Estimation of Cation Exchange Capacity for Low-Activity Clay Soil Fractions Using Experimental Data from South China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Areas
2.2. Soil Sampling and Measurement
2.3. Environmental Variables
- Dataset 2: All soil data (i.e., dataset 1 and CECsilt and CECMin);
- Dataset 3: Relatively accessible soil data and ten environmental variables; and
- Dataset 4: All soil data and ten environmental variables.
2.4. Prediction Methods
2.5. Variable Importance Measurement
2.6. Statistical Analysis
2.7. Model Validation
3. Results
3.1. Soil Properties
3.2. Model Training
3.3. Variable Importance
3.4. Performance Comparison
4. Discussion
4.1. Performance of PTF Models
4.2. Importance of Predictors
4.3. Determination of the CECclay
4.4. Implications of Using the CECclay for Soil Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, R.; Eswaran, H.; Meyer, R. Proceedings of a Symposium on Low Activity Clay (LAC) Soils; Technical Monograph No. 14; U.S. Department of Agriculture: Las Vegas, NV, USA, 1984. [Google Scholar]
- Demattê, J.A.M.; Nanni, M.R.; Formaggio, A.R.; Epiphanio, J.C.N. Spectral reflectance for the mineralogical evaluation of Brazilian low clay activity soils. Int. J. Remote Sens. 2007, 28, 4537–4559. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA: Washington, DC, USA, 2014. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports, No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Gong, Z.T. In Theory, Methodology and Application of Chinese Soil Taxonomy; Science Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- CSTC (Chinese Soil Taxonomic Classification Research Group). Chinese Soil Taxonomy; Science Press: Beijing, China; New York, NY, USA, 2001. [Google Scholar]
- Caner, L.; Bourgeon, G.; Toutain, F.; Herbillon, A.J. Characteristics of non-allophanic Andisols derived from low-activity clay regoliths in the Nilgiri Hills (Southern India). Eur. J. Soil Sci. 2000, 51, 553–563. [Google Scholar] [CrossRef]
- Prasetyo, B.H.; Suharta, N. Properties of low activity clay soils from South Kalimantan. Indones. Soil Clim. J. 2004, 22, 26–39. [Google Scholar] [CrossRef]
- Láng, V.; Fuchs, M.; Szegi, T.; Csorba, Á.; Michéli, E. Deriving World Reference Base Reference Soil Groups from the prospective Global Soil Map product—A case study on major soil types of Africa. Geoderma 2016, 263, 226–233. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.Y.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual, version 5.0; Burt, R., Soil Survey Staff, Eds.; Soil Survey Investigations Report No. 42; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Zhang, M.; He, Z.; Milson, M.J. Chemical and physical characteristics of red soils from Zhejiang province, Southern China. In The Red Soils of China; Wilson, M.J., Ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2004. [Google Scholar]
- D’Angelo, B.; Bruand, A.; Qin, J.; Peng, X.; Hartmann, C.; Sun, B.; Hao, H.T.; Rozenbaum, O.; Muller, F. Origin of the high sensitivity of Chinese red clay soils to drought: Significance of the clay characteristics. Geoderma 2014, 223–225, 46–53. [Google Scholar] [CrossRef]
