Relationship Between Salt Accumulation and Soil Structure Fractals in Cotton Fields in an Arid Inland Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.2.1. Soil Sample Collection
2.2.2. Soil Salinity and pH Measurements
2.2.3. Soil Particle Size Distribution Determination
2.2.4. Fractal Analysis Method for Soil PSD
2.2.5. Soil Grading Evaluation
2.2.6. Statistical Analysis
3. Results
3.1. Distribution Characteristics of Soil Particle Size
3.2. Fractal Characteristics of Soil Structure
3.3. Soil Structure Fractal and Salt Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelraheem, A.; Esmaeili, N.; O’Connell, M.; Zhang, J. Progress and Perspective on Drought and Salt Stress Tolerance in Cotton. Ind. Crop. Prod. 2019, 130, 118–129. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Announcement of the National Bureau of Statistics on Cotton Production in 2023. Available online: https://www.stats.gov.cn/sj/zxfb/202312/t20231225_1945745.html (accessed on 13 October 2024).
- Sharif, I.; Aleem, S.; Farooq, J.; Rizwan, M.; Younas, A.; Sarwar, G.; Chohan, S.M. Salinity Stress in Cotton: Effects, Mechanism of Tolerance and Its Management Strategies. Physiol. Mol. Biol. Plants 2019, 25, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Maryum, Z.; Luqman, T.; Nadeem, S.; Khan, S.M.U.D.; Wang, B.; Ditta, A.; Khan, M.K.R. An Overview of Salinity Stress, Mechanism of Salinity Tolerance and Strategies for Its Management in Cotton. Front. Plant Sci. 2022, 13, 907937. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hu, H.C.; Tian, F.Q.; Hu, H.P.; Yao, X.; Zhong, R.G. Soil Salt Distribution under Mulched Drip Irrigation in an Arid Area of Northwestern China. J. Arid. Environ. 2014, 104, 23–33. [Google Scholar] [CrossRef]
- Huang, T.B.; Wang, Z.H.; Guo, L.; Li, H.Q.; Tan, M.D.; Zou, J.; Zong, R.; Dhital, Y.P. The Impact of Long-Term Mulched Drip Irrigation on Soil Particle Composition and Salinity in Arid Northwest China. Agronomy 2024, 14, 599. [Google Scholar] [CrossRef]
- Wang, Z.M.; Li, Z.F.; Zhan, H.B.; Yang, S.F. Effect of Long-Term Saline Mulched Drip Irrigation on Soil-Groundwater Environment in Arid Northwest China. Sci. Total Environ. 2022, 820, 153222. [Google Scholar] [CrossRef]
- Biswal, P.; Swain, D.K.; Jha, M.K. Straw Mulch with Limited Drip Irrigation Influenced Soil Microclimate in Improving Tuber Yield and Water Productivity of Potato in Subtropical India. Soil Tillage Res. 2022, 223, 105484. [Google Scholar] [CrossRef]
- Abd El-Wahed, M.H.; Al-Omran, A.M.; Hegazi, M.M.; Ali, M.M.; Ibrahim, Y.A.M.; El Sabagh, A. Salt Distribution and Potato Response to Irrigation Regimes under Varying Mulching Materials. Plants 2020, 9, 701. [Google Scholar] [CrossRef]
- Wang, H.; Feng, D.; Zhang, A.Q.; Zheng, C.L.; Li, K.J.; Ning, S.R.; Zhang, J.P.; Sun, C.T. Effects of Saline Water Mulched Drip Irrigation on Cotton Yield and Soil Quality in the North China Plain. Agric. Water Manag. 2022, 262, 107405. [Google Scholar] [CrossRef]
- Li, W.H.; Wang, Z.H.; Zhang, J.Z.; Zong, R. Soil Salinity Variations and Cotton Growth under Long-Term Mulched Drip Irrigation in Saline-Alkali Land of Arid Oasis. Irrig. Sci. 2021, 40, 103–113. [Google Scholar] [CrossRef]
- Lin, X.M.; Wang, Z.; Li, J.S. Identifying the Factors Dominating the Spatial Distribution of Water and Salt in Soil and Cotton Yield Under Arid Environments of Drip Irrigation with Different Lateral Lengths. Agric. Water Manag. 2021, 250, 106834. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.J.; Yao, B.L. A Study on Interannual Change Features of Soil Salinity of Cotton Field with Drip Irrigation Under Mulch in Southern Xinjiang. PLoS ONE 2020, 15, e0244404. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, F.D.; Tian, L.J.; He, X.L.; Gao, Y.L.; Wang, Z.L.; Ren, F.T. Soil Physicochemical Properties and Cotton (Gossypium hirsutum L.) Yield Under Brackish Water Mulched Drip Irrigation. Soil Tillage Res. 2020, 199, 104592. [Google Scholar] [CrossRef]
- Liu, X.Q.; Chen, X.; Zhang, Y.Y.; Cheng, Q.B. Study on Salt Distribution Characteristics and Mathematical Expression of the Soil Profile in Qingtu Lake. Arid Zone Res. 2020, 37, 1174–1182. [Google Scholar] [CrossRef]
- Cui, S.J.; Zhu, P.C.; Liu, P.F.; Geng, X.X. Effects of Soil Particle Structure on the Distribution and Transport of Soil Water and Salt. Water 2023, 15, 2842. [Google Scholar] [CrossRef]
