Applicability of Different Assimilation Algorithms in Crop Growth Model Simulation of Evapotranspiration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. ET Calculation
2.3.1. Localization of the CERES-Wheat
2.3.2. ESTARFM
2.4. Assimilation Methods
2.4.1. 4DVar
2.4.2. EnKF
2.4.3. PF
3. Results
3.1. Accuracy Evaluation of ESTARFM ET
3.2. Localization of the CERES-Wheat ET
3.3. Assimilation ET
4. Discussion
5. Conclusions
- (1)
- Utilizing the SEBAL and ESTARFM, an 8 d and 30 m time series of ET was obtained for the winter wheat growing season. This approach effectively preserved the temporal variation information of the MODIS while spatially reflecting the detailed information of the Landsat 8.
- (2)
- Using the calibrated CERES-Wheat, the variation curve of the entire growth period ET of winter wheat was obtained. The trend and magnitude of the ESTARFM ET variation closely matched the characteristic curve of CERES-Wheat ET after S-G filtering, effectively capturing the variations in winter wheat ET throughout the growing period.
- (3)
- The correlation between EnKF ET and ESTARFM ET (R2 = 0.7119, p < 0.01) was significantly higher than that of 4DVar ET (R2 = 0.5142, p < 0.01) and PF ET (R2 = 0.5596, p < 0.01). EnKF ET demonstrated a more ideal response to changing trends and abrupt moisture information. However, due to the significant underestimation of ESTARFM ET from 100 to 175 days after planting, there was notable simulation error in EnKF ET at sample points in Hongtong County and Hejin City during this period.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gumma, M.K.; Kadiyala, M.D.M.; Panjala, P.; Ray, S.S.; Akuraju, V.R.; Dubey, S.; Smith, A.P.; Das, R.; Whitbread, A.M. Assimilation of remote sensing data into crop growth model for yield estimation: A case study from India. J. Indian Soc. Remote 2022, 50, 257–270. [Google Scholar] [CrossRef]
- Khan, G.R.; Alkharabsheh, H.M.; Akmal, M.; Al-Huqail, A.A.; Ali, N.; Alhammad, B.A.; Anjum, M.M.; Goher, R.; Wahid, F.; Seleiman, M.F.; et al. Split nitrogen application rates for wheat (Triticum aestivum L.) yield and grain N using the CSM-CERES-wheat model. Agronomy 2022, 12, 1766. [Google Scholar] [CrossRef]
- Nouri, M.; Hoogenboom, G.; Bannayan, M.; Homaee, M. CSM-CERES-Wheat sensitivity to evapotranspiration modeling frameworks under a range of wind speeds. Water 2022, 14, 3023. [Google Scholar] [CrossRef]
- Anothai, J.; Patanothai, A.; Jogloy, S.; Pannangpetch, K.; Boote, K.J.; Hoogenboom, G. A sequential approach for determining the cultivar coefficients of peanut lines using end-of-season data of crop performance trials. Field Crops Res. 2008, 108, 169–178. [Google Scholar] [CrossRef]
- Marszalek, M.; Körner, M.; Schmidhalter, U. Prediction of multi-year winter wheat yields at the field level with satellite and climatological data. Comput. Electron. Agric. 2022, 194, 106777. [Google Scholar] [CrossRef]
- Tapas, M.R.; Do, S.K.; Etheridge, R.; Lakshmi, V. Investigating the impacts of climate change on hydroclimatic extremes in the Tar-Pamlico River basin, North Carolina. J. Environ. Manag. 2024, 363, 121375. [Google Scholar]
- Tapas, M.R.; Etheridge, R.; Finlay, C.G.; Peralta, A.L.; Bell, N.; Xu, Y.; Lakshmi, V. A methodological framework for assessing sea level rise impacts on nitrate loading in coastal agricultural watersheds using SWAT+: A case study of the Tar-Pamlico River basin, North Carolina, USA. Sci. Total Environ. 2024, 951, 175523. [Google Scholar] [CrossRef]