- Li, Q.K.; Xiong, Y. Soil of China, 2nd ed.; Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Gong, Z.T.; Huang, R.J.; Zhang, G.L. Soil Geography in China; Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Schnitzer, M. Contribution of organic matter to the cation exchange capacity of soils. Nature 1965, 207, 667–668. [Google Scholar] [CrossRef]
- Peinemann, N.; Amiotti, N.M.; Zalba, P.; Villamil, M.B. Effect of clay minerals and organic matter on the cation exchange capacity of silt fractions. J. Plant Nutr. Soil Sci. 2000, 163, 47–52. [Google Scholar] [CrossRef]
- Khaledian, Y.; Brevik, E.C.; Pereira, P.; Cerdà, A.; Fattah, M.A.; Tazikeh, H. Modeling soil cation exchange capacity in multiple countries. Catena 2017, 158, 194–200. [Google Scholar] [CrossRef]
- Shekofteh, H.; Ramazani, F.; Shirani, H. Optimal feature selection for predicting soil CEC: Comparing the hybrid of ant colony organization algorithm and adaptive network-based fuzzy system with multiple linear regression. Geoderma 2017, 298, 27–34. [Google Scholar] [CrossRef]
- Khodaverdiloo, H.; Momtaz, H.; Liao, K.H. Performance of soil cation exchange capacity pedotransfer function as affected by the inputs and database size. Clean-Soil Air Water 2018, 46, 1700670. [Google Scholar] [CrossRef]
- Sulieman, M.; Saeed, I.; Hassaballa, A.; Rodrigo-Comino, J. Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals. Catena 2018, 167, 327–339. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Esmaeelnejad, L.; Ramezanpour, H. Determination of a suitable model for prediction of soil cation exchange capacity. Model. Earth Syst. Environ. 2016, 2, 156. [Google Scholar] [CrossRef]
- Shiri, J.; Keshavarzi, A.; Kisi, O.; Iturraran-Viveros, U.; Bagherzadeh, A.; Mousavi, R.; Karimi, S. Modeling soil cation exchange capacity using soil parameters: Assessing the heuristic models. Comput. Electron. Agric. 2017, 135, 242–251. [Google Scholar] [CrossRef]
- Liao, K.; Xu, S.; Zhu, Q. Development of ensemble pedotransfer functions for cation exchange capacity of soils of Qingdao in China. Soil Use Manag. 2015, 31, 483–490. [Google Scholar] [CrossRef]
- Kaya, N.S.; Dengiz, O. Assessment of the neutrosophic Fuzzy-AHP and predictive power of some machine learning approaches for maize silage soil quality. Comput. Electron. Agric. 2024, 226, 109446. [Google Scholar] [CrossRef]
- Huang, Y.; Song, X.; Wang, Y.P.; Canadell, J.G.; Luo, Y.; Ciais, P.; Chen, A.P.; Hong, S.B.; Wang, Y.G.; Tao, F.; et al. Size, distribution, and vulnerability of the global soil inorganic carbon. Science 2024, 384, 233–239. [Google Scholar] [CrossRef]
- Shahabi, M.; Ghorbani, M.A.; Naganna, S.R.; Kim, S.; Hadi, S.J.; Inyurt, S.; Farooque, A.A.; Yaseen, Z.M. Integration of multiple models with hybrid artificial neural network-genetic algorithm for soil cation-exchange capacity prediction. Complexity 2022, 2022, 3123475. [Google Scholar] [CrossRef]
- Saidi, S.; Ayoubi, S.; Shirvani, M.; Azizi, K.; Zhao, S. Digital mapping of soil phosphorous sorption parameters (PSPs) using environmental variables and machine learning algorithms. Int. J. Digit. Earth 2023, 16, 1752–1769. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Sun, Y.; Zhang, Y.; Chen, W.; Yuan, Y.; Hu, S.; Li, S. Machine learning-based analysis of heavy metal contamination in Chinese lake basin sediments: Assessing influencing factors and policy implications. Ecotoxicol. Environ. Saf. 2024, 283, 116815. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Bazoobandi, A.; Mohammadi, B.; Ghorbani, H.; Sadeghi, M.A. Prediction of soil cation exchange capacity using enhanced machine learning approaches in the southern region of the Caspian Sea. Ain Shams Eng. J. 2023, 14, 101876. [Google Scholar] [CrossRef]