- He, Y.J.; Wang, Y.Y.; Liu, Y.; Peng, B.R.; Wang, G.L. Focus on the Nonlinear Infiltration Process in Deep Vadose Zone. Earth Sci. Rev. 2024, 252, 104719. [Google Scholar] [CrossRef]
- Yan, S.H.; Chen, H.R.; Wang, S.L.; Chang, X.M.; Guan, X.Y.; Wu, J.W.; Liu, Y.; Zhang, D.Q.; Zhang, B.B. Soil Cations and Texture Are Crucial in Forming Smooth Water and Salt Transport Channels Between Cultivated Land and Salinized Wasteland. Catena 2024, 244, 108251. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Q.; Yang, H.D. Soil Salinity Distribution and Its Relationship with Soil Particle Size in the Lower Reaches of Heihe River, Northwestern China. Environ. Earth Sci. 2016, 75, 810. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.W.; Guo, C.J.; Shi, C.; Su, W.C. Using Pore-Solid Fractal Dimension to Estimate Residual LNAPLs Saturation in Sandy Aquifers: A Column Experiment. J. Groundw. Sci. Eng. 2022, 10, 87–98. [Google Scholar] [CrossRef]
- Chen, L.J.; Feng, Q.; Wang, Y.; Yu, T.F. Water and Salt Movement under Saline Water Irrigation in Soil with Clay Interlaye. Trans. CSAE 2012, 28, 44–51. [Google Scholar] [CrossRef]
- Amsili, J.P.; van Es, H.M.; Schindelbeck, R.R. Cropping System and Soil Texture Shape Soil Health Outcomes and Scoring Functions. Soil Secur. 2021, 4, 100012. [Google Scholar] [CrossRef]
- Li, X.P.; Chang, S.X.; Salifu, K.F. Soil Texture and Layering Effects on Water and Salt Dynamics in the Presence of a Water Table: A Review. Environ. Rev. 2014, 22, 41–50. [Google Scholar] [CrossRef]
- Yudina, A.; Kuzyakov, Y. Dual Nature of Soil Structure: The Unity of Aggregates and Pores. Geoderma 2023, 434, 116478. [Google Scholar] [CrossRef]
- Gao, M.Y.; Ji, F.; Hong, Z.S.; Shi, X.S. Changing Law of Permeability Coefficient during Compression for Reconstituted Sandy Clays. Mar. Geores. Geotechnol. 2024, 42, 1651–1659. [Google Scholar] [CrossRef]
- Yu, P.Y.; Wang, W.K.; Wang, Z.F.; Gong, C.C.; Zhang, Z.Y.; Chen, L. Influence of Lithologic Structure of Vadose Zone on Rainfall Infiltration Capacity. Water Resour. Hydropower Eng. 2019, 50, 25–33. [Google Scholar] [CrossRef]
- Wang, Y.Y.; He, Y.J.; Zhan, J.; Li, Z.P. Identification of Soil Particle Size Distribution in Different Sedimentary Environments at River Basin Scale by Fractal Dimension. Sci Rep. 2022, 12, 10960. [Google Scholar] [CrossRef]
- Bai, Y.F.; Qin, Y.; Lu, X.R.; Zhang, J.T.; Chen, G.S.; Li, X.J. Fractal Dimension of Particle-Size Distribution and Their Relationships with Alkalinity Properties of Soils in the Western Songnen Plain, China. Sci. Rep. 2020, 10, 20603. [Google Scholar] [CrossRef]
- Qiao, J.B.; Zhu, Y.J.; Jia, X.X.; Shao, M. Multifractal Characteristics of Particle Size Distributions (50–200 M) in Soils in the Vadose Zone on the Loess Plateau, China. Soil Tillage Res. 2020, 205, 104786. [Google Scholar] [CrossRef]
- Hou, K.; Qian, H.; Zhang, Y.T.; Qu, W.G.; Ren, W.H.; Wang, H.K. Relationship between Fractal Characteristics of Grain-Size and Physical Properties: Insights from a Typical Loess Profile of the Loess Plateau. Catena 2021, 207, 105653. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.S.; Zhao, R.Y.; Hu, J.; Hu, B.F.; Shi, Z. Estimating Soil Salinity from Remote Sensing and Terrain Data in Southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting Long-Term Dynamics of Soil Salinity and Sodicity on a Global Scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef] [PubMed]
- Gui, D.W.; Lei, J.Q.; Zeng, F.J.; Runge, M.C.; Mu, G.J.; Yang, F.; Zhu, J. Ordination as a Tool to Characterize Soil Particle Size Distribution, Applied to an Elevation Gradient at the North Slope of the Middle Kunlun Mountains. Geoderma 2010, 158, 352–358. [Google Scholar] [CrossRef]
- Litalien, A.; Zeeb, B. Curing the Earth: A Review of Anthropogenic Soil Salinization and Plant-Based Strategies for Sustainable Mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal Scaling of Soil Particle-Size Distributions: Analysis and Limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- ASTM D 2487-11; Standard Practice for Classification of Soils for Engineering Purposes (United Soil Classification System). American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2011.
