Multi-Indicator Comprehensive Quality Evaluation of Turpinia arguta (Lindl.) Seem Herbs at Different Harvesting Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Reagents and Equipment
2.2. Measurement of Leaf Biomass
2.3. Nutrient Determination
2.3.1. Determination of Soluble Proteins Content
2.3.2. Determination of Soluble Sugar and Soluble Starch Contents
2.4. Determination of Secondary Metabolites
2.4.1. Extraction of Plant Samples
2.4.2. Determination of Total Polyphenol Content
2.4.3. Determination of Total Flavonoid Content of Leaf Blade
2.4.4. Determination of Total Alkaloid Content of Leaf Blade
2.5. Determination of Active Ingredient Content
2.6. Determination of In Vitro Antioxidant Activity of Different T. arguta Samples
2.6.1. DPPH Free Radical-Scavenging Rate (SR)
2.6.2. Hydroxyl Radical-Scavenging Rate
2.7. Statistical Analysis
3. Results
3.1. Leaf Biomass
3.2. Nutrient Determination
3.3. Secondary Metabolites
3.3.1. Determination of Total Polyphenols, Total Flavonoids, and Alkaloids in Plants
3.3.2. Determination of Ligustroflavone and Rhoifolin Contents
3.4. Determination and Comprehensive Evaluation of Antioxidant Activity
3.5. PCA of Indicators of T. arguta at Different Harvesting Periods
4. Discussion
4.1. Determination of the Optimal Harvesting Period
4.2. Differences in Changes at Different Harvesting Periods
4.3. Quality Research on Cultivated and Traditional Medicinal Herbs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Editorial Committee of the Chinese Materia Medica of the State Administration of Traditional Chinese Medicine. In Chinese Materia Medica, 2nd ed.; Shanghai Science and Technology Press: Shanghai, China, 1999; p. 131.
- State Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China 2020, 11th ed.; China Medical Science & Technology Press: Beijing, China, 2020; p. 156. [Google Scholar]
- Li, Y.Q.; Lei, X.X.; Feng, Y.L.; Xu, Q.M.; Xu, L.Z.; Yang, S.L. Study on the Chemical Constituents of Turpiniae Arguta. Chin. Pharm. J. 2012, 47, 261–264. [Google Scholar]
- Xiao, C.; Tu, L.; Zhang, R.; Liu, D.; Luo, Y. Research Progress on Chemical Constituents and Biological Activities from Turpinia Species. China J. Chin. Mater. Med. 2019, 44, 1295–1304. [Google Scholar] [CrossRef]
- Xu, Z. Comparison Effect on Treating of Upper Respiratory Infections with Turpinia Particles and Yanning Particles. Chin. Med. Clin. Res. 2011, 3, 42–43. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, G.; Yang, X.; Xie, E. HPLC Simultaneous Determination of Ligustroflavone and Rhoifolin in Shanxiangyuan Tablets. Chin. J. Pharm. Anal. 2009, 29, 912–914. [Google Scholar]
- Liu, Z.; Li, L.; Tang, Y.; Lin, L.; Xia, B. Chemical Compositio, antioxidant and Anti-Inflammatory Activities of Volatile Oil from Turpiniae Folium. Nat. Prod. Res. Dev. 2022, 34, 723–738. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Yu, S.; Jin, Y.; Lv, X.-W.; Zou, Y.-H.; Li, Y. Therapeutic Effects and Mechanisms of Total Flavonoids of Turpinia Arguta Seen on Adjuvant Arthritis in ratsTurpinia Arguta. J. Ethnopharmacol. 2008, 116, 167–172. [Google Scholar] [CrossRef]
- Ji, H.; Cai, J.; Chen, C.; Song, X.; Luo, Y.; Yu, J.; Zhang, Y.; Tao, X. Climate Influence on Leaf Appearance and Ligustroflavone and Rhoifolin Compounds of Turpinia Arguta (Lindl.) Seem. from Different Chinese Habitats. Horticulturae 2024, 10, 935. [Google Scholar] [CrossRef]