- Sarkar, A.; Maity, P.P.; Ray, M.; Kundu, A. Inclusion of fractal dimension in machine learning models improves the prediction accuracy of hydraulic conductivity. Stoch. Environ. Res. Risk Assess. 2024, 38, 4043–4067. [Google Scholar] [CrossRef]
- Song, X.D.; Yang, F.; Wu, H.Y.; Zhang, J.; Li, D.C.; Liu, F.; Zhao, Y.G.; Yang, J.L.; Ju, B.; Cai, C.F.; et al. Significant loss of soil inorganic carbon at the continental scale. Natl. Sci. Rev. 2022, 9, nwab120. [Google Scholar] [CrossRef]
- Song, X.D.; Alewell, C.; Borrelli, P.; Panagos, P.; Huang, Y.Y.; Wang, Y.; Wu, H.Y.; Yang, F.; Yang, S.H.; Sui, Y.Y.; et al. Pervasive soil phosphorus losses in terrestrial ecosystems in China. Glob. Chang. Biol. 2024, 30, e17108. [Google Scholar] [CrossRef]
- Akpa, S.I.C.; Ugbaje, S.U.; Bishop, T.F.A.; Odeh, I.O.A. Enhancing pedotransfer functions with environmental data for estimating bulk density and effective cation exchange capacity in a data-sparse situation. Soil Use Manag. 2016, 32, 644–658. [Google Scholar] [CrossRef]
- Zhao, D.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data. Soil Tillage Res. 2020, 200, 104618. [Google Scholar] [CrossRef]
- Ulusoy, Y.; Tekin, Y.; Tümsavaş, Z.; Mouazen, A.M. Prediction of soil cation exchange capacity using visible and near infrared spectroscopy. Biosyst. Eng. 2016, 152, 79–93. [Google Scholar] [CrossRef]
- Zhao, X.Z.T.; Arshad, M.; Li, N.; Zare, E.; Triantafilis, J. Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (Cation exchange capacity) in a sugarcane field. Comput. Electron. Agric. 2020, 173, 105436. [Google Scholar] [CrossRef]
- Klamt, E.; Kauffman, J.H. The Brazilian System of Soil Classification; Research Report; ISRIC: Wageningen, The Netherlands, 1985. [Google Scholar]
- McBratney, A.B.; Minasny, B.; Cattle, S.R.; Vervoort, R.W. From pedotransfer functions to soil inference systems. Geoderma 2002, 109, 41–73. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Song, X.D.; Wu, H.Y.; Ju, B.; Liu, F.; Yang, F.; Li, D.C.; Zhao, Y.G.; Yang, J.L.; Zhang, G.L. Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma 2020, 363, 114145. [Google Scholar] [CrossRef]
- Sun, Z.X.; Jiang, Y.Y.; Wang, Q.B.; Sun, F.J.; Zhang, M.G.; Owens, P.R.; Libohova, Z. A comparative analysis between local soils and dust deposition on snow in Shenyang, China and implications on loess-paleosols evolution. Geoderma 2019, 342, 34–41. [Google Scholar] [CrossRef]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C.; Soil Survey Staff. Field Book for Describing and Sampling Soils, version 3.0; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2012. [Google Scholar]
- Moeys, J. soiltexture: Functions for Soil Texture Plot, Classification and Transformation. R Package Version 1.5.1. 2018. Available online: https://CRAN.R-project.org/package=soiltexture (accessed on 19 July 2023).
