The Assessment of the Spatiotemporal Characteristics of Net Water Erosion and Its Driving Factors in the Yellow River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Flowchart
2.2. Data
2.3. Modified RUSLE-TLSD Model
2.3.1. Modified RUSLE Model
2.3.2. Transport-Limited Sediment Delivery
2.4. Terrain Niche Index
2.5. Optimal Parameters-Based Geographical Detector
2.6. Model Accuracy Evaluation
3. Results
3.1. Model Modification and Verification
3.2. Model Factor Characteristics
3.3. Spatiotemporal Distribution of Net Water Erosion
3.3.1. Annual Changes of Net Water Erosion Spatiotemporal Pattern
3.3.2. Monthly Changes in Net Water Erosion
3.4. Driving Forces of Net Water Erosion
4. Discussion
4.1. Model Availability and Error Sources Analysis
4.2. In-Depth Analysis of Net Water Erosion Pattern and Driving Factors
4.3. Policy Implications
4.4. Limitations and Research Prospects
5. Conclusions
- (1)
- The M factor is explored for model correction based on soil thickness data and sediment observation data, and the modified RUSLE-TLSD model achieved sufficient accuracy in the YRB. The NSE values at calibration station and verification station increase to 0.5766 and 0.5369, respectively.
- (2)
- The net water erosion rate within the YRB fluctuates between 1.62 t/(ha·a) and 5.33 t/(ha·a) from 2000 to 2020. Furthermore, the multi-year average net water erosion rates are 3.12 t/(ha·a) for the YRB, 1.66 t/(ha·a) for the UYRB, and 5.27 t/(ha·a) for the MYRB. On an annual scale, net water erosion rates display an overall decrease within the YRB and UYRB, while within the UYRB, they experience an overall increase trend. The period from June to August shows the highest intensity of water erosion. Spatially, regions with pronounced erosion intensity are primarily concentrated on the Loess Plateau. The Hetao Palin and Guanzhong Plain, as important areas for grain cultivation, are mainly characterized by sediment deposition.
- (3)
- Over the period from 2000 to 2020, the explanatory power of the driving forces behind net water erosion displayed a trend of decreasing fluctuations. The multi-year average value of the factor detection results indicates that, in the YRB, UYRB, MYRB, UYRB_TNI, and MYRB_TNI, slope (10.84%), soil thickness (7.71%), NDVI (13.62%), slope (15.46%), and NDVI (34.89%), respectively, exert the strongest explanatory influence on net water erosion. In the UYRB, terrain-related factors dominate in terms of shaping the spatial framework of net water erosion, whereas in the MYRB, human activities play a more significant role. The interactions between NDVI and slope have a dominant impact on net water erosion and can explain 22.71–52.83% of net water erosion. In addition, the redistribution of precipitation by vegetation and terrain greatly limits the impact of precipitation on the net water erosion space pattern in the YRB.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Hu, C.; Zhang, X.; Lv, X.; Yin, X.; Wang, Z. Response of sediment discharge to soil erosion control in the middle reaches of the Yellow River. Catena 2021, 203, 105330. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.J.; Zhao, W.W.; Chen, L.D.; Zhang, Q.J.; Lü, Y.H.; Gulinck, H.; Poesen, J. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degrad. Dev. 2005, 16, 73–85. [Google Scholar] [CrossRef]
- Guo, X.J.; Shao, Q.Q. Spatial Pattern of Soil Erosion Drivers and the Contribution Rate of Human Activities on the Loess Plateau from 2000 to 2015: A Boundary Line from Northeast to Southwest. Remote Sens. 2019, 11, 2429. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Zhao, G.; Holden, J.; Liu, B.; Chan, F.K.S.; Hu, J.; Wu, P.; Mu, X. Determining the drivers and rates of soil erosion on the Loess Plateau since 1901. Sci. Total Environ. 2022, 823, 153674. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Alexandridis, T.K.; Sotiropoulou, A.M.; Bilas, G.; Karapetsas, N.; Silleos, N.G. The Effects of Seasonality in Estimating the C-Factor of Soil Erosion Studies. Land Degrad. Dev. 2015, 26, 596–603. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Shi, P.J.; Jia, Z.W. Slope Length Effects on Soil Loss for Steep Slopes. Soil Sci. Soc. Am. J. 2000, 64, 1759–1763. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Williams, J.R. The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History. Philos. Trans. Biol. Sci. 1990, 329, 421–428. [Google Scholar]
