Atractylodes macrocephala Root Rot Affects Microbial Communities in Various Root-Associated Niches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Soil Physicochemical Properties
2.3. DNA Extraction, PCR Amplification, and Illumina NovaSeq Sequencing
2.4. Data Processing
2.5. Statistical Analysis
2.6. Isolation and Identification of A. macrocephala Root Rot Pathogens
3. Results
3.1. Comparison of Soil Physicochemical Properties
3.2. Comparison of Root-Associated Microbial Community Diversity Between Healthy and Diseased Plants
3.2.1. Alpha Diversity Indices
3.2.2. Beta Diversity Indices
3.3. Composition of Root-Associated Microbial Communities in Healthy and Diseased Plants
3.4. Differences in Microbial Communities Between Healthy and Diseased Plants
3.5. Effects of Root Rot Disease on the Functional Profiles of Root-Associated Microbiomes
3.6. Isolation and Identification of Potential Fungal Pathogens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, R.; Fan, H.; He, B.; Ruan, Q.; Wei, B.; Han, B.; Hao, X.; Maoz, I.; Kai, G. Current progress of Atractylodes macrocephala Koidz.: A review of its biogeography, PAO-ZHI processing, biological activities, biosynthesis pathways, and technology applications. Med. Plant Biol. 2023, 2, 5. [Google Scholar] [CrossRef]
- Hoang, L.S.; Tran, M.H.; Lee, J.S.; Ngo, Q.M.T.; Woo, M.H.; Min, B.S. Inflammatory Inhibitory Activity of Sesquiterpenoids from Atractylodes macrocephala Rhizomes. Chem. Pharm. Bull. 2016, 64, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.T.; Kao, K.T.; Weng, C.S. In vitro antibacterial and cytotoxic activities of plasma-modified polyethylene terephthalate nonwoven dressing with aqueous extract of Rhizome Atractylodes macrocephala. Mater. Sci. Eng. C 2017, 77, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhang, Q.L.; Hua, J.W.; Cheng, W.L.; Qin, L.P. The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz.: A review. J. Ethnopharmacol. 2018, 226, 143–167. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Rao, Z.; Xie, Z.; Qi, H.; Zeng, N. Isolation, structure and bioactivity of polysaccharides from Atractylodes macrocephala: A review. J. Ethnopharmacol. 2022, 296, 115506. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, L.; Gao, J.; Niu, F.; Duan, X.; Yin, L.; Tian, W. Identification of autotoxic compounds from Atractylodes macrocephala Koidz and preliminary investigations of their influences on immune system. J. Plant Physiol. 2018, 230, 33–39. [Google Scholar] [CrossRef]
- Yuan, X.F.; Song, T.J.; Yang, J.S.; Huang, X.G.; Shi, J.Y. Changes of microbial community in the rhizosphere soil of Atractylodes macrocephala when encountering replant disease. S. Afr. J. Bot. 2019, 127, 129–135. [Google Scholar] [CrossRef]
- Zhu, B.; Wu, J.; Ji, Q.; Wu, W.; Dong, S.; Yu, J.; Zhang, Q.; Qin, L. Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping. PeerJ 2020, 8, e8905. [Google Scholar] [CrossRef]
- Busby, P.E.; Soman, C.; Wagner, M.R.; Friesen, M.L.; Kremer, J.; Bennett, A.; Morsy, M.; Eisen, J.A.; Leach, J.E.; Dangl, J.L. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLOS Biol. 2017, 15, e2001793. [Google Scholar] [CrossRef]
- de Souza, R.S.C.; Armanhi, J.S.L.; Arruda, P. From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency. Front. Plant Sci. 2020, 11, 1179. [Google Scholar] [CrossRef]
