Site Preparation and Planting Strategies to Improve Native Forb Establishment in Pasturelands †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment 1
2.3. Experiment 2
2.4. Data Collection
2.5. Analysis
3. Results
3.1. Experiment 1—Herbicides and Tillage
3.2. Experiment 2—Planting Rate and Cold Stratification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perfecto, I.; Vandermeer, J.; Wright, A. Nature’s Matrix: Linking Agriculture, Biodiversity Conservation and Food Sovereignty, 2nd ed.; Routledge: London, UK, 2019. [Google Scholar]
- Sanderson, M.A.; Liebig, M.A. Forages and the Environment. In Forages; Moore, K.J., Collins, M., Nelson, C.J., Redfearn, D.D., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 249–259. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef] [PubMed]
- Popp, J.D.; McCaughey, W.P.; Cohen, R.D.H.; McAllister, T.A.; Majak, W. Enhancing pasture productivity with alfalfa: A review. Can. J. Plant Sci. 2000, 80, 513–519. [Google Scholar] [CrossRef]
- Brudvig, L.A.; Barak, R.S.; Bauer, J.T.; Caughlin, T.T.; Laughlin, D.C.; Larios, L.; Matthews, J.W.; Stuble, K.L.; Turley, N.E.; Zirbel, C.R. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 2017, 54, 1018–1027. [Google Scholar] [CrossRef]
- Stuble, K.L.; Fick, S.E.; Young, T.P. Every restoration is unique: Testing year effects and site effects as drivers of initial restoration trajectories. J. Appl. Ecol. 2017, 54, 1051–1057. [Google Scholar] [CrossRef]
- Řehounková, K.; Jongepierová, I.; Šebelíková, L.; Vítovcová, K.; Prach, K. Topsoil removal in degraded open sandy grasslands: Can we restore threatened vegetation fast? Restor. Ecol. 2021, 29, e13188. [Google Scholar] [CrossRef]
- Henderson, K. Small Prairie Plantings. In The Tallgrass Prairie Center Guide to Prairie Restoration in the Upper Midwest; University of Iowa Press: Iowa City, IA, USA, 2010; p. 193206. [Google Scholar]
- Smith, D. The Restoration of Degraded Remnants. In The Tallgrass Prairie Center Guide to Prairie Restoration in the Upper Midwest; University of Iowa Press: Iowa City, IA, USA, 2010; pp. 119–133. [Google Scholar]
- Williams, N.M.; Ward, K.L.; Pope, N.; Isaacs, R.; Wilson, J.; May, E.A.; Ellis, J.; Daniels, J.; Pence, A.; Ullmann, K.; et al. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol. Appl. 2015, 25, 2119–2131. [Google Scholar] [CrossRef]
- Frances, A.L.; Reinhardt Adams, C.; Norcini, J.G. Importance of Seed and Microsite Limitation: Native Wildflower Establishment in Non-Native Pasture. Restor. Ecol. 2010, 18, 944–953. [Google Scholar] [CrossRef]
- Millikin, A.R.; Jarchow, M.E.; Olmstead, K.L.; Krentz, R.E.; Dixon, M.D. Site Preparation Drives Long-Term Plant Community Dynamics in Restored Tallgrass Prairie: A Case Study in Southeastern South Dakota. Environ. Manag. 2016, 58, 597–605. [Google Scholar] [CrossRef]
- Tognetti, P.M.; Chaneton, E.J. Invasive exotic grasses and seed arrival limit native species establishment in an old-field grassland succession. Biol. Invasions 2012, 14, 2531–2544. [Google Scholar] [CrossRef]
- Barnes, T.G. Strategies to Convert Exotic Grass Pastures to Tall Grass Prairie Communities. Weed Technol. 2004, 18, 1364–1370. [Google Scholar] [CrossRef]
