Cowpea (Vigna unguiculata) Cultivation and Breeding in the Republic of Korea: Advances and Future Perspectives
Abstract
:1. Introduction
2. Nutrition and Consumption of Cowpeas in Korea
3. The State of Cowpea Cultivation, Constraints, and Breeding in Korea
4. Cowpea Breeding in the Republic of Korea
5. Cowpea Germplasm Collection, Conservation, and Evaluation Efforts in Korea
6. Research Advances of Cowpeas in the Republic of Korea
7. Potential Priority Traits for New Variety Development in the Republic of Korea
7.1. Yield Improvement
7.2. Drought Tolerance
7.3. Pest and Disease Resistance
7.4. Nitrogen Fixation and Soil Improvement
7.5. Adaptation to Mechanical Harvesting
7.6. Seed Quality and Nutritional Value
7.6.1. Seed Size and Color
7.6.2. Nutritional Composition and Anti-Nutritional Factors
7.6.3. Functional Properties
7.6.4. Conclusion and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kebede, E.; Bekeko, Z. Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food Agric. 2020, 6, 1769805. [Google Scholar] [CrossRef]
- Singh, B. Cowpea: The Food Legume of the 21st Century; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 164. [Google Scholar]
- Abebe, B.K.; Alemayehu, M.T. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J. Agric. Food Res. 2022, 10, 100383. [Google Scholar] [CrossRef]
- Mndzebele, B.; Ncube, B.; Nyathi, M.; Kanu, S.A.; Fessehazion, M.; Mabhaudhi, T.; Amoo, S.; Modi, A.T. Nitrogen fixation and nutritional yield of cowpea-amaranth intercrop. Agronomy 2020, 10, 565. [Google Scholar] [CrossRef]
- Bolarinwa, K.; Ogunkanmi, L.; Ogundipe, O.; Agboola, O.; Amusa, O. An investigation of cowpea production constraints and preferences among small holder farmers in Nigeria. GeoJournal 2022, 87, 2993–3005. [Google Scholar] [CrossRef]
- Horn, L.N.; Shimelis, H. Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Ann. Agric. Sci. 2020, 65, 83–91. [Google Scholar] [CrossRef]
- Mekonnen, T.W.; Gerrano, A.S.; Mbuma, N.W.; Labuschagne, M.T. Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: Progress, opportunities, and challenges. Plants 2022, 11, 1583. [Google Scholar] [CrossRef]
- Lee, J.; Baek, H.-J.; Yoon, M.-S.; Park, S.-K.; Cho, Y.-H.; Kim, C.-Y. Analysis of genetic diversity of cowpea landraces from Korea determined by Simple Sequence Repeats and establishment of a core collection. Korean J. Breed. Sci. 2009, 41, 369. [Google Scholar]
- Sodedji, K.A.F.; Assogbadjo, A.E.; Lee, B.; Kim, H.-Y. An Integrated Approach for Biofortification of Carotenoids in Cowpea for Human Nutrition and Health. Plants 2024, 13, 412. [Google Scholar] [CrossRef]
- Happy, K.; Gang, R.; Ban, Y.; Yang, S.; Rahmat, E.; Okello, D.; Komakech, R.; Cyrus, O.; David, K.O.; Kang, Y. Agricultural sustainability through smart farming systems: A comparative analysis between the Republic of Korea and Republic of Uganda. J. Plant Biotechnol. 2024, 51, 167–201. [Google Scholar] [CrossRef]
- Odey, G.; Adelodun, B.; Cho, G.; Lee, S.; Adeyemi, K.A.; Choi, K.S. Modeling the influence of seasonal climate variability on soybean yield in a temperate environment: South Korea as a case study. Int. J. Plant Prod. 2022, 16, 209–222. [Google Scholar] [CrossRef]
- Kim, D.-K.; Son, D.-M.; Choi, J.-G.; Shin, H.-R.; Choi, K.-J.; Lee, J.; Lee, K.-D.; Rim, Y.-S. Agronomic characteristics and seed quality of cowpea (Vigna unguiculata L.) germplasm. Korean J. Crop Sci. 2013, 58, 1–7. [Google Scholar] [CrossRef]
