Integrative Transcriptomic and Metabolomic Analysis Reveals Quinoa Leaf Response Mechanisms to Different Phosphorus Concentrations During Filling Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Sample Preparation
2.2. Morphological Data Collection
2.3. Qualitative and Quantitative Analysis of Metabolite Extracts
2.3.1. Sample Preparation and Metabolite Extraction
2.3.2. Qualitative and Quantitative Analysis of Metabolites
2.4. Transcriptome Sequencing and Data Analysis
2.4.1. RNA Extraction, Quantification, Sequencing, and Data Analysis
2.4.2. RT-qPCR
2.5. Combined Transcriptome and Metabolome Analysis
3. Results
3.1. Changes in Agronomic Traits of Quinoa Plants During the Grouting Stage Under Various Phosphorus Concentrations
3.2. Metabolomic Response Mechanism of Quinoa Leaves to Phosphorus Fertilizer During Grouting Stage
3.2.1. Qualitative Analysis of Differential Metabolites
3.2.2. PCA and Repeatability Evaluation of Samples
3.2.3. Screening and Enrichment Analysis of Differential Metabolites
3.3. Transcriptomic Response of Quinoa Leaves to Phosphorus Fertilizer at Grouting Stage
3.3.1. Quality Analysis of Transcriptome Sequencing Data
3.3.2. Differential Gene Expression Analysis
3.3.3. Differential Gene KEGG Annotation and Enrichment Analysis
3.3.4. GO Annotation and Enrichment Analysis
3.3.5. Transcription Factor Family Analysis
3.3.6. RT-qPCR Validation
3.4. The Integrative Metabolomic and Transcriptomic Analysis of the Response Mechanism of Quinoa Leaves to Different Phosphorus Concentrations at the Grouting Stage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhargava, A.; Shukla, S.; Ohri, D. Chenopodium quinoa—An Indian perspective. Ind. Crops Prod. 2006, 23, 73–87. [Google Scholar] [CrossRef]
- Roman, V.J.; Toom, L.; Gamiz, C.C.; Pijl, N.; Linden, C. Differential responses to salt stress in ion dynamics, growth and seed yield of European quinoa varieties. Environ. Exp. Bot. 2020, 177, 104146. [Google Scholar] [CrossRef]
- Adolf, V.I.; Shabala, S.; Andersen, M.N.; Razzaghi, F.; Jacobsen, S.E. Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 2012, 357, 117–129. [Google Scholar] [CrossRef]
- Hariadi, Y.; Marandon, K.; Tian, Y.; Jacobsen, S.E.; Shabala, S. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J. Exp. Bot. 2011, 62, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef]
- Jacobsen, S.E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 2003, 19, 167–177. [Google Scholar] [CrossRef]
- Escuredo, O.; González Martín, M.I.; Wells Moncada, G.; Fischer, S.; Hernández Hierro, J.M. Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J. Cereal Sci. 2014, 60, 67–74. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United States/World Health Organization/United Nations University, Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Meeting; World Health Organization: Geneva, Switzerland, 1985. [Google Scholar]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.-E. Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Dakhili, S.; Abdolalizadeh, L.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Mirmoghtadaie, L. Quinoa protein: Composition, structure and functional properties. Food Chem. 2019, 299, 125–161, Corrigendum in Food Chem. 2019, 310, 125318. [Google Scholar] [CrossRef]
- Yang, X.; Hou, Z.; Xue, P. Antibacterial activity and mechanism of action saponins from chenopodium quinoa willd. husks against foodborne pathogenic bacteria. Ind. Crops Prod. 2020, 149, 112350. [Google Scholar] [CrossRef]
- Jin, H.M.; Wei, P. Anti-Fatigue Properties of Tartary Buckwheat Extracts in Mice. Int. J. Mol. Sci. 2011, 12, 4770–4780. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Hao, Y.; Richel, A.; Everaert, N.; Ren, G. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. J. Sci. Food Agric. 2020, 100, 5569–5576. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T. Regulation of Phosphate Transport and Homeostasis in Plant Cells. Int. Rev. Cytol. 1999, 191, 149–200. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, W.; Pan, K.; Ying, Y.; Sun, C. Effect of low phosphorus stress on growth and nutrient physiology of Phyllostachys edulis seedlings. J. Zhejiang AF Univ. 2022, 39, 1010–1017. [Google Scholar] [CrossRef]
- Naureen, Z.; Sham, A.; Al Ashram, H.; Gilani, S.A.; Al Gheilani, S.; Mabood, F.; Hussain, J.; Al Harrasi, A.; AbuQamar, S.F. Effect of phosphate nutrition on growth, physiology and phosphate transporter expression of cucumber seedlings. Plant Physiol. Biochem. 2018, 127, 211–222. [Google Scholar] [CrossRef]