- Van Oost, K.; Govers, G.; Desmet, P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc. Ecol. 2000, 15, 577–589. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Jain, M.K.; Das, D. Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing. Water Resour. Manag. 2010, 24, 2091–2112. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, B. Assessing sedimentological connectivity using WATEM/SEDEM model in a hilly and gully watershed of the Loess Plateau, China. Ecol. Indic. 2016, 66, 259–268. [Google Scholar] [CrossRef]
- Yan, X.-Q.; Jiao, J.-Y.; Tang, B.-Z.; Liang, Y.; Wang, Z.-J. Assessing sediment connectivity and its spatial response on land use using two flow direction algorithms in the catchment on the Chinese Loess Plateau. J. Mt. Sci. 2022, 19, 1119–1138. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, P.; Tian, P.; Sun, W.; Hu, J.; Mu, X. Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China. Catena 2020, 185, 104284. [Google Scholar] [CrossRef]
- Pal, D.; Galelli, S.; Tang, H.; Ran, Q. Toward improved design of check dam systems: A case study in the Loess Plateau, China. J. Hydrol. 2018, 559, 762–773. [Google Scholar] [CrossRef]
- Zhang, Z.; Lyu, M.; Wang, Y.; Ma, Z.; Gao, Z. Simulation and Space Driving Force Analysis of Soil Erosion and Sediment Production in Taohe Source Area Based on WaTEM/SEDEM Model. Res. Soil Water Conserv. 2023, 30, 27–36. [Google Scholar] [CrossRef]
- Li, H.; Guan, Q.; Sun, Y.; Wang, Q.; Liang, L.; Ma, Y.; Du, Q. Spatiotemporal analysis of the quantitative attribution of soil water erosion in the upper reaches of the Yellow River Basin based on the RUSLE-TLSD model. Catena 2022, 212, 106081. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramji, K.P. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geosci. Front. 2018, 9, 893–906. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramji, K.P. Estimation of soil erosion in a rain shadow river basin in the southern Western Ghats, India using RUSLE and transport limited sediment delivery function. Int. Soil Water Conserv. Res. 2018, 6, 111–122. [Google Scholar] [CrossRef]
- Aswathi, J.; Sajinkumar, K.S.; Rajaneesh, A.; Oommen, T.; Bouali, E.H.; Binoj Kumar, R.B.; Rani, V.R.; Thomas, J.; Thrivikramji, K.P.; Ajin, R.S.; et al. Furthering the precision of RUSLE soil erosion with PSInSAR data: An innovative model. Geocarto Int. 2022, 37, 16108–16131. [Google Scholar] [CrossRef]
- Lin, J.; Guan, Q.; Tian, J.; Wang, Q.; Tan, Z.; Li, Z.; Wang, N. Assessing temporal trends of soil erosion and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model. Catena 2020, 195, 104756. [Google Scholar] [CrossRef]
- Meyer, L.D.; Wischmeier, W.H. Mathematical Simulation of the Process of Soil Erosion by Water. Trans. ASAE 1969, 12, 754–758. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Nie, J.; Stevens, T.; Rittner, M.; Stockli, D.; Garzanti, E.; Limonta, M.; Bird, A.; Andò, S.; Vermeesch, P.; Saylor, J.; et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nat. Commun. 2015, 6, 8511. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A. Yellow River erosion. Nat. Geosci. 2014, 7, 249. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, Y.; Liu, X.; He, X. Failure criteria of the warping dams on sediment interception in the Middle Yellow River in northern Shaanxi. Acta Geogr. Sin. 2014, 69, 73–79. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, B.; Lu, Y.F.; Zhang, R.; Zhang, D.F.; Zhen, X.Y.; Chen, S.T.; Wu, H.W.; Wei, C.X.; Yang, L.A.; et al. Spatial-temporal evolution patterns of soil erosion in the Yellow River Basin from 1990 to 2015: Impacts of natural factors and land use change. Geomat. Nat. Hazards Risk 2021, 12, 103–122. [Google Scholar] [CrossRef]
- Yin, S.; Gao, G.; Ran, L.; Li, D.; Lu, X.; Fu, B. Extreme streamflow and sediment load changes in the Yellow River Basin: Impacts of climate change and human activities. J. Hydrol. 2023, 619, 129372. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.X.; Zhang, G.-L. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Chang, J.; Huang, Y. Multiscale Spatiotemporal Characteristics of Soil Erosion and Its Influencing Factors in the Yellow River Basin. Water 2022, 14, 2658. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, Y.; Liu, B. Estimation of rainfall erosivity using rainfall amount and rainfall intensity. Geogr. Res. 2002, 21, 384–390. [Google Scholar]