- Ma, S.-G.; Yuan, S.-P.; Liu, Y.-B.; Qu, J.; Li, Y.; Wang, X.-J.; Wang, R.-B.; Xu, S.; Hou, Q.; Yu, S.-S. 3-Hydroxy-3-Methylglutaryl Flavone Glycosides from the Leaves of Turpinia Arguta. Fitoterapia 2018, 124, 80–85. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.; Wang, W.; Zhao, Y. Development and Validation of an LC-ESI-MS/MS Method for Simultaneous Determination of Ligustroflavone and Rhoifolin in Rat Plasma and Its Application to a Pharmacokinetic Study. J. Chromatogr. Sci. 2017, 55, 267–274. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Fhatuwani, M.N.; Nokwanda, M.P. Effect of Seasonal Variations and Growth Conditions on Carbohydrate Partitioning in Different Organs and the Quality of Bush Tea. Hortscience 2018, 53, 999–1005. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, H.; Qiao, Z.; Zheng, M.; Liu, W.; Feng, F.; Yan, F. Chemometric Analysis Based on HPLC Multi-Wavelength Fingerprints for Prediction of Antioxidant Components in Turpiniae Folium. Chemom. Intell. Lab. Syst. 2016, 152, 54–61. [Google Scholar] [CrossRef]
- Alice, K.; Sankar, M.A. Medicinal Plants: Vol.02: Horticulture Science Series, 1st ed.; Nipa: New Delhi, India, 2007; pp. 275–280. [Google Scholar]
- Halder, M.; Majumder, A.; Ray, S.; Jha, S. Medicinal Plant Research at Crossroads: Biotechnological Approaches for Conservation, Production and Stability in Tissue Cultures and Regenerated Plants. In Medicinal Plants: Domestication, Biotechnology and Regional Importance; Ekiert, H.M., Ramawat, K.G., Arora, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 459–544. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gong, M. Comprehensive and Designed Laboratory Course in Plant Physiology; Huazhong University of Science and Technology Press: Wuhan, China, 2014. [Google Scholar]
- Meletiou-Christou, M.-S.; Rhizopoulou, S. Leaf Functional Traits of Four Evergreen Species Growing in Mediterranean Environmental Conditions. Acta Physiol. Plant. 2016, 39, 34. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of Total Flavonoid Content by Aluminum Chloride Assay: A Critical Evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Lahare, R.P.; Yadav, H.S.; Bisen, Y.K.; Dashahre, A.K. Estimation of Total Phenol, Flavonoid, Tannin and Alkaloid Content in Different Extracts of Catharanthus roseus from Durg District, Chhattisgarh, India. Sch. Bull. 2021, 7, 1–6. [Google Scholar] [CrossRef]
- Hu, J.; Cai, J.; Hu, X.; Wang, L.; Cheng, Q.; Tao, X. Efficient In Vitro Propagation of Turpinia Arguta and Quantitative Analysis of Its Ligustroflavone and Rhoifolin Content. Horticulturae 2024, 10, 587. [Google Scholar] [CrossRef]
- Wu, N.; Zu, Y.; Fu, Y.; Kong, Y.; Zhao, J.; Li, X.; Li, J.; Wink, M.; Efferth, T. Antioxidant Activities and Xanthine Oxidase Inhibitory Effects of Extracts and Main Polyphenolic Compounds Obtained from Geranium sibiricum L. J. Agric. Food Chem. 2010, 58, 4737–4743. [Google Scholar] [CrossRef]
- Samak, G.; Shenoy, R.P.; Manjunatha, S.M.; Vinayak, K.S. Superoxide and Hydroxyl Radical Scavenging Actions of Botanical Extracts of Wagatea Spicata. Food Chem. 2009, 115, 631–634. [Google Scholar] [CrossRef]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of Antioxidant Potency of Commonly Consumed Polyphenol-Rich Beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Ahad, B.; Shahri, W.; Rasool, H.; Reshi, Z.A.; Rasool, S.; Hussain, T. Medicinal Plants and Herbal Drugs: An Overview. In Medicinal and Aromatic Plants: Healthcare and Industrial Applications; Aftab, T., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–40. [Google Scholar]
