Detection of Rice Leaf Folder in Paddy Fields Based on Unmanned Aerial Vehicle-Based Hyperspectral Images
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Experimental Site
2.2. Collection of Hyperspectral Images
2.3. Data Preprocessing
2.4. Field Investigation of Rice Pests
3. Method
3.1. Model Construction
3.1.1. Vegetation Index Calculation
3.1.2. Feature Selection
3.1.3. Identification of Rice Pests
3.1.4. Model Performance Assessment
3.2. Model Application and Assessment
4. Results
4.1. Difference in Spectral Characteristics Between Healthy Rice and Infested Rice
4.2. Model Performance
4.3. Distribution of Rice Pests
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvajal, Y.M.; Cardwell, K.; Nelson, A.; Garrett, K.A.; Giovani, B.; Saunders, D.G.O.; Kamoun, S.; Legg, J.P.; Verdier, V.; Lessel, J. A global surveillance system for crop diseases. Science 2019, 364, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, Z.; Zhu, H. The use of UAV remote sensing technology to identify crop stress: A review. J. Geo-Inf. Sci. 2019, 21, 512–523. [Google Scholar]
- Tian, L.; Xue, B.; Wang, Z.; Li, D.; Cheng, T. Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection. Remote Sens. Environ. 2021, 257, 112350. [Google Scholar] [CrossRef]
- Becker-Ritt, A.B.; Carlini, C.R. Fungitoxic and insecticidal plant polypeptides. Pept. Sci. 2012, 98, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Mondal, K.; Mani, V. Emergence of bacterial panicle blight caused by Burkholderia glumae in North India. Plant Dis. 2015, 15, 150311115126000. [Google Scholar] [CrossRef]
- Karthikeyan, I. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Government Network of Ministry of Agriculture and Rural Affairs of the People’s Republic of China. The Seed of a Better Life. China 2021. Available online: http://www.zys.moa.gov.cn/mhsh/202104/t20210420_6366193.htm (accessed on 20 April 2021). (In Chinese)
- Huang, S.; Wang, L.; Liu, L.; Fu, Q.; Zhu, D. Nonchemical pest control in China rice: A review. Agron. Sustain. Dev. 2014, 34, 275–291. [Google Scholar] [CrossRef]
- Kim, Y.; Roh, J.H.; Kim, H. Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks. Sustainability 2018, 10, 34. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Xia, Q.; Dong, Y.; Ye, H.; Jiang, H.; Chen, S.; Huang, S. Remote Sensing Monitoring of Rice Diseases and Pests from Different Data Sources: A Review. Agronomy 2023, 13, 1851. [Google Scholar] [CrossRef]
- Huang, J.; Liao, H.; Zhu, Y.; Sun, J.; Sun, Q.; Liu, X. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput. Electron. Agric. 2012, 82, 100–107. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plumer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Mahlein, A.K. Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, F.; Yi, Q.; Xie, L.; Yao, X. A bibliometric and visualized analysis of research progress and trends in rice remote sensing over the past 42 years (1980–2021). Remote Sens. 2022, 14, 3607. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; González-Moreno, P.; Luke, B.; Dong, Y.; Zheng, Q.; Ma, H.; Liu, L. Wavelet-based rust spectral feature set (WRSFS): A novel spectral feature set based on continuous wavelet transformation for tracking progressive host–pathogen interaction of yellow rust on wheat. Remote Sens. 2018, 10, 525. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New spectral index for detecting wheat yellow rust using Sentinel-2 multispectral imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, H.; Song, J.; Yang, Y.; Hu, X.; Wiyao, K.T.; Zhai, Z. Applying spectral fractal dimension index to predict the SPAD value of rice leaves under bacterial blight disease stress. Plant Methods 2022, 18, 67. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Liu, T.; Shi, T.; Zhang, H.; Wu, C. Detection of Rise Damage by Leaf Folder (Cnaphalocrocis medinalis) Using Unmanned Aerial Vehicle Based Hyperspectral Data. Sustainability 2020, 12, 9343. [Google Scholar] [CrossRef]
- Yang, C.; Cheng, C.; Chen, R. Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Sci. 2007, 47, 329–335. [Google Scholar] [CrossRef]
- Das, P.K.; Laxman, B.; Kameswara Rao, S.V.C.; Seshasai, M.V.R.; Dadhwal, V.K. Monitoring of bacterial leaf blight in rice using ground-based hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India. Int. J. Pest. Manag. 2015, 61, 359–368. [Google Scholar] [CrossRef]