- Angelella, G.M.; Stange, L.; Scoggins, H.L.; O’Rourke, M.E. Pollinator Refuge Establishment and Conservation Value: Impacts of Seedbed Preparations, Seed Mixtures, and Herbicides. HortScience 2019, 54, 445–451. [Google Scholar] [CrossRef]
- Beran, D.D.; Gaussoin, R.E.; Masters, R.A. Native Wildflower Establishment with Imidazolinone Herbicides. HortScience 1999, 34, 283–286. [Google Scholar] [CrossRef]
- Ghajar, S.M.; Wagner, J.F.; O’Rourke, M.; Tracy, B.F. Evaluating methods to establish biodiverse pasturelands with native grasses and wildflowers. Nativ. Plants J. 2022, 23, 65–74. [Google Scholar] [CrossRef]
- Evans, S.C.; Shaw, E.M.; Rypstra, A.L. Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 2010, 19, 1249–1257. [Google Scholar] [CrossRef]
- Farina, W.M.; Balbuena, M.S.; Herbert, L.T.; Mengoni Goñalons, C.; Vázquez, D.E. Effects of the Herbicide Glyphosate on Honeybee Sensory and Cognitive Abilities: Individual Impairments with Implications for the Hive. Insects 2019, 10, 354. [Google Scholar] [CrossRef]
- Angelella, G.M.; O’Rourke, M.E. Pollinator Habitat Establishment After Organic and No-Till Seedbed Preparation Methods. HortScience 2017, 52, 1349–1355. [Google Scholar] [CrossRef]
- Skousen, J.G.; Venable, C.L. Establishing native plants on newly constructed and older-reclaimed sites along West Virginia highways. Land Degrad. Dev. 2008, 19, 388–396. [Google Scholar] [CrossRef]
- Edwards, A.R.; Mortimer, S.R.; Lawson, C.S.; Westbury, D.B.; Harris, S.J.; Woodcock, B.A.; Brown, V.K. Hay strewing, brush harvesting of seed and soil disturbance as tools for the enhancement of botanical diversity in grasslands. Biol. Conserv. 2007, 134, 372–382. [Google Scholar] [CrossRef]
- Marushia, R.G.; Allen, E.B. Control of Exotic Annual Grasses to Restore Native Forbs in Abandoned Agricultural Land. Restor. Ecol. 2011, 19, 45–54. [Google Scholar] [CrossRef]
- Barr, S.; Jonas, J.L.; Paschke, M.W. Optimizing seed mixture diversity and seeding rates for grassland restoration. Restor. Ecol. 2017, 25, 396–404. [Google Scholar] [CrossRef]
- Kildisheva, O.A.; Dixon, K.W.; Silveira, F.A.O.; Chapman, T.; Di Sacco, A.; Mondoni, A.; Turner, S.R.; Cross, A.T. Dormancy and germination: Making every seed count in restoration. Restor. Ecol. 2020, 28, S256–S265. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Breaking Seed Dormancy During Dry Storage: A Useful Tool or Major Problem for Successful Restoration via Direct Seeding? Plants 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Williams, D. Seeding. In The Tallgrass Prairie Center Guide to Prairie Restoration in the Upper Midwest; University of Iowa Press: Iowa City, IA, USA, 2010; pp. 56–72. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Groves, A.M.; Brudvig, L.A. Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restor. Ecol. 2019, 27, 128–137. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Madison, L.; Barnes, T.; Sole, J. Effectiveness of Fire, Disking, and Herbicide to Renovate Tall Fescue Fields to Northern Bobwhite Habitat. Wildl. Soc. Bull. 2001, 29, 706–712. [Google Scholar]
- Kubesch, J.O.C.; Greiner, S.P.; Pent, G.J.; Reid, J.L.; Tracy, B.F. Evaluating Different Methods to Establish Biodiverse Swards of Native Grasses and Wildflowers for Pasturelands. Agronomy 2024, 14, 1041. [Google Scholar] [CrossRef]