- Wang, H.; Chen, Y.; Wang, L.; Liu, Q.; Yang, S.; Wang, C. Advancing Herbal Medicine: Enhancing Product Quality and Safety through Robust Quality Control Practices. Front. Pharmacol. 2023, 14, 1265178. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, J.; Wang, Y. Recent trends of multi-source and non-destructive information for quality authentication of herbs and spices. Food Chem. 2023, 398, 133939. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Wang, Y. Vibrational Spectroscopy Combined with Chemometrics in Authentication of Functional Foods. Crit. Rev. Anal. Chem. 2024, 54, 333–354. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Feng, L.; Wang, H.; Zhang, L.; Li, H.; Li, Y.; Niu, P.; Tian, G.; Yang, Y.; Mei, X.; et al. The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of Stellaria dichotoma L. Var. Lanceolata Bge. Reveals the Optimal Harvest Age. Plants 2023, 12, 2286. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, X.-L.; Li, L.-F.; Dai, S.-Y.; Wang, Y.-D.; Li, M.-H.; Guo, X.-H.; Wei, F.; Ma, S.-C. A General Procedure for Establishing Composite Quality Evaluation Indices Based on Key Quality Attributes of Traditional Chinese Medicine. J. Pharm. Biomed. Anal. 2022, 207, 114415. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Li, Z.; Zhao, Z.; Liu, H.; Li, L.; Li, M. The Factors Affecting the Development of Medicinal Plants from a Value Chain Perspective. Planta 2024, 259, 108. [Google Scholar] [CrossRef]
- Sun, Y.; Alseekh, S.; Fernie, A.R. Plant Secondary Metabolic Responses to Global Climate Change: A Meta-Analysis in Medicinal and Aromatic Plants. Glob. Chang. Biol. 2023, 29, 477–504. [Google Scholar] [CrossRef]
- Gao, Y.; Long, R.; Kang, J.; Wang, Z.; Zhang, T.; Sun, H.; Li, X.; Yang, Q. Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa (Medicago sativa L.) Leaves. J. Proteome Res. 2019, 18, 191–203. [Google Scholar] [CrossRef]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble Sugars. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef]
- Smith, A.M.; Zeeman, S.C. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth. Annu. Rev. Plant Biol. 2020, 71, 217–245. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Nazir, F.; Maheshwari, C.; Kaur, H.; Gupta, R.; Siddique, K.H.M.; Khan, M.I.R. Plant Hormones and Secondary Metabolites under Environmental Stresses: Enlightening Defense Molecules. Plant Physiol. Biochem. 2024, 206, 108238. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, S.; Mousavi, Z.; Nicola, S. Harvest Time Optimization for Medicinal and Aromatic Plant Secondary Metabolites. Plant Physiol. Biochem. 2024, 212, 108735. [Google Scholar] [CrossRef] [PubMed]
- Zárate, R.; Dirks, C.; van der Heijden, R.; Verpoorte, R. Terpenoid Indole Alkaloid Profile Changes in Catharanthus Pusillus during Development. Plant Sci. 2001, 160, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Eltayeb, E.A.; Al-Ansari, A.S.; Roddick, J.G. Polyphenols, Antioxidant and Antimicrobial Activities of Leaf and Bark Extracts of Solidago canadensis L. Phytochemistry 1997, 46, 489–494. [Google Scholar] [CrossRef]
- Müller, J.; Puttich, P.M.; Beuerle, T. Variation of the Main Alkaloid Content in Equisetum palustre L. in the Light of Its Ontogeny. Toxins 2020, 12, 710. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Emwas, A.-H.; Khan, R.A. Salt-Tolerant Plants, Halophytes, as Renewable Natural Resources for Cancer Prevention and Treatment: Roles of Phenolics and Flavonoids in Immunomodulation and Suppression of Oxidative Stress towards Cancer Management. Int. J. Mol. Sci. 2023, 24, 5171. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Abootalebian, M.; Keramat, J.; Kadivar, M.; Ahmadi, F.; Abdinian, M. Comparison of Total Phenolic and Antioxidant Activity of Different Mentha spicata and M. longifolia Accessions. Ann. Agric. Sci. 2016, 61, 175–179. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Zhang, T.; Gong, M.; Liu, R.; Chang, M.; Wang, X. Interactions between Liposoluble Antioxidants: A Critical Review. Food Res. Int. 2022, 155, 111104. [Google Scholar] [CrossRef]