- Shang, B.J.; Zheng, B.W.; Zhou, Z.B.; Wang, L.J. Characteristics of Soil Particle Size and Fractal Dimension during Soil Salinization in Mayi Lake Regions, Xinjiang. J. Yunnan Univ. (Nat. Sci. Ed.) 2020, 42, 896–905. [Google Scholar] [CrossRef]
- Rousseva, S.S. Data Transformations Between Soil Texture Schemes. Eur. J. Soil Sci. 1997, 48, 749–758. [Google Scholar] [CrossRef]
- Zhang, R.D. Theory and Application of Spatial Variation; Science Press: Beijing, China, 2005; ISBN 7030148487. [Google Scholar]
- Wang, L.; Li, L.L.; Lai, M.X.; Du, C.X.; Fan, H.F. Research Progress on the Causes of Spatial Heterogeneity of Soil Salinity and Its Effects on Plants’ Growth. J. Zhejiang A&F Univ. 2022, 39, 1369–1377. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Y.P.; Zhang, F.E.; Wen, X.R.; Yang, L. Research Hotspots and Trends of Groundwater and Ecology Studies: Based on a Bibliometric Approach. J. Groundw. Sci. Eng. 2023, 11, 20–36. [Google Scholar] [CrossRef]
- Ortiz, A.C.; Jin, L. Chemical and Hydrological Controls on Salt Accumulation in Irrigated Soils of Southwestern U.S. Geoderma 2021, 391, 114976. [Google Scholar] [CrossRef]
- Mao, P.L.; Lin, Q.Z.; Cao, B.H.; Qiao, J.B.; Wang, K.X.; Han, X.; Pang, Y.X.; Cao, X.N.; Jia, B.; Yang, Q.S. Analysis of Tamarix Chinensis Forest Characteristics, Salt Ion Distribution, and Non-Structural Carbohydrate Levels in the Yellow River Delta: A Spatial Study Based on Proximity to the Shoreline. Plants 2024, 13, 2372. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Zuo, S.Y.; Wu, D.Y.; Yang, G.S. Shrinkage Mechanism of Red Clay Based on Changes in the Thickness of Bound Water Film. Bull. Geol. Sci. Technol. 2023, 42, 241–248. [Google Scholar] [CrossRef]
- Wang, D.W.; Wang, Z.H.; Zhang, J.Z.; Zhou, B.; Lv, T.B.; Li, W.H. Effects of Soil Texture on Soil Leaching and Cotton (Gossypium hirsutum L.) Growth under Combined Irrigation and Drainage. Water 2021, 13, 3614. [Google Scholar] [CrossRef]
- Yuan, S.Q.; Sun, R.L.; Xing, J.B.; Xiao, W. Experimental Study on the Electrical Resistivity Characteristics of Sand under Different Testing Conditions. Bull. Geol. Sci. Technol. 2023, 42, 257–263. [Google Scholar] [CrossRef]
- Pantani, O.-L.; Ferretti, L.; Santoni, M.; Massenzio, S.; D’Acqui, L.P.; Pacini, G.C. Assessment of the Impact of Conventional and Organic Agroecosystems Management Options and Conservation Tillage on Soil Fertility at the Montepaldi Long Term Experiment, Tuscany. Eur. J. Agron. 2022, 140, 126575. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, R.H.; Liu, X.; Niu, Y.; Zhang, H.D.; Li, H.; Li, J.Z.; Wang, B.Y.; Zhang, G.C. Soil Particle Size Distribution Characteristics of Different Land-Use Types in the Funiu Mountainous Region. Soil Tillage Res. 2018, 184, 45–51. [Google Scholar] [CrossRef]
- Jensen, J.L.; Watts, C.W.; Christensen, B.T.; Munkholm, L.J.; Schjønning, P. Short-Term Changes in Soil Pore Size Distribution: Impact of Land Use. Soil Tillage Res. 2020, 199, 104597. [Google Scholar] [CrossRef]