- Richard, M.P.; Morrison, J.I.; McCurdy, J.D. Effects of preemergence herbicides on establishment of little bluestem and sideoats grama golf course rough. Crop Forage Turfgrass Manag. 2020, 6, e20051. [Google Scholar] [CrossRef]
- Bratcher, C.B.; Dole, J.M.; Cole, J.C. Stratification improves seed germination of five native wildflower species. HortScience 1993, 28, 899–901. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Germinating seeds of wildflowers, an ecological perspective. HortTechnology 2004, 14, 467–473. [Google Scholar] [CrossRef]
- Vogel, K.P.; Masters, R.A. Frequency grid—A simple tool for measuring grassland establishment. Rangel. Ecol. Manag./J. Range Manag. Arch. 2001, 54, 653–655. [Google Scholar] [CrossRef]
- Linabury, M.C.; Turley, N.E.; Brudvig, L.A. Insects remove more seeds than mammals in first-year prairie restorations. Restor. Ecol. 2019, 27, 1300–1306. [Google Scholar] [CrossRef]
- Groves, A.M.; Bauer, J.T.; Brudvig, L.A. Lasting signature of planting year weather on restored grasslands. Sci. Rep. 2020, 10, 5953. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yuan, Z.; Luo, X.; Yang, L.; Chen, X.; Zhang, Z.; Wang, J.; Hu, X. Cold stratification requirements for seed dormancy-break differ in soil moisture content but not duration for alpine and desert species. Plant Soil 2022, 471, 393–407. [Google Scholar] [CrossRef]
- Bellangue, D. Native Forb Establishment in Tall Fescue-Dominated Cattle Pastures. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2023. [Google Scholar]
Kentland | ||||||
Mean Air Temp. (°C) | Total Precipitation (mm) | |||||
Month | 2021 | 2022 | 30 yr. mean | 2021 | 2022 | 30 yr. mean |
Jan. | 0.90 | −0.9 | 0.95 | 60.71 | 74.17 | 82.04 |
Feb. | 1.86 | 2.60 | 2.35 | 88.65 | 82.80 | 71.88 |
Mar. | 7.69 | 8.09 | 5.85 | 91.69 | 53.59 | 96.01 |
Apr. | 11.00 | 11.93 | 10.70 | 45.97 | 53.85 | 95.76 |
May | 15.42 | 17.44 | 15.10 | 43.69 | 140.21 | 113.54 |
June | 21.01 | 21.50 | 18.95 | 82.04 | 12.45 | 108.46 |
July | 22.34 | 23.21 | 20.85 | 64.77 | 115.82 | 106.93 |
Aug. | 22.55 | 21.70 | 20.20 | 96.27 | 63.25 | 90.68 |
Sept. | 18.24 | 17.50 | 17.15 | 120.40 | 64.52 | 87.63 |
Oct. | 14.72 | 10.08 | 11.60 | 41.15 | 46.48 | 73.91 |
Nov. | 4.45 | 7.48 | 6.35 | 22.35 | 48.77 | 72.39 |
Dec. | 5.83 | 1.47 | 2.55 | 19.05 | 81.28 | 83.82 |
Mean/Total | 12.17 | 11.83 | 11.05 | 776.73 | 837.18 | 1083.06 |
SVAREC | ||||||
Mean Air Temp. (°C) | Total Precipitation (mm) | |||||
Month | 2021 | 2022 | 30 yr. mean | 2021 | 2022 | 30 yr. mean |
Jan. | 1.51 | −0.80 | 2.1 | 44.45 | 63.25 | 80.01 |
Feb. | 0.80 | 3.02 | 3.5 | 68.07 | 90.42 | 70.10 |
Mar. | 8.51 | 8.12 | 7.15 | 72.39 | 61.21 | 89.40 |
April | 12.45 | 11.68 | 12.2 | 49.53 | 71.37 | 94.23 |
May | 15.86 | 16.58 | 16.55 | 80.77 | 139.95 | 104.39 |
June | 20.81 | 20.84 | 20.6 | 81.53 | 85.60 | 121.92 |
July | 23.50 | 22.95 | 22.65 | 47.75 | 128.78 | 104.14 |
Aug. | NA | 21.43 | 22 | NA | 171.45 | 84.07 |
Sept. | NA | 17.81 | 18.65 | NA | 79.50 | 93.21 |
Oct. | NA | 10.20 | 13 | NA | 69.34 | 77.72 |
Nov. | NA | 8.08 | 7.4 | NA | 96.27 | 82.04 |
Dec. | 6.83 | 1.23 | 3.65 | 6.35 | 105.41 | 88.13 |
Mean/Total | - | 11.76 | 12.45 | - | 1162.56 | 1089.36 |
Treatments | Herbicide Active Ingredient and Rate | General Action |
---|---|---|
Control/no vegetation suppression | --- | --- |
Tillage/no herbicide | --- | Physical vegetation suppression |