- Arnal Barbedo, J.G. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses. Drones 2019, 3, 40. [Google Scholar] [CrossRef]
- Dammer, K.H.; Garz, A.; Hobart, M.; Schirrmann, M. Combined UAV-and Tractor-based Stripe Rust Monitoring in Winter Wheat under Field Conditions. Agron. J. 2022, 114, 651–661. [Google Scholar] [CrossRef]
- Yang, C.; Yan, G.; Du, S.; Li, X. Application Review of Unmanned Aerial Vehicle Remote Sensing Technology Wheat Production. Henan Sci. 2021, 39, 1598–1602. [Google Scholar]
- Yang, G.; He, Y.; Feng, X.; Li, X.; Zhang, J.; Yu, Z. Methods and New Research Progress of Remote Sensing Monitoring of Crop Disease and Pest Stress Using Unmanned Aerial Vehicle. Smart Agric. 2022, 4, 1–16. [Google Scholar]
- Thomas, S.; Wahabzada, M.; Kuska, M.T.; Rascher, U.; Mahlein, A.K. Observation of plant-pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Funct. Plant Biol. 2017, 44, 23–34. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Lan, Y.; Deng, J.; Zhang, Q.; Zhang, Z.; Li, Z.; Liu, L.; Huang, X.; Ma, J. Application Progress of UAV-LARS in Identification of Crop Diseases and Pests. Agronomy 2023, 13, 2232. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, X.; Yang, Z.; Zhou, C.; Wang, R.; Zhang, K.; Lv, X.; Yang, L.; Wang, Z.; Li, P.; et al. Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index. Comput. Electron. Agric. 2023, 215, 108434. [Google Scholar] [CrossRef]
- Bohnenkamp, D.; Behmann, J.; Mahlein, A. In-Field Detection of Yellow Rust in Wheat on the Ground Canopy and UAV Scale. Remote Sens. 2019, 11, 2495. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z.; Wu, C. Research on Large-scale Monitoring of Spider Mite Infestation in Xinjiang Cotton Field Based on Multi-source Data. Spectrosc. Spectr. Anal. 2021, 41, 3949–3956. [Google Scholar]
- Bruce, L.M.; Koger, C.H.; Li, J. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2331–2338. [Google Scholar] [CrossRef]
- Coops, N.C.; Wulder, M.A.; White, J.C. Integrating remotely sensed and ancillary data sources to characterize a mountain pine beetle infestation. Remote Sens. Environ. 2006, 105, 83–97. [Google Scholar] [CrossRef]
- Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187–197. [Google Scholar] [CrossRef]
- Naidu, R.A.; Perry, E.M.; Pierce, F.J.; Mekuria, T. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput. Electron. Agric. 2009, 66, 38–45. [Google Scholar] [CrossRef]
- Adelabu, S.; Mutanga, O.; Adam, E. Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels. ISPRS J. Photogramm. Remote Sens. 2014, 95, 34–41. [Google Scholar] [CrossRef]
- Hillnhütter, C.; Mahlein, A.; Sikora, R.A.; Oerke, E. Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crop Res. 2011, 122, 70–77. [Google Scholar] [CrossRef]
- Yuan, L.; Huang, Y.; Loraamm, R.W.; Nie, C.; Wang, J.; Zhang, J. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crop Res. 2014, 156, 199–207. [Google Scholar] [CrossRef]
- Harshadkumar, B.P.; Jitesh, P.S.; Vipul, K.D. Detection and Classification of Rice Plant Diseases. Intell. Decis. Technol. 2018, 11, 357–373. [Google Scholar]
- Rahman, C.R.; Arko, P.S.; Ali, M.E.; Khan, M.A.I.; Apon, S.H.; Nowrin, F.; Abu, W. Identification and recognition of rice diseases and pests using convolutional neural networks. Biosyst. Eng. 2020, 194, 112–120. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Song, Y.; Zhang, C.; Jin, X.; Zhao, X.; Huang, W.; Sun, X.; Yang, Z.; Wang, S. Spatial prediction of PM2.5 concentration using hyper-parameter optimization XGBoost model in China. Environ. Technol. Inno. 2023, 32, 103272. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Chakraborty, S.; Behera, M. Winter wheat yield prediction in the conterminous United States using solar-induced chlorophyll fluorescence data and XGBoost and random forest algorithm. Ecol. Inform. 2023, 77, 102194. [Google Scholar] [CrossRef]
- Parsa, A.B.; Movahedi, A.; Taghipour, H.; Derrible, S.; Mohammadian, A.K. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accident. Anal. Prev. 2020, 136, 105405. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zeng, H.; Zhang, M.; Wu, B.; Zhao, Y.; Yao, X.; Cheng, T.; Qin, X.; Wu, F. A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103269. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Melack, J.; Duan, H.; Liu, M.; Kutser, T.; Xue, K.; Shen, M.; Qi, T.; Yuan, H. Landsat observations of chlorophyll-a variations in Lake Taihu from 1984 to 2019. Int. J. Appl. Earth Obs. 2022, 106, 102642. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Q.; Hu, L.; Zhu, T.; Zhou, X.; Zhang, Y.; Xu, Z.; Ju, W. Monitoring Damage Caused by Pantana phyllostachysae Chao to Moso Bamboo Forests Using Sentinel-1 and Sentinel-2 Images. Remote Sens. 2022, 14, 5012. [Google Scholar] [CrossRef]