- Zhao, J.S.; Chen, S.; Hu, R.G.; Li, Y.Y. Aggregate Stability and Size Distribution of Red Soils under Different Land Uses Integrally Regulated by Soil Organic Matter, and Iron and Aluminum Oxides. Soil Tillage Res. 2017, 167, 73–79. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shabanpour, M.; Mohammadi, M.H.; Davatgar, N. Characterizing Spatial Variability of Soil Textural Fractions and Fractal Parameters Derived from Particle Size Distributions. Pedosphere 2019, 29, 224–234. [Google Scholar] [CrossRef]
- Fu, X.D.; Ding, H.F.; Sheng, Q.; Zhang, Z.P.; Yin, D.W.; Chen, F. Fractal Analysis of Particle Distribution and Scale Effect in a Soil–Rock Mixture. Fractal Fract. 2022, 6, 120. [Google Scholar] [CrossRef]
- Xu, L.; Du, H.R.; Zhang, X.L. Spatial Distribution Characteristics of Soil Salinity and Moisture and Its Influence on Agricultural Irrigation in the Ili River Valley, China. Sustainability 2019, 11, 7142. [Google Scholar] [CrossRef]
Number | Soil Particle Size Distribution | |||
---|---|---|---|---|
Clay 0–2 μm% | Silt 2–50 μm% | Sand 50–200 μm% | Gravel 200–300 μm% | |
Plot. 1 | 0.922 ± 2.198 | 36.765 ± 29.970 | 62.289 ± 31.450 | 0.024 ± 0.087 |
Plot. 6 | 12.990 ± 19.414 | 64.909 ± 25.658 | 22.062 ± 28.648 | 0.199 ± 0.345 |
Plot. 8 | 5.855 ± 19.021 | 56.944 ± 24.730 | 37.195 ± 26.040 | 0.026 ± 0.072 |
Universe | 6.589 ± 16.128 | 52.873 ± 28.786 | 40.515 ± 32.681 | 0.083 ± 0.221 |
Number | Minimum | Maximum | Average | SD | CV |
---|---|---|---|---|---|
Plot. 1 | 0.301 | 1.900 | 1.259 | 0.531 | 0.422 |
Plot. 6 | 0.534 | 2.655 | 1.795 | 0.509 | 0.284 |
Plot. 8 | 0.447 | 2.705 | 1.643 | 0.465 | 0.283 |
Universe | 0.301 | 2.705 | 1.566 | 0.540 | 0.345 |
Number | Clay | Silt | Sand | |||
---|---|---|---|---|---|---|
p | R | p | R | p | R | |
Plot. 1 | 0.081 | 0.501 | <0.001 | 0.910 | <0.001 | −0.903 |
Plot. 6 | 0.001 | 0.790 | 0.411 | 0.249 | 0.003 | −0.759 |
Plot. 8 | 0.009 | 0.694 | 0.274 | 0.328 | <0.001 | −0.818 |
Number | Average (mg/L) | Maximum (mg/L) | Minimum (mg/L) | SD | Aggregate (mg/L) | CV |
---|---|---|---|---|---|---|
Plot. 1 | 79.377 | 99.470 | 57.510 | 14.067 | 1031.9 | 0.177 |
Plot. 6 | 86.593 | 118.500 | 52.140 | 20.559 | 1125.71 | 0.237 |
Plot. 8 | 75.496 | 150.430 | 48.320 | 25.906 | 981.45 | 0.343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; He, Y.; Peng, B. Relationship Between Salt Accumulation and Soil Structure Fractals in Cotton Fields in an Arid Inland Basin. Agronomy 2024, 14, 2673. https://doi.org/10.3390/agronomy14112673
Liu Y, He Y, Peng B. Relationship Between Salt Accumulation and Soil Structure Fractals in Cotton Fields in an Arid Inland Basin. Agronomy. 2024; 14(11):2673. https://doi.org/10.3390/agronomy14112673
Chicago/Turabian StyleLiu, Ying, Yujiang He, and Borui Peng. 2024. "Relationship Between Salt Accumulation and Soil Structure Fractals in Cotton Fields in an Arid Inland Basin" Agronomy 14, no. 11: 2673. https://doi.org/10.3390/agronomy14112673
APA StyleLiu, Y., He, Y., & Peng, B. (2024). Relationship Between Salt Accumulation and Soil Structure Fractals in Cotton Fields in an Arid Inland Basin. Agronomy, 14(11), 2673. https://doi.org/10.3390/agronomy14112673