- Fu, S.; Liu, B.; Zhou, G.; Sun, Z.; Zhu, X. Calculation tool of topographic factors. Sci. Soil Water Conserv. 2015, 13, 105–110. [Google Scholar]
- Cai, C.F.; Ding, S.W.; Shi, Z.H.; Huang, L.; Zhang, G.Y. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed. J. Soil Water Conserv. 2000, 14, 19–24. [Google Scholar]
- Kang, L.; Zhao, T.; Gan, Y.; Sun, J.; Wang, J. Spatial and temporal patterns of soil erosion in the Tibetan Plateau from 1984 to 2013. Chin. J. Appl. Environ. Biol. 2018, 24, 245–253. [Google Scholar] [CrossRef]
- Liu, B.; Xie, Y.; Li, Z.; Liang, Y.; Zhang, W.; Fu, S.; Yin, S.; Wei, X.; Zhang, K.; Wang, Z.; et al. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Fu, Z.; Li, Z.; Cai, C.; Shi, Z.; Xu, Q.; Wang, X. Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective. Geoderma 2011, 167–168, 41–53. [Google Scholar] [CrossRef]
- Tarboton, D.G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 1997, 33, 309–319. [Google Scholar] [CrossRef]
- Tarboton, D. Terrain Analysis Using Digital Elevation Models in Hydrology. 2003. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=df790ddb343fb2725784e60d72d67d6c39fc0378 (accessed on 1 September 2022).
- Verstraeten, G.; Prosser, I.P.; Fogarty, P. Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. J. Hydrol. 2007, 334, 440–454. [Google Scholar] [CrossRef]
- Li, Z.J.; Xu, Y.L.; Wang, H.J.; Ma, L.; Jiang, A.X. Modeling soil erosion and sediment yield using WaTEM/SEDEM for Yihe River Basin. Geogr. Res. 2021, 40, 2380–2396. [Google Scholar] [CrossRef]
- Wu, J.; Wang, G.; Chen, W.; Pan, S.; Zeng, J. Terrain gradient variations in the ecosystem services value of the Qinghai-Tibet Plateau, China. Glob. Ecol. Conserv. 2022, 34, e02008. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, J.; Tan, M.L.; Lu, P.; Xue, Z.; Liu, M.; Wang, X. Impacts of vegetation restoration on soil erosion in the Yellow River Basin, China. Catena 2024, 234, 107547. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, C.; Cai, Y.; Yang, Z.; Yi, Y. NDVI dynamics under changing meteorological factors in a shallow lake in future metropolitan, semiarid area in North China. Sci. Rep. 2018, 8, 15971. [Google Scholar] [CrossRef]
- Yue, T.; Yin, S.; Xie, Y.; Yu, B.; Liu, B. Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records. Earth Syst. Sci. Data 2022, 14, 665–682. [Google Scholar] [CrossRef]
- Yin, S.; Xue, X.; Yue, T.; Xie, Y.; Gao, G. Spatiotemporal distribution and return period of rainfall erosivity in China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 105–113. [Google Scholar]
- Macedo, P.M.S.; Oliveira, P.T.S.; Antunes, M.A.H.; Durigon, V.L.; Fidalgo, E.C.C.; Carvalho, D.F.d. New approach for obtaining the C-factor of RUSLE considering the seasonal effect of rainfalls on vegetation cover. Int. Soil Water Conserv. Res. 2021, 9, 207–216. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Lv, D.; Yin, S.; Zhang, M.; Zhu, Q.; Yu, Q.; Liu, B. Remote sensing estimation of the soil erosion cover-management factor for China’s Loess Plateau. Land Degrad. Dev. 2020, 31, 1942–1955. [Google Scholar] [CrossRef]
- Mohamadi, M.A.; Kavian, A. Effects of rainfall patterns on runoff and soil erosion in field plots. Int. Soil Water Conserv. Res. 2015, 3, 273–281. [Google Scholar] [CrossRef]
- Ke, Q.; Zhang, K. Interaction effects of rainfall and soil factors on runoff, erosion, and their predictions in different geographic regions. J. Hydrol. 2022, 605, 127291. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, H.; Wang, J.; Wang, X.; Sun, J. Dual Influence of Climate Change and Anthropogenic Activities on the Spatiotemporal Vegetation Dynamics Over the Qinghai-Tibetan Plateau From 1981 to 2015. Earth’s Future 2022, 10, e2021EF002566. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C.; Wang, D.; Wang, L.; Tang, C. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecol. Eng. 2019, 132, 109–114. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Bai, Z.; Lv, C. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. CATENA 2015, 128, 44–53. [Google Scholar] [CrossRef]
- Yin, Z.; Chang, J. Analysis of Soil Erosion and Its Driving Factors in the Yellow River Basin from 2000 to 2020. J. Xi’an Univ. Technol. 2023, 39, 360–368. Available online: https://link.cnki.net/doi/10.19322/j.cnki.issn.1006-4710.2023.03.007 (accessed on 4 December 2023).