- Pascale, A.; Proietti, S.; Pantelides, I.S.; Stringlis, I.A. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Front. Plant Sci. 2020, 10, 1741. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu. Rev. Genet. 2016, 50, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Liu, H.; Trivedi, P. Eco-holobiont: A new concept to identify drivers of host-associated microorganisms. Environ. Microbiol. 2020, 22, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Theis Kevin, R.; Dheilly Nolwenn, M.; Klassen Jonathan, L.; Brucker Robert, M.; Baines John, F.; Bosch Thomas, C.G.; Cryan John, F.; Gilbert Scott, F.; Goodnight Charles, J.; Lloyd Elisabeth, A.; et al. Getting the Hologenome Concept Right: An Eco-Evolutionary Framework for Hosts and Their Microbiomes. mSystems 2016, 1, e00028-16. [Google Scholar]
- Woodhams, D.C.; Bletz, M.C.; Becker, C.G.; Bender, H.A.; Buitrago-Rosas, D.; Diebboll, H.; Huynh, R.; Kearns, P.J.; Kueneman, J.; Kurosawa, E.; et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 2020, 21, 23. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef]
- Hinsinger, P.; Bengough, A.G.; Vetterlein, D.; Young, I.M. Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant Soil 2009, 321, 117–152. [Google Scholar] [CrossRef]
- Lazcano, C.; Boyd, E.; Holmes, G.; Hewavitharana, S.; Pasulka, A.; Ivors, K. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 2021, 11, 3188. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Gao, C.; Montoya, L.; Xu, L.; Madera, M.; Hollingsworth, J.; Purdom, E.; Singan, V.; Vogel, J.; Hutmacher, R.B.; Dahlberg, J.A.; et al. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nat. Commun. 2020, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Carrión, V.J.; Perez-Jaramillo, J.; Cordovez, V.; Tracanna, V.; de Hollander, M.; Ruiz-Buck, D.; Mendes, L.W.; van Ijcken, W.F.J.; Gomez-Exposito, R.; Elsayed, S.S.; et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 2019, 366, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Li, M.; Wei, G.; Tian, R.; Li, C.; Wang, B.; Lin, R.; Shi, C.; Chi, X.; Zhou, B.; et al. The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tang, T.; Mao, T.; Guo, J.; Guo, X.; Duan, Y.; You, J. Occurrence of Dickeya fangzhongdai Causing Soft Rot of Banxia (Pinellia ternata) in China. Plant Dis. 2021, 105, 3288. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, Q.; He, F.; Li, Y.; Xue, Q.; Lai, H. Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota. Microb. Ecol. 2020, 79, 134–147. [Google Scholar] [CrossRef]
- Prabhukarthikeyan, S.R.; Keerthana, U.; Raguchander, T. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiol. Res. 2018, 210, 65–73. [Google Scholar] [CrossRef]
- Gao, M.; Xiong, C.; Gao, C.; Tsui, C.K.M.; Wang, M.M.; Zhou, X.; Zhang, A.M.; Cai, L. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 2021, 9, 187. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, Y.; Friman, V.P.; Kowalchuk, G.A.; Xu, Y.; Shen, Q.; Jousset, A. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 2019, 5, eaaw0759. [Google Scholar] [CrossRef]
- Wen, T.; Zhao, M.; Yuan, J.; Kowalchuk, G.A.; Shen, Q. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecol. Lett. 2021, 3, 42–51. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, Z.; Yang, C.; Zhang, R.; Luo, Y.; Ma, Y.; Deng, Y. Microbiome analysis and biocontrol bacteria isolation from rhizosphere soils associated with different sugarcane root rot severity. Front. Bioeng. Biotechnol. 2022, 10, 1062351. [Google Scholar] [CrossRef]
- Marilley, L.; Vogt, G.; Blanc, M.; Aragno, M. Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant Soil 1998, 198, 219–224. [Google Scholar] [CrossRef]