- Ammann, L.; Bergaya, F.; Lagaly, G. Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Miner. 2005, 40, 441–453. [Google Scholar] [CrossRef]
- Jaremko, D.; Kalembasa, D. A comparison of methods for the determination of cation exchange capacity of soils. Ecol. Chem. Eng. S 2014, 21, 487–498. [Google Scholar] [CrossRef]
- Zhang, G.L.; Gong, Z.T. Soil Survey Laboratory Methods; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties; Agronomy Monograph; Page, A.L., Miller, R.H., Keeney, D., Eds.; ASA and SSSA: Madison, WI, USA, 1982; Volume 9, pp. 539–579. [Google Scholar]
- Tan, K.H.; Dowling, P.S. Effect of organic matter on CEC due to permanent and variable charges in selected temperate region soils. Geoderma 1984, 32, 89–101. [Google Scholar] [CrossRef]
- Strahm, B.D.; Harrison, R.B. Mineral and organic matter controls on the sorption of macronutrient anions in variable-charge soils. Soil Sci. Soc. Am. J. 2007, 71, 1926–1933. [Google Scholar] [CrossRef]
- Zolfaghari, Z.; Mosaddeghi, M.R.; Ayoubi, S. ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran. Soil Use Manag. 2015, 31, 142–154. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for Globe Version 4. Available from CGIAR-CSI SRTM 90 m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 11 September 2022).
- Oorts, K.; Vanlauwe, B.; Merckx, R. Cation exchange capacities of soil organic matter fractions in a Ferric Lixisol with different organic matter inputs. Agric. Ecosyst. Environ. 2003, 100, 161–171. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Dobarco, M.R.; Cousin, I.; Bas, C.L.; Martin, M.P. Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma 2019, 336, 81–95. [Google Scholar] [CrossRef]
- Johnston, R.; Jones, K.; Manley, D. Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behavior. Qual. Quant. 2018, 52, 1957–1976. [Google Scholar] [CrossRef] [PubMed]
- Emamgolizadeh, S.; Bateni, S.M.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H. Estimation of soil cation exchange capacity using genetic expression programming and multivariate adaptive regression splines. J. Hydrol. 2015, 529, 1590–1600. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bayat, H.; Asghari, S.; Rastgou, M.; Sheykhzadeh, G.R. Estimating Proctor parameters in agricultural soils in the Ardabil plain of Iran using support vector machines, artificial neural networks and regression methods. Catena 2020, 189, 104467. [Google Scholar] [CrossRef]
- Krogh, L.H.; Breuning, M.; Greve, H.M. Cation-exchange capacity pedotransfer functions for Danish soils. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2000, 50, 1–12. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Lu, S.; Zhang, J.; Wang, W. Occurrence of typical antibiotics in Nansi Lake’s inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model. Chemosphere 2020, 242, 125269. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 16 March 2023).
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-5. 2021. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 1 April 2023).
- Elzhov, T.V.; Mullen, K.M.; Spiess, A.N.; Bolker, B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R Package Version 1.2-1. 2016. Available online: https://CRAN.R-project.org/package=minpack.lm (accessed on 14 May 2022).
- Bergmeir, C.; Benitez, J.M. Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS. J. Stat. Softw. 2012, 46, 1–26. [Google Scholar] [CrossRef]
- LeDell, E.; Gill, N.; Aiello, S.; Fu, A.; Candel, A.; Click, C.; Kraljevic, T.; Nykodym, T.; Aboyoun, P.; Kurka, M.; et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R Package Version 3.30.0.1. 2020. Available online: https://CRAN.R-project.org/package=h2o (accessed on 14 May 2022).
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R Package Version 1.7-2. 2019. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 14 May 2022).