Pastora (Envu Environmental Science, Cary, NC, USA) | Nicosulfuron at 7.36 g active ingredient (ai)/ha + metsulfuron methyl at 1.97 g ai/ha | Broad spectrum, selective broadleaf weed and grass control |
Roundup (low rate) (Bayer Corp., Whippany, NJ, USA) | Glyphosate at 158 g acid equivalent (ae)/ha | Broad spectrum weed and grass suppression |
Roundup (Bayer Corp., Whippany, NJ, USA) | Glyphosate at 2.54 kg ae/ha | Broad spectrum weed and grass control |
Plateau (BASF Corp., Research Triangle Park, NC, USA) | Imazapic at 35.1 g ae/ha | Broad spectrum, selective broadleaf weed and grass control with residual effect |
Cimarron Plus (Envu Environmental Science, Cary, NC, USA) | Metsulfuron methyl at 6.72 g ai/ha + chlorsulfuron at 2.10 g ai/ha | Broad spectrum, selective broadleaf weed and grass control with residual effect |
Select Max (Valent USA, San Ramon, CA, USA) | Clethodim at 136 g ai/ha | Grass-selective postemergence herbicide |
Species | Code | Family | Seeds kg−1 | Pure Live Seed (PLS) | Seeding Rate (kg ha−1) |
---|---|---|---|---|---|
Agastache foeniculum | AGAFOE | Lamiaceae | 3,080,000 | 0.99 | 0.03 |
Chamaecrista fasciculata | CHAFAS | Fabaceae | 143,000 | 0.97 | 0.78 |
Coreopsis lanceolata | CORLAN | Asteraceae | 486,200 | 0.83 | 0.22 |
Dalea candida | DALCAN | Fabaceae | 611,600 | 0.75 | 0.22 |
Dalea purpurea | DALPUR | Fabaceae | 660,000 | 0.91 | 0.11 |
Desmanthus illinoiensis | DESILL | Fabaceae | 187,000 | 0.59 | 0.56 |
Desmodium canadense | DESCAN | Fabaceae | 159,500 | 0.93 | 0.11 |
Desmodium paniculatum | DEAPAN | Fabaceae | 440,000 | 0.96 | 0.22 |
Echinacea purpurea | ECHPUR | Asteraceae | 254,460 | 0.91 | 0.44 |
Gaillardia pulchella | GAIPUL | Asteraceae | 506,000 | 0.91 | 0.22 |
Helianthus maximiliani | HELMAX | Asteraceae | 431,992 | 0.79 | 0.22 |
Heliopsis helianthoides | HELHEL | Asteraceae | 224,400 | 0.92 | 0.44 |
Lespedeza capitata | LESCAP | Fabaceae | 605,000 | 0.95 | 0.22 |
Lespedeza virginica | LESVIR | Fabaceae | 352,000 | 0.98 | 0.33 |
Ratibida columnifera | RATCOL | Asteraceae | 1,478,400 | 0.89 | 0.11 |
Ratibida pinnata | RATPIN | Asteraceae | 978,942 | 0.95 | 0.11 |
Rudbeckia hirta | RUDHIR | Asteraceae | 3,466,672 | 0.89 | 0.03 |
Silphium perfoliatum | SILPER | Asteraceae | 220,000 | 0.90 | 0.44 |
Silphium terebinthinaceum | SILTER | Asteraceae | 37,400 | 0.78 | 2.90 |
Solidago canadensis | SOLCAN | Asteraceae | 10,120,000 | 0.57 | 0.01 |
Species | Code | Family | Seeds kg−1 |
---|---|---|---|
Bouteloua curtipendula | BOUCUR | Poaceae | 349,800 |
Coreopsis lanceolata | CORLAN | Asteraceae | 486,200 |
Dalea purpurea | DALPUR | Fabaceae | 660,000 |
Desmanthus illinoensis | DESILL | Fabaceae | 187,000 |
Eryngium yuccifolium | ERYYUC | Apiaceae | 391,600 |
Heliopsis helianthoides | HELHEL | Asteraceae | 224,400 |
Lespedeza virginica | LESVIR | Fabaceae | 352,000 |
Pycnanthemum virginianum | PYCVIR | Lamiaceae | 8,518,400 |
Rudbeckia hirta | RUDHIR | Asteraceae | 3,466,672 |
Schizachyrium scoparium | SCHSCO | Poaceae | 530,200 |
Senna hebecarpa | SENHEB | Fabaceae | 44,000 |
Solidago juncea | SOLJUN | Asteraceae | 5,583,600 |
Symphyotrichum lateriflorum | SYMLAT | Asteraceae | 1,760,000 |
Tradescantia ohiensis | TRAOHI | Commelinaceae | 281,600 |
Tridens flavus | TRIFLA | Poaceae | 1,023,000 |
Zizia aurea | ZIZAUR | Apiaceae | 378,400 |