- Xie, B.; Ding, J.; Ge, X.; Li, X.; Han, L.; Wang, Z. Estimation of soil organic carbon content in the Ebinur Lake wetland, Xinjiang, China, based on multisource remote sensing data and ensemble learning algorithms. Sensors 2022, 22, 2685. [Google Scholar] [CrossRef] [PubMed]
- Grisham, M.P.; Johnson, R.M.; Zimba, P.V. Detecting sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. J. Virol. Method 2010, 167, 140–145. [Google Scholar] [CrossRef]
- Prabhakar, M.; Prasad, Y.G.; Thirupathi, M.; Sreedevi, G.; Dharajothi, B.; Venkateswarlu, B. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Comput. Electron. Agric. 2011, 79, 189–198. [Google Scholar] [CrossRef]
- Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant. Biol. 2017, 38, 184–192. [Google Scholar] [CrossRef]
- Darvishzadeh, R.A.K.; Skidmore, A.; Atzberger, C.; Van Wieren, S.E. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 358–373. [Google Scholar] [CrossRef]
28th Sept. | 25th Oct. | |||
---|---|---|---|---|
Number of Healthy Plots | Number of Infested Plots | Number of Healthy Plots | Number of Infested Plots | |
Control area (A) | 91 | 27 | 73 | 45 |
Experimental area (B) | 49 | 55 | 7 | 97 |
Total number | 140 | 82 | 80 | 142 |
Vegetation Indices | Abbreviation | Formula | |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | , | (2) |
Red Normalized Difference Vegetation Index | Red NDVI | , | (3) |
Red-edge Normalized Difference Vegetation Index | Red-edge NDVI | , | (4) |
Green Ratio Vegetation Index | GRVI | (5) | |
Structure Insensitive Pigment Index | SIPI | , | (6) |
Enhanced Vegetation Index | EVI | , | (7) |
Renormalized Difference Vegetation Index | RDVI | , | (8) |
Atmospherically Resistant Vegetation Index | ARVI | , | (9) |
Visible Atmospherically Resistant Index | VARI | , | (10) |
Soil-Adjusted Vegetation Index | SAVI | , | (11) |
Modified Triangular Vegetation Index (Improved) | MTVII | , | (12) |
Red-edge Chlorophyll Index | CIred-edge | , | (13) |
Green Chlorophyll Index | CIgreen | , | (14) |
Chlorophyll Absorption Reflectance Index | CARI | , | (15) |
Modified Chlorophyll Absorption Reflectance Index | MCARI | , | (16) |
Transformed Chlorophyll Absorption Reflectance Index | TCARI | , | (17) |
Pigment-Specific Simple Ratio680 | PSSR680 | , | (18) |
Pigment-Specific Simple Ratio635 | PSSR635 | , | (19) |
Pigment-Specific Simple Ratio470 | PSSR470 | , | (20) |
Carotenoid Reflectance Index550 | CRI550 | , | (21) |
Carotenoid Reflectance Index700 | CRI700 | , | (22) |
Plant Senescence Reflectance Index | PSRI | , | (23) |
Nitrogen Reflectance Index | NRI | , | (24) |
Hyperparameters | Optimized Value |
---|---|
Boosting learning rate (LR) | 0.27 |
Number of the base learner (NE) | 73 |
Maximum tree depth of the base learner (MD) | 6 |
Minimum sum of the instance weight needed in a child (MCW) | 1 |
Minimum value of the loss function required for leaf node branching (GAM) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Jiang, S.; Huang, X.; Zhang, L.; Gan, Y.; Wang, L.; Zhou, C. Detection of Rice Leaf Folder in Paddy Fields Based on Unmanned Aerial Vehicle-Based Hyperspectral Images. Agronomy 2024, 14, 2660. https://doi.org/10.3390/agronomy14112660
Feng S, Jiang S, Huang X, Zhang L, Gan Y, Wang L, Zhou C. Detection of Rice Leaf Folder in Paddy Fields Based on Unmanned Aerial Vehicle-Based Hyperspectral Images. Agronomy. 2024; 14(11):2660. https://doi.org/10.3390/agronomy14112660
Chicago/Turabian StyleFeng, Shanshan, Shun Jiang, Xuying Huang, Lei Zhang, Yangying Gan, Laigang Wang, and Canfang Zhou. 2024. "Detection of Rice Leaf Folder in Paddy Fields Based on Unmanned Aerial Vehicle-Based Hyperspectral Images" Agronomy 14, no. 11: 2660. https://doi.org/10.3390/agronomy14112660
APA StyleFeng, S., Jiang, S., Huang, X., Zhang, L., Gan, Y., Wang, L., & Zhou, C. (2024). Detection of Rice Leaf Folder in Paddy Fields Based on Unmanned Aerial Vehicle-Based Hyperspectral Images. Agronomy, 14(11), 2660. https://doi.org/10.3390/agronomy14112660