- Lakshmi, V. Enhancing human resilience against climate change: Assessment of hydroclimatic extremes and sea level rise impacts on the Eastern Shore of Virginia, United States. Sci. Total Environ. 2024, 947, 174289. [Google Scholar]
- dela Torre, D.M.G.; Gao, J.; Macinnis-Ng, C. Remote sensing-based estimation of rice yields using various models: A critical review. Geo-Spat. Inf. Sci. 2021, 24, 580–603. [Google Scholar] [CrossRef]
- Bouras, E.H.; Olsson, P.O.; Thapa, S.; Díaz, J.M.; Albertsson, J.; Eklundh, L. Wheat yield estimation at high spatial resolution through the assimilation of sentinel-2 data into a crop growth model. Remote Sens. 2023, 15, 4425. [Google Scholar] [CrossRef]
- Ji, F.; Meng, J.; Cheng, Z.; Fang, H.; Wang, Y. Crop Yield Estimation at Field Scales by Assimilating Time Series of Sentinel-2 Data into a Modified CASA-WOFOST Coupled Model. IEEE T. Geosci. Remote 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Tansey, K.; Han, D.; Chen, C.; Liu, J.; Li, H. Enhanced Feature Extraction from Assimilated VTCI and LAI With a Particle Filter for Wheat Yield Estimation Using Cross-Wavelet Transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5115–5127. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Bi, R.; Wang, C.; He, P.; Yang, W. Winter Wheat Yield Estimation Based on Assimilated Remote Sensing Date with Crop Growth Model Using 4DVAR and EnKF. Trans. Chin. Soc. Agric. Mach. 2021, 52, 223–231. [Google Scholar]
- Kang, Y.; Özdoğan, M. Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sens. Environ. 2019, 228, 144–163. [Google Scholar] [CrossRef]
- Muhuri, A.; Goïta, K.; Magagi, R.; Wang, H. Soil Moisture Retrieval During Crop Growth Cycle Using Satellite SAR Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2023, 16, 9302–9319. [Google Scholar] [CrossRef]
- Tuoku, L.; Wu, Z.; Men, B. Impacts of climate factors and human activities on NDVI change in China. Ecol. Inform. 2024, 81, 102555. [Google Scholar] [CrossRef]
- Abebe, G.; Tadesse, T.; Gessesse, B. Assimilation of leaf Area Index from multisource earth observation data into the WOFOST model for sugarcane yield estimation. Int. J. Remote Sens. 2022, 43, 698–720. [Google Scholar] [CrossRef]
- Goyal, P.; Kumar, S.; Sharda, R. A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives. Comput. Electron. Agric. 2023, 209, 107836. [Google Scholar] [CrossRef]
- Bhattarai, N.; Shaw, S.B.; Quackenbush, L.J.; Im, J.; Niraula, R. Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. Int. J. Appl. Earth Obs. 2016, 49, 75–86. [Google Scholar] [CrossRef]
- Danda, T.J.; Kusangaya, S.; Mushore, T.D.; Mujere, N. Assessing the role of evapotranspiration in reducing surface temperatures in Harare using the SEBAL algorithm. Urban. Clim. 2023, 49, 101442. [Google Scholar] [CrossRef]
- Ghaderi, A.; Dasineh, M.; Shokri, M.; Abraham, J. Estimation of actual evapotranspiration using the remote sensing method and SEBAL algorithm: A case study in Ein Khosh Plain, Iran. Hydrology 2020, 7, 36. [Google Scholar] [CrossRef]
- Vazifedoust, M.; Van Dam, J.C.; Bastiaanssen, W.G.M.; Feddes, R.A. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. Int. J. Remote Sens. 2009, 30, 2523–2545. [Google Scholar] [CrossRef]
- Zhuo, W.; Fang, S.; Wu, D.; Wang, L.; Li, M.; Zhang, J.; Gao, X. Integrating remotely sensed water stress factor with a crop growth model for winter wheat yield estimation in the North China Plain during 2008–2018. Crop J. 2022, 10, 1470–1482. [Google Scholar] [CrossRef]