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Mishra, G.; Sulieman, M.M.; Kaya, F.; Francaviglia, R.; Keshavarzi, A.; Bakhshandeh, E.; Loum, M.; Jangir, A.; Ahmed, I.; Elmobarak, A.; et al. Machine learning for cation exchange capacity prediction in different land uses. Catena 2022, 216, 106404. [Google Scholar] [CrossRef]
- Bayat, H.; Davatgar, N.; Jalali, M. Prediction of CEC using fractal parameters by artificial neural networks. Int. Agrophysics 2014, 28, 143–152. [Google Scholar] [CrossRef]
- Caravaca, F.; Albaladejo, A.L.J. Organic matter, nutrient contents and cation exchange capacity in fine fractions from semiarid calcareous soils. Geoderma 1999, 93, 161–176. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Seybold, C.A.; Grossman, R.B.; Reinsch, T.G. Predicting cation exchange capacity for soil survey using linear models. Soil Sci. Soc. Am. J. 2005, 69, 856–863. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B.; Brevik, E.C.; Cerdá, A. Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. J. Environ. Manag. 2015, 155, 219–228. [Google Scholar] [CrossRef]
- Hu, G.C.; Zhang, M.K. Mineralogical evidence for strong cementation of soil particles by iron oxides. Chin. J. Soil Sci. 2002, 33, 25–27. (In Chinese) [Google Scholar]
- Martín-García, J.M.; Sánchez-Marañón, M.; Calero, J.; Aranda, V.; Delgado, G.; Delgado, R. Iron oxides and rare earth elements in the clay fractions of a soil chronosequence in southern Spain. Eur. J. Soil Sci. 2016, 67, 749–762. [Google Scholar] [CrossRef]
- Ketrot, D.; Suddhiprakarn, A.; Kheoruenromne, I.; Singh, B. Interactive effects of iron oxides and organic matter on charge properties of red soils in Thailand. Soil Res. 2013, 51, 222–231. [Google Scholar] [CrossRef]
- Lu, Y. Guangdong Volume of Soil Series of China; Science Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
Soil Property | Argosols | Cambosols | Ferrosols | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min a | Mean | Max | Standard Deviation | Min | Mean | Max | Standard Deviation | Min | Mean | Max | Standard Deviation | |
BS (%) | 6.02 | 56.32 | 143.33 | 26.62 | 6.27 | 42.05 | 104.83 | 20.29 | 4.09 | 34.12 | 171.49 | 22.82 |
CaCO3 (g/kg) | 0.62 | 24.44 | 149.87 | 17.99 | 1.23 | 25.12 | 121.09 | 15.76 | 0.20 | 30.86 | 166.62 | 21.19 |
CEC (cmol(+) kg−1) | 4.84 | 15.64 | 32.16 | 2.09 | 2.71 | 14.50 | 36.56 | 2.05 | 0.82 | 12.50 | 36.38 | 2.43 |
Clay (%) | 8.29 | 26.52 | 56.41 | 4.48 | 5.46 | 24.42 | 52.32 | 4.81 | 2.95 | 25.97 | 56.41 | 4.61 |
Silt (%) | 17.04 | 41.88 | 68.81 | 4.69 | 3.58 | 40.59 | 70.17 | 5.03 | 4.89 | 36.68 | 67.44 | 5.59 |