- Michrina, B.P.; Fox, R.H.; Piekielek, W.P. Chemical characterization of two extracts used in the determination of available soil nitrogen. Plant Soil 1982, 64, 331–341. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Ward, T.; Larson, J.; Meulemans, J.; Hillmann, B.; Lynch, J.; Sidiropoulos, D.; Spear, J.R.; Caporaso, G.; Blekhman, R.; Knight, R.; et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv 2017, 133462. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Tang, T.; Mao, T.; Guo, J.; Wang, F.; Fang, G.; Lin, X.; Kuang, H.; Sun, G.; Duan, Y.; Guo, X.; et al. The impact of BZJN1 biocontrol bacteria and benomyl propiconazole on the composition of bacterial communities and physicochemical properties in the rhizosphere soil of Atractylodes Macrocephala. China J. Chin. Materia Medica 2020, 45, 3414–3421. [Google Scholar]
- Kang, E.; Li, Y.; Zhang, X.; Yan, Z.; Wu, H.; Li, M.; Yan, L.; Zhang, K.; Wang, J.; Kang, X. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci. Total Environ. 2021, 774, 145780. [Google Scholar] [CrossRef]
- Dong, L.; Bian, X.; Zhao, Y.; Yang, H.; Xu, Y.; Han, Y.; Zhang, L. Rhizosphere analysis of field-grown Panax ginseng with different degrees of red skin provides the basis for preventing red skin syndrome. BMC Microbiol. 2022, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Y.; Wang, J.; Yang, L.; Zhang, S.; Xu, C.; Ding, W. Soil Acidification Aggravates the Occurrence of Bacterial Wilt in South China. Front. Microbiol. 2017, 8, 703. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Brookes, P.C.; Bååth, E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol. Biochem. 2010, 42, 926–934. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef]
- Bååth, E.; Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003, 35, 955–963. [Google Scholar] [CrossRef]
- Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Manteau, S.; Abouna, S.; Lambert, B.; Legendre, L. Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol. Ecol. 2003, 43, 359–366. [Google Scholar] [CrossRef]
- El Zahar Haichar, F.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014, 77, 69–80. [Google Scholar] [CrossRef]
- Carvalhais, L.C.; Dennis, P.G.; Fedoseyenko, D.; Hajirezaei, M.R.; Borriss, R.; von Wirén, N. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 2011, 174, 3–11. [Google Scholar] [CrossRef]
- Girdhar, M.; Sharma, N.R.; Rehman, H.; Kumar, A.; Mohan, A. Comparative assessment for hyperaccumulatory and phytoremediation capability of three wild weeds. 3 Biotech 2014, 4, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, Z.; Yu, S.; Chen, H. Organic Acids Exuded from Roots Increase the Available Potassium Content in the Rhizosphere Soil: A Rhizobag Experiment in Nicotiana tabacum. HortScience 2019, 54, 23–27. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Wu, L.; Wu, H.; Zhu, Q.; Kong, L.; Lin, W. The physicochemical properties and microbial diversity of rhizosphere soil of Achyranthes bidentata under different continuous cropping years. Acta Ecol. Sin. 2017, 37, 5621–5629. [Google Scholar]
- Yang, Y.; Li, H.; Ma, K.; Yu, F.; Niu, S. The impact of continuous cropping on the physicochemical properties, microbial activity, and community characteristics of the rhizosphere soil of Codonopsis pilosula. Environ. Sci. 2023, 44, 6387–6398. [Google Scholar]