- Do, S.K.; Akhtar, F.; Goffin, B.; Aryal, A.; Lipscomb, M.; Lakshmi, V. Assessing terrestrial water storage variations in Afghanistan using GRACE and FLDAS-Central Asia data. J. Hydrol. Reg. Stud. 2024, 55, 101906. [Google Scholar] [CrossRef]
- Tran, T.N.D.; Nguyen, B.Q.; Zhang, R.; Aryal, A.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Quantification of gridded precipitation products for the streamflow simulation on the Mekong River Basin using rainfall assessment framework: A case study for the Srepok River subbasin, central highland vietnam. Remote Sens. 2023, 15, 1030. [Google Scholar] [CrossRef]
- Aryal, A.; Tran, T.N.D.; Kumar, B.; Lakshmi, V. Evaluation of Satellite-Derived Precipitation Products for Streamflow Simulation of a Mountainous Himalayan Watershed: A Study of Myagdi Khola in Kali Gandaki Basin, Nepal. Remote Sens. 2023, 15, 4762. [Google Scholar] [CrossRef]
- Le, M.H.; Zhang, R.; Nguyen, B.Q.; Bolten, J.D.; Lakshmi, V. Robustness of gridded precipitation products for Vietnam basins using the comprehensive assessment framework of rainfall. Atmos. Res. 2023, 293, 106923. [Google Scholar]
- Croci, M.; Impollonia, G.; Meroni, M.; Amaducci, S. Dynamic maize yield predictions using machine learning on multi-source data. Remote Sens. 2022, 15, 100. [Google Scholar] [CrossRef]
- Sdraka, M.; Papoutsis, I.; Psomas, B.; Vlachos, K.; Ioannidis, K.; Karantzalos, K.; Gialampoukidis, I.; Vrochidis, S. Deep learning for downscaling remote sensing images: Fusion and super-resolution. IEEE Geosci. Remote Sens. Mag. 2022, 10, 202–255. [Google Scholar] [CrossRef]
- Bai, L.; Cai, J.; Liu, Y.; Chen, H.; Zhang, B.; Huang, L. Spatial downscaling of evapotranspiration in large irrigation area based on data fusion algorithm. Trans. Chin. Soc. Agric. Mach. 2017, 48, 215–223. [Google Scholar]
- He, P.; Bi, R.; Xu, L.; Liu, Z.; Yang, F.; Wang, W.; Cui, Z.; Wang, J. Evapotranspiration of Winter Wheat in the Semi-Arid Southeastern Loess Plateau Based on Multi-Source Satellite Data. Remote Sens. 2023, 15, 2095. [Google Scholar] [CrossRef]
- Niu, K.; Liu, G.; Zhan, C.; Kang, A. The Role of Climate Change and Human Intervention in Shaping Vegetation Patterns in the Fen River Basin of China: Implications of the Grain for Green Program. Forests 2024, 15, 1733. [Google Scholar] [CrossRef]
- Sun, C.; Chen, W.; Chen, Y.; Cai, Z. Stable isotopes of atmospheric precipitation and its environmental drivers in the Eastern Chinese Loess Plateau, China. J. Hydrol. 2020, 581, 124404. [Google Scholar] [CrossRef]
- Kadu, S.R.; Hogade, B.G.; Rizvi, I. Detection of urban tree canopy from very high resolution imagery using an object based classification. Int. J. Electr. Comput. Eng. 2022, 12, 2088–8708. [Google Scholar] [CrossRef]
- Guerschman, J.P.; McVicar, T.R.; Vleeshower, J.; Van Niel, T.G.; Peña-Arancibia, J.L.; Chen, Y. Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. J. Hydrol. 2022, 605, 127318. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Paz, A.R.D.; Aragao, L.E.; Mu, Q.; Malhi, Y.; Collischonn, W.; Rocha, H.R.; Running, S.W. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrolog Sci. J. 2013, 58, 1658–1676. [Google Scholar] [CrossRef]
- Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.; Nickless, A.; Dzikiti, S. Validation of global evapotranspiration product (MOD16) using flux tower data in the African savanna, South Africa. Remote Sens. 2014, 6, 7406–7423. [Google Scholar] [CrossRef]