- Liao, Z.X.; Li, X.H.; Xue, Y.B.; Yang, N.D.; Wu, Z.W.; Liu, Y. Effects of phosphorus on growth and development of soybean seedlings. Key Eng. Mater. 2022, 905, 353–358. [Google Scholar] [CrossRef]
- Juszczuk, I.; Malusà, E.; Rychter, A.M. Oxidative stress during phosphate deficiency in roots of bean plants (phaseolus vulgaris L.). J. Plant Physiol. 2001, 158, 1299–1305. [Google Scholar] [CrossRef]
- Herná, G.; Ramírez, M.; Valdés-López, O.; Tesfaye, M.; Graham, M.A.; Czechowski, T.; Schlereth, A.; Wandrey, M.; Erban, A.; Cheung, F.; et al. Focus issue on legume biology:phosphorus stress in common bean:root transcript and metabolic responses. Plant Physiol. 2007, 144, 752–767. [Google Scholar] [CrossRef]
- Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2010, 11, 610–617. [Google Scholar] [CrossRef]
- Dunn, W.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef] [PubMed]
- Want, E.; Wilson, I.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 2010, 5, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and opls statistical analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef] [PubMed]
- Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Kieffer, D.A.; Piccolo, B.D.; Vaziri, N.D.; Liu, S.; Lau, W.L.; Khazaeli, M. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am. J. Physiol. Renal Physiol. 2016, 310, F857–F871. [Google Scholar] [CrossRef]
- Saude, E.J.; Skappak, C.D.; Regush, S.; Cook, K.; Ben-Zvi, A.; Becker, A.; Saude, R.E.J.; Skappak, C.D.; Regush, S.; Cook, K.; et al. Metabolomic profiling of asthma: Diagnostic utility of urine nuclear magnetic resonance spectroscopy. J. Allergy Clin. Immunol. 2011, 127, 757–764. [Google Scholar] [CrossRef]
- Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative pcr and the 2-∆∆ct method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Sikma, M.; Ikawa, H.; Heusinkveld, B.G.; Yoshimoto, M.; Hasegawa, T.; Haar, L.T.G.; Anten, N.P.R.; Nakamura, H.; de Arellano, J.V.-G.; Sakai, H.; et al. Quantifying the feedback between rice architecture, physiology, and microclimate under current and future CO2 conditions. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005452. [Google Scholar] [CrossRef]
- Parihar, M.; Meena, V.S.; Mishra, P.K.; Rakshit, A.; Choudhary, M.; Yadav, R.P.; Rana, K.; Bisht, J.K. Arbuscular mycorrhiza: A viable strategy for soil nutrient loss reduction. Arch Microbiol. 2019, 201, 723–735. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Y.; Huang, T.; Zhang, X.; Zhang, P.; Xie, H.; Liu, J.; Li, L.; Kong, Z.; Qin, P. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Quinoa Seedlings to Different Phosphorus Stresses. Int. J. Mol. Sci. 2022, 23, 4704. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Jia, S.; Wang, Y.; Xiao, J.; Zhang, Y. Phosphate stresses affect ionome and metabolome in tea plants. Plant Physiol. Biochem. 2017, 129, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liang, C.; Tian, J.; Xue, Y. Advances in Plant Lipid Metabolism Responses to Phosphate Scarcity. Plants 2022, 11, 2238. [Google Scholar] [CrossRef]
- Muhammad, I.I.; Nor, S.; Abdullah, A.; Saud, H.M.; Gori, A. The dynamic responses of oil palm leaf and root metabolome to phosphorus deficiency. Metabolites. 2021, 11, 217. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, J.; Zhang, Q.; Li, X.; Li, M.; Yang, Y.; Zhou, J.; Wei, Q.; Zhou, B. Transcriptome and metabolome analyses revealed the response mechanism of apple to different phosphorus stresses. Plant Physiol. Biochem. 2021, 167, 639–650. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, L.; Liang, H.; Yin, L.; Chen, D.; Shen, P. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome. BMC Plant Biol. 2022, 22, 524. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Tian, J.; Luo, R.; Kang, Y.; Lu, Y.; Hu, Y.; Liu, N.; Zhang, J.; Cheng, H.; Niu, S.; et al. Mir399d and epigenetic modification comodulate anthocyanin accumulation in malus leaves suffering from phosphorus deficiency. Plant Cell Environ. 2020, 43, 1148–1159. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Li, L.; Sun, Z.; Li, J.; Chen, X.; Hong, G. Spx4 interacts with both phr1 and pap1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis. New Phytol. 2021, 230, 205–217. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Long, T.; Wang, S.; Yang, J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022, 12, 871. [Google Scholar] [CrossRef]