Fed (g kg−1) | 1.63 | 21.62 | 63.22 | 6.32 | 4.26 | 19.02 | 63.22 | 4.23 | 0.61 | 20.00 | 63.22 | 5.33 |
pH | 4.08 | 5.80 | 8.59 | 0.77 | 4.13 | 5.51 | 8.70 | 0.70 | 3.69 | 5.16 | 8.63 | 0.55 |
SOC (g kg−1) | 4.91 | 17.57 | 75.71 | 4.92 | 3.69 | 15.85 | 58.88 | 3.52 | 1.68 | 16.61 | 75.71 | 3.36 |
TK (g kg−1) | 3.58 | 16.42 | 40.16 | 3.31 | 4.54 | 16.53 | 43.55 | 2.70 | 0.60 | 14.98 | 43.55 | 3.24 |
TN (g kg−1) | 0.38 | 1.66 | 6.02 | 0.33 | 0.18 | 1.41 | 4.12 | 0.27 | 0.10 | 1.37 | 6.78 | 0.28 |
TP (g kg−1) | 0.10 | 0.56 | 2.77 | 0.13 | 0.07 | 0.48 | 2.79 | 0.11 | 0.04 | 0.47 | 2.75 | 0.09 |
Soil Property | Min | 25th Percentile | Mean | Median | 75th Percentile | Max | Standard Deviation | Skewness | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|---|
CECclay (cmol(+) kg−1) | 7.51 | 17.17 | 20.93 | 20.76 | 25.08 | 32.79 | 5.67 | 0.11 | 27.09 |
CECsilt (cmol(+) kg−1) | 0.48 | 2.25 | 4.96 | 3.59 | 6.66 | 21.25 | 3.85 | 1.65 | 77.62 |
CECsoil (cmol(+) kg−1) | 5.12 | 9.16 | 12.44 | 11.61 | 14.84 | 27.13 | 4.50 | 1.02 | 36.17 |
CECMin (cmol(+) kg−1) | 6.88 | 10.85 | 14.55 | 14.09 | 17.31 | 29.83 | 4.89 | 0.84 | 33.61 |
pH | 3.73 | 4.69 | 5.23 | 5.00 | 5.58 | 7.65 | 0.78 | 1.11 | 14.91 |
SOC (g kg−1) | 1.40 | 2.72 | 4.72 | 3.80 | 5.49 | 14.05 | 2.88 | 1.56 | 61.02 |
Fed (g kg−1) | 9.11 | 42.59 | 62.72 | 56.36 | 83.96 | 142.56 | 26.36 | 0.51 | 42.03 |
Clay (%) | 9.48 | 30.80 | 40.96 | 39.90 | 49.75 | 71.92 | 14.82 | 0.35 | 36.18 |
Silt (%) | 8.36 | 21.89 | 31.22 | 31.00 | 39.70 | 66.10 | 11.62 | 0.35 | 37.22 |
CECsilt | CECsoil | CECMin | pH | SOC | Fed | Silt | Clay | |
---|---|---|---|---|---|---|---|---|
CECclay | 0.272 ** | 0.580 ** | 0.525 ** | 0.121 * | −0.067 | −0.283 ** | 0.424 ** | −0.263 ** |
CECsilt | 1 | 0.600 ** | 0.459 ** | 0.068 | 0.073 | 0.140 | 0.108 | −0.337 ** |
CECsoil | 1 | 0.920 ** | 0.279 ** | 0.048 | 0.258 ** | 0.160 | 0.065 | |
CECMin | 1 | 0.238 ** | 0.004 | 0.298 ** | 0.085 | 0.237 ** | ||
pH | 1 | −0.001 | 0.048 | 0.225 * | −0.067 | |||
SOC | 1 | 0.188 * | 0.032 | −0.171 | ||||
Fed | 1 | −0.130 | 0.541 ** | |||||
Silt | 1 | −0.352 ** |
Dataset | ANN | DBN | SVR | RF | MLR | PTFa | PTFb | PTFc |
---|---|---|---|---|---|---|---|---|
R2 | ||||||||
Dataset 1 | 0.63 ± 0.03 | 0.63 ± 0.02 | 0.57 ± 0.02 | 0.59 ± 0.02 | 0.65 ± 0.02 | 0.41 ± 0.03 | 0.24 ± 0.03 | 0.15 ± 0.04 |
Dataset 2 | 0.59 ± 0.03 | 0.58 ± 0.03 | 0.52 ± 0.02 | 0.55 ± 0.02 | 0.63 ± 0.02 | 0.41 ± 0.02 | 0.25 ± 0.04 | 0.14 ± 0.02 |
Dataset 3 | 0.54 ± 0.06 | 0.64 ± 0.04 | 0.61 ± 0.02 | 0.62 ± 0.02 | 0.70 ± 0.02 | 0.41 ± 0.03 | 0.25 ± 0.04 | 0.15 ± 0.03 |