Model | Parameters | Estimate | SE | Z | p-Value |
---|---|---|---|---|---|
Forb Stem Density (stems per m2) | Control | −0.405 | 0.645 | −0.445 | 0.6550 |
Cimmaron | −1.297 | 0.911 | −2.011 | 0.0440 | |
Pastora | 1.203 | 0.656 | 1.832 | 0.0660 | |
Plateau | 3.319 | 0.586 | 5.661 | <0.0001 | |
Glyphosate (full rate) | 3.270 | 0.586 | 5.572 | <0.0001 | |
Glyphosate (half rate) | 3.075 | 0.589 | 5.219 | <0.0001 | |
Select Max | 3.877 | 0.582 | 6.662 | <0.0001 | |
Tillage | 3.898 | 0.581 | 6.699 | <0.0001 | |
Planting Date (PD) | 2.119 | 0.609 | 3.477 | 0.0005 | |
PD × Cimmaron | 0.821 | 0.353 | 2.328 | 0.0199 | |
PD × Pastora | −1.092 | 0.712 | −1.531 | 0.1250 | |
PD × Plateau | −4.459 | 0.712 | −6.255 | <0.0001 | |
PD × Glyphosate (full rate) | −1.034 | 0.623 | −1.659 | 0.0971 | |
PD × Glyphosate (low rate) | −3.349 | 0.662 | −5.053 | <0.0001 | |
PD × Select Max | −4.899 | 0.699 | −7.004 | <0.0001 | |
PD × Tillage | −3.146 | 0.630 | −4.993 | <0.0001 | |
Forb Species Richness | Control | −0.405 | 0.907 | −0.447 | 0.6550 |
Cimmaron | −1.149 | 0.612 | −1.875 | 0.0600 | |
Pastora | 0.287 | 0.759 | 0.379 | 0.7040 | |
Plateau | 2.397 | 0.599 | 3.998 | <0.0001 | |
Glyphosate (full rate) | 2.197 | 0.605 | 3.630 | 0.0002 | |
Glyphosate (low rate) | 2.159 | 0.606 | 3.561 | 0.0003 | |
Select Max | 2.427 | 0.599 | 4.053 | <0.0001 | |
Tillage | 2.456 | 0.598 | 4.106 | <0.0001 | |
Planting Date (PD) | 1.299 | 0.647 | 2.006 | 0.0440 | |
PD × Cimmaron | 0.150 | 0.368 | 0.408 | 0.6833 | |
PD × Pastora | 0.147 | 0.851 | 0.173 | 0.8620 | |
PD × Plateau | −3.004 | 0.783 | −3.832 | 0.0001 | |
PD × Glyphosate (full rate) | −0.606 | 0.688 | −0.880 | 0.378 | |
PD × Glyphosate (half rate) | −2.254 | 0.746 | −3.022 | 0.0025 | |
PD × Select Max | −3.216 | 0.804 | −4.000 | <0.0001 | |
PD × Tillage | −1.910 | 0.707 | −2.702 | 0.0069 |
Model | Parameters | Estimates | SE | df | t Value | p-Value |
---|---|---|---|---|---|---|
Forb Stem Density (stems per m2) | Seeding rate | 1.524 | 0.289 | 40 | 1.357 | <0.0001 |
Cold stratification | 36.08 | 11.85 | 40 | 3.046 | 0.0040 | |
Forb Species Richness | Seeding rate | 0.004 | 0.009 | 40 | 0.415 | 0.6810 |
Cold stratification | 0.041 | 0.408 | 40 | 0.102 | 0.9190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellangue, D.; Barney, J.; Flessner, M.; Kubesch, J.; O’Rourke, M.; Tracy, B.; Reid, J.L. Site Preparation and Planting Strategies to Improve Native Forb Establishment in Pasturelands. Agronomy 2024, 14, 2676. https://doi.org/10.3390/agronomy14112676
Bellangue D, Barney J, Flessner M, Kubesch J, O’Rourke M, Tracy B, Reid JL. Site Preparation and Planting Strategies to Improve Native Forb Establishment in Pasturelands. Agronomy. 2024; 14(11):2676. https://doi.org/10.3390/agronomy14112676
Chicago/Turabian StyleBellangue, David, Jacob Barney, Michael Flessner, Jonathan Kubesch, Megan O’Rourke, Benjamin Tracy, and John Leighton Reid. 2024. "Site Preparation and Planting Strategies to Improve Native Forb Establishment in Pasturelands" Agronomy 14, no. 11: 2676. https://doi.org/10.3390/agronomy14112676
APA StyleBellangue, D., Barney, J., Flessner, M., Kubesch, J., O’Rourke, M., Tracy, B., & Reid, J. L. (2024). Site Preparation and Planting Strategies to Improve Native Forb Establishment in Pasturelands. Agronomy, 14(11), 2676. https://doi.org/10.3390/agronomy14112676