- Wang, T.; Yang, K.; Ma, Q.; Jiang, X.; Zhou, Y.; Kong, D.; Wang, Z.; Parales, R.E.; Li, L.; Zhao, X.; et al. Rhizosphere Microbial Community Diversity and Function Analysis of Cut Chrysanthemum During Continuous Monocropping. Front. Microbiol. 2022, 13, 801546. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, W.; Zhou, S.; Zhan, K.; Xu, L.; Fu, J.; Guo, F.; Han, Y.; Yang, X.; He, D. The relationship between potassium-releasing rhizosphere microorganisms of wheat, soil potassium content, potassium use efficiency, and root system vitality. J. Plant Nutr. Fertil. 2021, 27, 1027–1043. [Google Scholar]
- Jumpponen, A.; Johnson, L.C. Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulations--a case study from tallgrass prairie. Mycologia 2005, 97, 1177–1194. [Google Scholar]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Rio, T.G.D.; et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L.; Buckler, E.S.; Ley, R.E. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, Y.K.; Paungfoo-Lonhienne, C.; Dennis, P.G.; Robinson, N.; Ragan, M.A.; Schmidt, S.; Hugenholtz, P. The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ. Microbiol. 2016, 18, 1338–1351. [Google Scholar] [CrossRef] [PubMed]
- Zarraonaindia, I.; Owens, S.M.; Weisenhorn, P.; West, K.; Gilbert, J.A. The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio 2015, 6, e02527-14. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qi, G.; Xie, Z.; Li, B.; Wang, R.; Tan, J.; Shi, H.; Xiang, B.; Zhao, X. The Endophytic Root Microbiome Is Different in Healthy and Ralstonia solanacearum-Infected Plants and Is Regulated by a Consortium Containing Beneficial Endophytic Bacteria. Microbiol. Spectr. 2023, 11, e02031-22. [Google Scholar] [CrossRef]
- Romaniuk, R.; Giuffre, L.; Costantini, A.; Nannipieri, P. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecol. Indic. 2011, 11, 1345–1353. [Google Scholar] [CrossRef]
- Peng, H.X.; Sivasithamparam, K.; Turner, D.W. Chlamydospore germination and Fusarium wilt of banana plantlets in suppressive and conducive soils are affected by physical and chemical factors. Soil Biol. Biochem. 1999, 31, 1363–1374. [Google Scholar] [CrossRef]
- Bulluck, L.R.; Ristaino, J.B. Effect of Synthetic and Organic Soil Fertility Amendments on Southern Blight, Soil Microbial Communities, and Yield of Processing Tomatoes. Phytopathology 2002, 92, 181. [Google Scholar] [CrossRef]
- Solís-García, I.A.; Ceballos-Luna, O.; Cortazar-Murillo, E.M.; Desgarennes, D.; Garay-Serrano, E.; Patiño-Conde, V.; Guevara-Avendaño, E.; Méndez-Bravo, A.; Reverchon, F. Phytophthora Root Rot Modifies the Composition of the Avocado Rhizosphere Microbiome and Increases the Abundance of Opportunistic Fungal Pathogens. Front. Microbiol. 2021, 11, 574110. [Google Scholar] [CrossRef]
- Haney, C.H.; Samuel, B.S.; Bush, J.; Ausubel, F.M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 2015, 1, 15051. [Google Scholar] [CrossRef]
- Hamel, C.; Vujanovic, V.; Jeannotte, R.; Nakano-Hylander, A.; St-Arnaud, M. Negative feedback on a perennial crop: Fusarium crown and root rot of asparagus is related to changes in soil microbial community structure. Plant Soil 2005, 268, 75–87. [Google Scholar] [CrossRef]