- Rahman, S.; Iqbal, M.; Husen, A. Medicinal Plants and Abiotic Stress: An Overview. In Medicinal Plants: Their Response to Abiotic Stress; Husen, A., Iqbal, M., Eds.; Springer Nature: Singapore, 2023; pp. 1–34. [Google Scholar]
- Chen, S.-L.; Yu, H.; Luo, H.-M.; Wu, Q.; Li, C.-F.; Steinmetz, A. Conservation and Sustainable Use of Medicinal Plants: Problems, Progress, and Prospects. Chin. Med. 2016, 11, 37. [Google Scholar] [CrossRef]
- Guo, M.; Lv, H.; Chen, H.; Dong, S.; Zhang, J.; Liu, W.; He, L.; Ma, Y.; Yu, H.; Chen, S.; et al. Strategies on Biosynthesis and Production of Bioactive Compounds in Medicinal Plants. Chin. Herb. Med. 2024, 16, 13–26. [Google Scholar] [CrossRef]
Harvesting Period | Leaf Biomass (mg/g, dw) |
---|---|
CK | 1.198 ± 0.077 a |
S1 | 0.215 ± 0.037 d |
S2 | 0.598 ± 0.025 c |
S3 | 0.854 ± 0.075 b |
S4 | 1.097 ± 0.055 a |
Period | APC Index/% | Arranged in Order |
---|---|---|
CK | 88.87 | 3 |
S1 | 71.35 | 5 |
S2 | 83.63 | 4 |
S3 | 88.98 | 2 |
S4 | 96.56 | 1 |
Indicator Components | Principal Component | |
---|---|---|
F1 | F2 | |
Leaf biomass | 0.928 | −0.179 |
DPPH free radical-scavenging rate | 0.888 | 0.197 |
Hydroxyl radical-scavenging rate | 0.851 | −0.142 |
Antioxidant potency composite | 0.214 | −0.83 |
Soluble proteins | 0.247 | 0.822 |
Soluble sugars | 0.389 | 0.693 |
Soluble starches | 0.948 | 0.079 |
Total polyphenol | −0.904 | −0.089 |
Total flavonoids | 0.943 | 0.145 |
Total alkaloids | 0.949 | −0.293 |
Ligustroflavone | 0.888 | −0.221 |
Rhoifolin | 6.927 | 2.106 |
Eigenvalue (math.) | 60.89 | 20.706 |
Contribution rate/% | 63.323 | 82.21 |
Cumulative variance contribution/% | 0.928 | −0.179 |
Harvesting Period | Principal Component Score (of a Function) | Arranged in Order | ||
---|---|---|---|---|
F1 | F2 | F | ||
CK | 4.714 | −1.168 | 2.745 | 2 |
S1 | −12.533 | −1.390 | −8.159 | 5 |
S2 | −1.298 | 3.993 | −0.053 | 4 |
S3 | 4.382 | −0.721 | 2.622 | 3 |
S4 | 4.735 | −0.713 | 2.845 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Cai, J.; Cheng, Q.; Wang, L.; Hu, X.; Wang, W.; Liao, Z.; Tao, X. Multi-Indicator Comprehensive Quality Evaluation of Turpinia arguta (Lindl.) Seem Herbs at Different Harvesting Periods. Agronomy 2024, 14, 2658. https://doi.org/10.3390/agronomy14112658
Hu J, Cai J, Cheng Q, Wang L, Hu X, Wang W, Liao Z, Tao X. Multi-Indicator Comprehensive Quality Evaluation of Turpinia arguta (Lindl.) Seem Herbs at Different Harvesting Periods. Agronomy. 2024; 14(11):2658. https://doi.org/10.3390/agronomy14112658
Chicago/Turabian StyleHu, Jiangmei, Junhuo Cai, Qiangqiang Cheng, Lijun Wang, Xinrui Hu, Wenzhao Wang, Zhifeng Liao, and Xiuhua Tao. 2024. "Multi-Indicator Comprehensive Quality Evaluation of Turpinia arguta (Lindl.) Seem Herbs at Different Harvesting Periods" Agronomy 14, no. 11: 2658. https://doi.org/10.3390/agronomy14112658
APA StyleHu, J., Cai, J., Cheng, Q., Wang, L., Hu, X., Wang, W., Liao, Z., & Tao, X. (2024). Multi-Indicator Comprehensive Quality Evaluation of Turpinia arguta (Lindl.) Seem Herbs at Different Harvesting Periods. Agronomy, 14(11), 2658. https://doi.org/10.3390/agronomy14112658