- Guo, L.J.; Liu, R.M.; Men, C.; Wang, Q.R.; Miao, Y.X.; Shoaib, M.; Wang, Y.F.; Jiao, L.J.; Zhang, Y. Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion. Sci. Total Environ. 2021, 779, 146474. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Wu, X.; Wang, H.; Bi, N.; Xu, J.; Nittrouer, J.A.; Yang, Z.; Lu, T.; Li, P. Impact of Artificial Floods on the Quantity and Grain Size of River-Borne Sediment: A Case Study of a Dam Regulation Scheme in the Yellow River Catchment. Water Resour. Res. 2021, 57, e2021WR029581. [Google Scholar] [CrossRef]
Dataset | Resolution | Source | Purpose |
---|---|---|---|
Basic boundary dataset of soil and water conservation in the Yellow River Basin | - | National Cryosphere Desert Data Center (http://www.ncdc.ac.cn, accessed on 26 August 2022) | Define the study’s scope. |
Meteorological data | - | China Meteorological Information Center (https://data.cma.cn/, accessed on 10 August 2021) | Calculating R Factor, etc. |
Hydrological stations sediment observation data | - | Ministry of Water Resources of the People’s Republic of China (http://www.mwr.gov.cn/sj/#tjgb, accessed on 30 October 2022) | Model calibration and validation. |
ASTER GDEM V3.0 | 30 m | Geospatial Data Cloud (https://www.gscloud.cn/, accessed on 18 January 2022) | Calculation of the LS factor, As, etc. |
MOD13Q1 V006 | 250 m | NASA Earth Science Data Systems (https://www.earthdata.nasa.gov/, accessed on 6 October 2022) | Calculation of the C factor, etc. |
Grid Data on Soil Erodibility in China | 30 m | Loess Plateau Data Center, National Earth System Science Data Center (http://loess.geodata.cn, accessed on 12 December 2022) | Extracting the K factor. |
Soil Map-Based Harmonized World Soil Database (v1.2) | 1 km | National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn/, accessed on 17 April 2022) | Exploring the effect of soil type on erosion |
China land cover dataset | 30 m | Zenode (https://doi.org/10.5281/zenodo.4417810, accessed on 9 April 2023) | Calculation of P factor, etc. |
Soil thickness map | 90 m | Soil Sub Center, National Earth System Science Data Center (http://soil.geodata.cn, accessed on 12 May 2023) | Calculation of T factor, etc. |
LUCC Type | Cropland | Forest | Shrub | Grassland | Water | Sonw/Ice | Barren | Impervious | Wetland |
---|---|---|---|---|---|---|---|---|---|
p Value | 0.2 + 0.03 × s | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Zuo, Y.; Xu, X.; Chang, J.; Lu, M.; Liu, W. The Assessment of the Spatiotemporal Characteristics of Net Water Erosion and Its Driving Factors in the Yellow River Basin. Agronomy 2024, 14, 2677. https://doi.org/10.3390/agronomy14112677
Yin Z, Zuo Y, Xu X, Chang J, Lu M, Liu W. The Assessment of the Spatiotemporal Characteristics of Net Water Erosion and Its Driving Factors in the Yellow River Basin. Agronomy. 2024; 14(11):2677. https://doi.org/10.3390/agronomy14112677
Chicago/Turabian StyleYin, Zuotang, Yanlei Zuo, Xiaotong Xu, Jun Chang, Miao Lu, and Wei Liu. 2024. "The Assessment of the Spatiotemporal Characteristics of Net Water Erosion and Its Driving Factors in the Yellow River Basin" Agronomy 14, no. 11: 2677. https://doi.org/10.3390/agronomy14112677
APA StyleYin, Z., Zuo, Y., Xu, X., Chang, J., Lu, M., & Liu, W. (2024). The Assessment of the Spatiotemporal Characteristics of Net Water Erosion and Its Driving Factors in the Yellow River Basin. Agronomy, 14(11), 2677. https://doi.org/10.3390/agronomy14112677