- Bryant, D.A.; Frigaard, N.U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 2006, 14, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhya, I.; Hansen, R.; El-Omar, E.M.; Hold, G.L. IBD—What role do Proteobacteria play? Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Chen, S.; Zhou, W.; Yang, J.; Luo, Z.; Zhang, Z.; Tian, Y.; Dong, Q.; Shen, X.; Wei, S.; et al. Comparative Analysis of the Microbial Community Structures Between Healthy and Anthracnose-Infected Strawberry Rhizosphere Soils Using Illumina Sequencing Technology in Yunnan Province, Southwest of China. Front. Microbiol. 2022, 13, 881450. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.P.; Germaine, K.; Franks, A.; Ryan, D.J.; Dowling, D.N. Bacterial endophytes: Recent developments and applications. FEMS Microbiol. Lett. 2008, 278, 1–9. [Google Scholar] [CrossRef]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef]
- Leisinger, T.; Margrafft, R. Secondary Metabolites of the Fluorescent Pseudomonads. Microbiol. Rev. 1979, 43, 422–442. [Google Scholar] [CrossRef]
- Asaf, S.; Numan, M.; Khan, A.L.; Al-Harrasi, A. Sphingomonas: From diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 2020, 40, 1–15. [Google Scholar] [CrossRef]
- Ecker, D.J.; Sampath, R.; Willett, P.; Wyatt, J.R.; Samant, V.; Massire, C.; Hall, T.A.; Hari, K.; McNeil, J.A.; Büchen-Osmond, C.; et al. The Microbial Rosetta Stone Database: A compilation of global and emerging infectious microorganisms and bioterrorist threat agents. BMC Microbiol. 2005, 5, 19. [Google Scholar] [CrossRef]
- Li, X.G.; Ding, C.F.; Zhang, T.L.; Wang, X.X. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem. 2014, 72, 11–18. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Zhao, W.; Cai, X.; Xu, Y.; Chen, X.; Yang, M.; Huang, F.; Yu, L.; He, Y. Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan. Plant Pathol. J. 2022, 38, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Purahong, W.; Wubet, T.; Lentendu, G.; Schloter, M.; Pecyna, M.J.; Kapturska, D.; Hofrichter, M.; Krüger, D.; Buscot, F. Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. 2016, 25, 4059–4074. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.R. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu. Rev. Phytopathol. 2017, 55, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Zhang, Y.; Wu, X.; Huang, Y.; Qiao, X.; Shen, J. Isolation and identification of the pathogen causing root rot of Atractylodes macrocephala, its biological characteristics, and screening of plant-derived pesticides. Fujian J. Agric. Sci. 2024, 39, 330–338. [Google Scholar]
- Wang, G.; Ren, Y.; Bai, X.; Su, Y.; Han, J. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants 2022, 11, 3200. [Google Scholar] [CrossRef] [PubMed]
- Nerek, E.; Sokołowska, B. Pseudomonas spp. in biological plant protection and growth promotion. AIMS Environ. Sci. 2022, 9, 493–504. [Google Scholar] [CrossRef]
- Nam, M.H.; Lee, H.C.; Kim, T.I.; Lee, E.M.; Yoon, H.S. Effect of Nutrition Solution pH and Electrical Conductivity on Fusarium Wilt on Strawberry Plants in Hydroponic Culture. Res. Plant Dis. 2018, 24, 26–32. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef]
pH | EC (US/CM) | OM (g/kg−1) | AN (mg/kg−1) | AP (mg/kg−1) | AK (mg/kg−1) | |
---|---|---|---|---|---|---|
RS_H | 7.29 ± 0.38 a | 65.77 ± 8.56 b | 28.52 ± 0.25 a | 178.70 ± 2.81 a | 66.53 ± 3.12 a | 59.80 ± 10.23 b |
RS_M | 6.93 ± 0.14 ab | 82.77 ± 15.56 b | 28.17 ± 1.15 a | 174.10 ± 5.30 ab | 67.54 ± 8.43 a | 66.40 ± 2.97 b |
RS_S | 6.64 ± 0.30 b | 109.7 ± 16.89 a | 28.92 ± 0.22 a | 171.70 ± 5.46 b | 70.50 ± 3.29 a | 151.30 ± 44.29 a |
RZ_H | 7.07 ± 0.15 a | 53.40 ± 3.10 b | 27.35 ± 3.54 a | 172.70 ± 11.83 a | 65.16 ± 17.57 a | 54.00 ± 8.60 b |
RZ_M | 6.71 ± 0.13 b | 73.03 ± 12.34 a | 27.36 ± 1.04 a | 169.40 ± 10.84 a | 64.86 ± 10.06 a | 59.40 ± 4.61 ab |
