 0.138 | −0.104 | −0.611 | 0.343 | 1 | 0.568 | −0.077 | 0.129 |
FC | −0.358 | 0.077 | −0.687 | −0.113 | −0.495 | −0.46 | −0.193 | −0.495 | −0.47 | −0.581 | −0.104 | 0.568 | 1 | −0.845 | −0.309 |
HC/FC | 0.096 | −0.185 | 0.836 | 0.146 | 0.795 | 0.38 | 0.644 | 0.795 | 0.544 | 0.403 | 0.446 | −0.077 | −0.845 | 1 | 0.611 |
CEC | −0.639 | 0.487 | 0.845 | 0.738 | 0.95 | 0.737 | 0.432 | 0.951 | 0.593 | 0.375 | 0.905 | 0.129 | −0.309 | 0.611 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maffia, A.; Marra, F.; Canino, F.; Battaglia, S.; Mallamaci, C.; Oliva, M.; Muscolo, A. Humic Substances from Waste-Based Fertilizers for Improved Soil Fertility. Agronomy 2024, 14, 2657. https://doi.org/10.3390/agronomy14112657
Maffia A, Marra F, Canino F, Battaglia S, Mallamaci C, Oliva M, Muscolo A. Humic Substances from Waste-Based Fertilizers for Improved Soil Fertility. Agronomy. 2024; 14(11):2657. https://doi.org/10.3390/agronomy14112657
Chicago/Turabian StyleMaffia, Angela, Federica Marra, Francesco Canino, Santo Battaglia, Carmelo Mallamaci, Mariateresa Oliva, and Adele Muscolo. 2024. "Humic Substances from Waste-Based Fertilizers for Improved Soil Fertility" Agronomy 14, no. 11: 2657. https://doi.org/10.3390/agronomy14112657
APA StyleMaffia, A., Marra, F., Canino, F., Battaglia, S., Mallamaci, C., Oliva, M., & Muscolo, A. (2024). Humic Substances from Waste-Based Fertilizers for Improved Soil Fertility. Agronomy, 14(11), 2657. https://doi.org/10.3390/agronomy14112657