- Cocozza, C.; Bartolini, P.; Brunetti, C.; Miozzi, L.; Pignattelli, S.; Podda, A.; Scippa, G.S.; Trupiano, D.; Rotunno, S.; Brilli, F.; et al. Modulation of class III peroxidase pathways and phenylpropanoids in Arundo donax under salt and phosphorus stress. Plant Physiol. Biochem. 2022, 183, 151–159. [Google Scholar] [CrossRef]
- Dai, X.; Wang, Y.; Wen-Hao, Z. Oswrky74, a wrky transcription factor, modulates tolerance to phosphate starvation in rice. J. Exp. Bot. 2016, 67, 947–960. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.; Müller, R.; Nielsen, T.H. Increased expression of the myb-related transcription factor, phr1, leads to enhanced phosphate uptake in arabidopsis thaliana. Plant Cell Environ. 2010, 30, 1499–1512. [Google Scholar] [CrossRef] [PubMed]
- Filiz, E.; Vatansever, R.; Ozyigit, I.I. Dissecting a co-expression network of basic helix-loop-helix (bhlh) genes from phosphate (pi)-starved soybean (Glycine max). Plant Gene 2016, 9, 19–25. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Sun, C.; Xu, Y.; Chen, Y.; Yu, C.; Qian, Q.; Jiang, D.-A.; Qi, Y. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytol. 2014, 201, 91–103. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Wang, R.; Cui, R.; Xu, H.; Sun, C.; Wang, J.; Zhang, H.; Chen, H.; Zhang, D. GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean. Plant Sci. 2021, 315, 111148. [Google Scholar] [CrossRef]
- Le Noë, J.; Garnier, J.; Billen, G. Phosphorus management in cropping systems of the Paris Basin: From farm to regional scale. J. Environ. Manag. 2018, 205, 18–28. [Google Scholar] [CrossRef]
- Mahapatra, D.M.; Satapathy, K.C.; Panda, B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci. Total Environ. 2022, 803, 14999. [Google Scholar] [CrossRef]
Group | Repetition | Phosphorus Fertilizer Usage |
---|---|---|
W0 | W0-1 | 0 kg/hm2 |
W0-2 | ||
W0-3 | ||
W1 | W1-1 | 112.5 kg/hm2 |
W1-2 | ||
W1-3 | ||
W2 | W2-1 | 225.0 kg/hm2 |
W2-2 | ||
W2-3 | ||
W3 | W3-1 | 337.5 kg/hm2 |
W3-2 | ||
W3-3 | ||
W4 | W4-1 | 450.0 kg/hm2 |
W4-2 | ||
W4-3 | ||
W5 | W5-1 | 562.5 kg/hm2 |
W5-2 | ||
W5-3 |
ID | Primer | Forward/Reverse Primer | Primer Sequences (5′ to 3′) |
---|---|---|---|
1 | geneLOC110707704 | Forward primer | GTCGTCATCATCATCATC |
Reverse primer | ATATTCCAACCACTGTCT | ||
2 | geneLOC110689796 | Forward primer | GTTCGTGTTAATGTCTATG |
Reverse primer | TTCTATCCTCAAGTTCTTC | ||
3 | geneLOC110702485 | Forward primer | ATTGAAGGCTATGAATCC |
Reverse primer | GTCTGAGGTTGATATGTC | ||
4 | geneLOC110689796 | Forward primer | GTTCGTGTTAATGTCTATG |
Reverse primer | TTCTATCCTCAAGTTCTTC | ||
5 | geneLOC11000414 | Forward primer | GTAAGGAGCACTATAACAA |
Reverse primer | GGACATATCAGAGACAAC | ||
6 | geneLOC110735654 | Forward primer | TTGCTAATCACTTCTCTG |
Reverse primer | GCTATCCACTTCACTATC | ||
7 | TUB6 | Forward primer | TGAGAACGCAGATGAGTGTATG |
Reverse primer | GAAACGAAGACAGCAAGTGACA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, H.; Li, X.; Wang, Q.; Liu, J.; Zhang, P.; Xie, H.; Li, L.; Qin, P. Integrative Transcriptomic and Metabolomic Analysis Reveals Quinoa Leaf Response Mechanisms to Different Phosphorus Concentrations During Filling Stage. Agronomy 2024, 14, 2661. https://doi.org/10.3390/agronomy14112661
Wang H, Li H, Li X, Wang Q, Liu J, Zhang P, Xie H, Li L, Qin P. Integrative Transcriptomic and Metabolomic Analysis Reveals Quinoa Leaf Response Mechanisms to Different Phosphorus Concentrations During Filling Stage. Agronomy. 2024; 14(11):2661. https://doi.org/10.3390/agronomy14112661
Chicago/Turabian StyleWang, Hongxin, Hanxue Li, Xiaorong Li, Qianchao Wang, Junna Liu, Ping Zhang, Heng Xie, Li Li, and Peng Qin. 2024. "Integrative Transcriptomic and Metabolomic Analysis Reveals Quinoa Leaf Response Mechanisms to Different Phosphorus Concentrations During Filling Stage" Agronomy 14, no. 11: 2661. https://doi.org/10.3390/agronomy14112661
APA StyleWang, H., Li, H., Li, X., Wang, Q., Liu, J., Zhang, P., Xie, H., Li, L., & Qin, P. (2024). Integrative Transcriptomic and Metabolomic Analysis Reveals Quinoa Leaf Response Mechanisms to Different Phosphorus Concentrations During Filling Stage. Agronomy, 14(11), 2661. https://doi.org/10.3390/agronomy14112661