RZ_S | 6.50 ± 0.22 b | 69.57 ± 4.65 a | 26.17 ± 0.74 a | 168.00 ± 3.13 a | 62.86 ± 3.17 a | 68.60 ± 9.76 a |
Soil | ns | ** | ns | ns | ns | ** |
Diseased | ** | ** | ns | ns | ns | ** |
Soil × Diseased | ns | ns | ns | ns | ns | ** |
Shannon | Simpson | Sobs | Ace | Chao1 | |
---|---|---|---|---|---|
AE_H | 4.79 ± 0.03 a | 0.0238 ± 0.0026 b | 398.33 ± 11.01 a | 559.44 ± 30.79 a | 558.51 ± 35.49 a |
AE_M | 4.53 ± 0.24 a | 0.0348 ± 0.0087 b | 372.00 ± 49.27 a | 508.04 ± 83.28 a | 478.90 ± 80.72 a |
AE_S | 2.27 ± 0.17 b | 0.2079 ± 0.0663 a | 124.67 ± 17.79 b | 470.76 ± 136.16 a | 259.50 ± 46.07 b |
RS_H | 6.38 ± 0.12 a | 0.0037 ± 0.0011 b | 1101.20 ± 49.43 a | 3337.30 ± 173.49 a | 2233.30 ± 46.19 a |
RS_M | 6.23 ± 0.19 a | 0.0061 ± 0.0029 ab | 1068.00 ± 80.60 a | 3181.20 ± 351.33 a | 2201.30 ± 171.68 a |
RS_S | 6.17 ± 0.22 a | 0.0070 ± 0.0023 a | 1025.40 ± 100.50 a | 2951.80 ± 567.09 a | 2062.30 ± 309.10 a |
RZ_H | 6.21 ± 0.12 a | 0.0055 ± 0.0021 a | 1030.20 ± 26.78 b | 2942.70 ± 198.89 a | 2083.10 ± 122.19 a |
RZ_M | 6.20 ± 0.15 a | 0.0061 ± 0.0025 a | 1050.60 ± 54.53 ab | 3210.10 ± 455.79 a | 2182.60 ± 320.21 a |
RZ_S | 6.35 ± 0.16 a | 0.0046 ± 0.0017 a | 1114.60 ± 59.94 a | 3334.50 ± 296.48 a | 2271.00 ± 149.93 a |
Bacteria | ** | ** | ** | * | * |
Diseased | * | ** | ** | ns | ns |
Bacteria × Diseased | ** | ** | ** | ns | ns |
Shannon | Simpson | Sobs | Ace | Chao1 | |
---|---|---|---|---|---|
AE_H | 2.66 ± 0.25 a | 0.1960 ± 0.0142 b | 707.33 ± 176.16 a | 790.08 ± 184.31 a | 774.95 ± 172.12 a |
AE_M | 2.51 ± 0.02 a | 0.2742 ± 0.0264 a | 734.67 ± 173.94 a | 833.59 ± 191.20 a | 814.62 ± 181.33 a |
AE_S | 2.66 ± 0.30 a | 0.1369 ± 0.0339 c | 492.33 ± 242.00 a | 599.36 ± 275.70 a | 584.97 ± 261.50 a |
RS_H | 3.71 ± 0.26 a | 0.0648 ± 0.0260 a | 806.80 ± 128.88 a | 1019.70 ± 187.86 a | 995.27 ± 185.19 a |
RS_M | 3.79 ± 0.36 a | 0.0667 ± 0.0335 a | 930.80 ± 103.65 a | 1167.10 ± 133.73 a | 1143.70 ± 117.02 a |
RS_S | 3.92 ± 0.30 a | 0.0490 ± 0.0177 a | 842.00 ± 138.97 a | 1046.50 ± 146.52 a | 1017.70 ± 135.23 a |
RZ_H | 3.91 ± 0.07 a | 0.0508 ± 0.0052 a | 832.20 ± 55.22 a | 1006.60 ± 105.17 a | 974.81 ± 96.03 a |
RZ_M | 3.85 ± 0.11 a | 0.0558 ± 0.0114 a | 916.80 ± 84.07 a | 1122.30 ± 107.63 a | 1109.60 ± 110.24 a |
RZ_S | 3.75 ± 0.19 a | 0.0616 ± 0.0148 a | 869.80 ± 132.08 a | 1114.70 ± 174.26 a | 1063.80 ± 162.75 a |
Fungi | * | ** | * | * | * |
Diseased | ns | ** | ns | ns | ns |
Fungi × Diseased | ns | ** | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Han, J.; Li, X.; Zhou, J.; Zhao, L.; Ying, Y.; Kai, G. Atractylodes macrocephala Root Rot Affects Microbial Communities in Various Root-Associated Niches. Agronomy 2024, 14, 2662. https://doi.org/10.3390/agronomy14112662
Fan H, Han J, Li X, Zhou J, Zhao L, Ying Y, Kai G. Atractylodes macrocephala Root Rot Affects Microbial Communities in Various Root-Associated Niches. Agronomy. 2024; 14(11):2662. https://doi.org/10.3390/agronomy14112662
Chicago/Turabian StyleFan, Huiyan, Jiayi Han, Xiujuan Li, Jingzhi Zhou, Limei Zhao, Yiling Ying, and Guoyin Kai. 2024. "Atractylodes macrocephala Root Rot Affects Microbial Communities in Various Root-Associated Niches" Agronomy 14, no. 11: 2662. https://doi.org/10.3390/agronomy14112662
APA StyleFan, H., Han, J., Li, X., Zhou, J., Zhao, L., Ying, Y., & Kai, G. (2024). Atractylodes macrocephala Root Rot Affects Microbial Communities in Various Root-Associated Niches. Agronomy, 14(11), 2662. https://doi.org/10.3390/agronomy14112662