Dataset 4 | 0.64 ± 0.04 | 0.64 ± 0.03 | 0.61 ± 0.02 | 0.63 ± 0.02 | 0.71 ± 0.02 | 0.41 ± 0.02 | 0.25 ± 0.05 | 0.14 ± 0.03 |
RMSE | ||||||||
Dataset 1 | 3.56 ± 0.15 | 3.90 ± 0.20 | 3.87 ± 0.06 | 3.87 ± 0.07 | 3.46 ± 0.05 | 22.78 ± 0.41 | 16.75 ± 0.08 | 5.50 ± 0.04 |
Dataset 2 | 3.74 ± 0.12 | 4.07 ± 0.19 | 4.65 ± 0.07 | 4.00 ± 0.07 | 3.64 ± 0.06 | 22.62 ± 0.43 | 16.75 ± 0.08 | 5.48 ± 0.04 |
Dataset 3 | 5.06 ± 1.67 | 3.75 ± 0.22 | 3.64 ± 0.10 | 3.78 ± 0.06 | 3.29 ± 0.06 | 22.64 ± 0.44 | 16.74 ± 0.08 | 5.49 ± 0.03 |
Dataset 4 | 3.55 ± 0.20 | 3.75 ± 0.16 | 3.61 ± 0.09 | 3.73 ± 0.05 | 3.21 ± 0.08 | 22.64 ± 0.34 | 16.74 ± 0.08 | 5.48 ± 0.04 |
Original Soil Suborder (CST) | Soil Series | Location | Layer (cm) | Hue | Fed (g kg−1) | Fe Freeness (%) | CECclay Based on PTFa (cmol(+) kg−1) | Revised CECclay (cmol(+) kg−1) |
---|---|---|---|---|---|---|---|---|
Udic Argosols | Dingbao | 22°19′25″ N, 111°01′44″ E | 32–96 | 7.5YR | 55.0 | 53.5 | 28.1 | 22.15 |
Jinji | 22°11′43″ N, 12°28′41″ E | 31–120 | 2.5Y | 24.7 | 65.7 | 27.2 | 16.30 | |
Liangtian | 23°33′21″ N, 115°50′49″ E | 13–57 | 7.5YR | 64.3 | 61.2 | 28.1 | 23.67 | |
Shangzhongben | 25°06′20″ N, 113°31′54″ E | 10–40 | 7.5YR | 75.6 | 70.7 | 27.2 | 22.50 | |
Wenfu | 24°42′40″ N, 116°11′19″ E | 16–22 | 2.5YR | 40.2 | 61.3 | 26.6 | 14.54 | |
Udic Cambosols | Beidou | 23°49′43″ N, 116°07′43″ E | 15–55 | 5Y | 46.3 | 68.3 | 28.1 | 23.50 |
Dengta | 24°00′37″ N, 114°46′57″ E | 11–23 | 2.5YR | 42.2 | 62.9 | 25.2 | 21.55 | |
Datuo | 24°33′35″ N, 115°55′42″ E | 14–29 | 10YR | 52.0 | 72.7 | 27.9 | 23.33 | |
Xiajiashan | 23°15′41″ N, 116°11′13″ E | 9–25 | 10YR | 27.8 | 47.3 | 25.5 | 19.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Sun, Z.-X. Estimation of Cation Exchange Capacity for Low-Activity Clay Soil Fractions Using Experimental Data from South China. Agronomy 2024, 14, 2671. https://doi.org/10.3390/agronomy14112671
Zhu J, Sun Z-X. Estimation of Cation Exchange Capacity for Low-Activity Clay Soil Fractions Using Experimental Data from South China. Agronomy. 2024; 14(11):2671. https://doi.org/10.3390/agronomy14112671
Chicago/Turabian StyleZhu, Jun, and Zhong-Xiu Sun. 2024. "Estimation of Cation Exchange Capacity for Low-Activity Clay Soil Fractions Using Experimental Data from South China" Agronomy 14, no. 11: 2671. https://doi.org/10.3390/agronomy14112671
APA StyleZhu, J., & Sun, Z. -X. (2024). Estimation of Cation Exchange Capacity for Low-Activity Clay Soil Fractions Using Experimental Data from South China. Agronomy, 14(11), 2671. https://doi.org/10.3390/agronomy14112671