- Aguilar, A.L.; Flores, H.; Crespo, G.; Marín, M.I.; Campos, I.; Calera, A. Performance assessment of MOD16 in evapotranspiration evaluation in Northwestern Mexico. Water 2018, 10, 901. [Google Scholar] [CrossRef]
- Autovino, D.; Minacapilli, M.; Provenzano, G. Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy. Agric. Water Manag. 2016, 167, 86–94. [Google Scholar] [CrossRef]
- Bhattarai, N.; Mallick, K.; Brunsell, N.A.; Sun, G.; Jain, M. Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1. 2) model and its validation across an aridity gradient in the conterminous US. Hydrol. Earth Syst. Sci. 2018, 22, 2311–2341. [Google Scholar] [CrossRef]
- Yener, İ. Development of high-resolution annual climate surfaces for Turkey using ANUSPLIN and comparison with other methods. Atmósfera 2023, 37, 425–444. [Google Scholar] [CrossRef]
- Kim, Y. Applicability Assessment of a Spatiotemporal Geostatistical Fusion Model for Disaster Monitoring: Two Cases of Flood and Wildfire. Remote Sens. 2022, 14, 6204. [Google Scholar] [CrossRef]
- Paulin, D.; Jasra, A.; Beskos, A.; Crisan, D. A 4D-Var method with flow-dependent background covariances for the shallow-water equations. Stat. Comput. 2022, 32, 65. [Google Scholar] [CrossRef]
- Evensen, I. The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Bach, E.; Ghil, M. A multi-model ensemble Kalman filter for data assimilation and forecasting. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003123. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Luo, L.; Sun, S.; Xue, J.; Gao, Z.; Zhao, J.; Yin, Y.; Gao, F.; Luan, X. Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation. Agric. Syst. 2023, 210, 103711. [Google Scholar] [CrossRef]
- Mu, Q.; Cai, H.; Sun, S.; Wen, S.; Xu, J.; Dong, M.; Saddique, Q. The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes. Agric. Water Manag. 2021, 243, 106475. [Google Scholar] [CrossRef]
- Ren, S.; Guo, B.; Wang, Z.; Wang, J.; Fang, Q.; Wang, J. Optimized spectral index models for accurately retrieving soil moisture (SM) of winter wheat under water stress. Agric. Water Manag. 2022, 261, 107333. [Google Scholar] [CrossRef]
Location | LAI RE (%) | Yield RE (%) |
---|---|---|
Xiqiaozhuang Village in Hongtong County | 2.41 | 12.57 |
Tundou Village in Yaodu District | 0.77 | 8.30 |
Cui Village in Xiangfen County | 1.30 | 11.16 |
Xinanjie Village in Quwo County | 7.18 | 1.97 |
Daoxiaoli Village in Houma City | 11.17 | 1.92 |
Duanjiazhuang Village in Xinjiang County | 10.03 | 4.35 |
Shangbai Village in Jishan County | 9.05 | 5.71 |
Cangtou Village in Hejin City | 8.01 | 14.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, P.; Bi, R.; Xu, L.; He, P.; Zhao, Y.; Li, X. Applicability of Different Assimilation Algorithms in Crop Growth Model Simulation of Evapotranspiration. Agronomy 2024, 14, 2674. https://doi.org/10.3390/agronomy14112674
Wang J, Li P, Bi R, Xu L, He P, Zhao Y, Li X. Applicability of Different Assimilation Algorithms in Crop Growth Model Simulation of Evapotranspiration. Agronomy. 2024; 14(11):2674. https://doi.org/10.3390/agronomy14112674
Chicago/Turabian StyleWang, Jingshu, Ping Li, Rutian Bi, Lishuai Xu, Peng He, Yingjie Zhao, and Xuran Li. 2024. "Applicability of Different Assimilation Algorithms in Crop Growth Model Simulation of Evapotranspiration" Agronomy 14, no. 11: 2674. https://doi.org/10.3390/agronomy14112674
APA StyleWang, J., Li, P., Bi, R., Xu, L., He, P., Zhao, Y., & Li, X. (2024). Applicability of Different Assimilation Algorithms in Crop Growth Model Simulation of Evapotranspiration. Agronomy, 14(11), 2674. https://doi.org/10.3390/agronomy14112674