- Hoehnel, A.; Zannini, E.; Arendt, E.K. Targeted formulation of plant-based protein-foods: Supporting the food system’s transformation in the context of human health, environmental sustainability and consumer trends. Trends Food Sci. Technol. 2022, 128, 238–252. [Google Scholar] [CrossRef]
- Affrifah, N.S.; Phillips, R.D.; Saalia, F.K. Cowpeas: Nutritional profile, processing methods and products—A review. Legume Sci. 2022, 4, e131. [Google Scholar] [CrossRef]
- Kim, D.-K.; Choi, J.-G.; Kim, S.-G.; Lee, K.-D.; Seo, M.-J.; Kang, B.-K.; Ha, T.-J. A description of plant and seed morphology of the cowpea cultivar ‘Seonhyeon’. Korean Soc. Breed. Sci. 2019, 51, 209–213. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.H.; Lee, B.W.; Lee, Y.Y.; Jeon, Y.H.; Lee, B.K.; Woo, K.S. Quality and physicochemical characteristics of the Korean cowpea cultivars grown in different seeding periods. Korean J. Food Nutr. 2018, 31, 502–510. [Google Scholar]
- Kim, D.-K.; Son, D.-M.; Lee, K.-D.; Rim, Y.-S.; Chung, J.-S. Effects of sowing date on agronomic characteristics of intermediate-erect type cowpea grown in plastic greenhouse. Korean J. Crop Sci. 2014, 59, 470–476. [Google Scholar] [CrossRef]
- Lyu, H.-J.; Suk, O.M. Quality characteristics of Omija jelly prepared with various starches by the addition of oil and chitosan. Korean J. Food Cook. Sci. 2005, 21, 877–887. [Google Scholar]
- Kim, Y.-y.; Woo, K.S.; Chung, H.-J. Starch characteristics of cowpea and mungbean cultivars grown in Korea. Food Chem. 2018, 263, 104–111. [Google Scholar] [CrossRef]
- Seo, E.; Kim, K.; Jun, T.-H.; Choi, J.; Kim, S.-H.; Muñoz-Amatriaín, M.; Sun, H.; Ha, B.-K. Population structure and genetic diversity in Korean cowpea germplasm based on SNP markers. Plants 2020, 9, 1190. [Google Scholar] [CrossRef]
- Choi, J.; Kim, D.-K.; Song, S.; Kim, N. A New Cowpea Cultivar ‘Okhyun’ with Green Cotyledons and a Black Seed Coat. In Proceedings of the Korean Society of Crop Science Conference, Yeosu, Republic of Korea, 20–21 April 2023; p. 142. [Google Scholar]
- Choi, J.; Kim, D.-K.; Seo, M.-j.; Kang, B. A New Cowpea Cultivar ‘Jang-alchan’ with Mechanization Harvesting and High Yield. In Proceedings of the Korean Society of Crop Science Conference, Seoul, Republic of Korea, 13–14 October 2022; p. 193. [Google Scholar]
- Kim, D.-K.; Choi, J.-G.; Kwon, O.-D.; Lee, K.-D.; Ryu, K.-I. Cowpea cultivar, ‘Okdang’, with an intermediate plant habit and erect plant type. Korean Soc. Breed. Sci. 2018, 50, 319–323. [Google Scholar] [CrossRef]
- Ochar, K.; Kim, S.-H. Conservation and Global Distribution of Onion (Allium cepa L.) Germplasm for Agricultural Sustainability. Plants 2023, 12, 3294. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Subramanian, P.; Na, Y.-W.; Hahn, B.-S.; Kim, Y. RDA-Genebank and Digital Phenotyping for Next-Generation Research on Plant Genetic Resources. Plants 2023, 12, 2825. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Subramanian, P.; Hahn, B.-S. Digital Phenotyping for Next-Generation Research on Plant Genetic Resources: The Case of RDA-Genebank. Plant Sci. 2023. [Google Scholar] [CrossRef]
- Yoon, M.-S.; Lee, J.; Kim, C.-Y.; Baek, H.-J.; Cho, E.-G. Taxonomic review and genetic diversity of cowpea species and related taxa. Kor. J. Breed. Sci. 2005, 37, 187–191. [Google Scholar]
- Kang, R.; Seo, E.; Kim, G.; Park, A.; Kim, W.J.; Kang, S.-Y.; Ha, B.-K. Radio sensitivity of cowpea plants after gamma-ray and proton-beam irradiation. Plant Breed. Biotechnol. 2020, 8, 281–292. [Google Scholar] [CrossRef]
- Kang, R.; Seo, E.; Park, A.; Kim, W.J.; Kang, B.H.; Lee, J.-H.; Kim, S.H.; Kang, S.-Y.; Ha, B.-K. A comparison of the transcriptomes of cowpeas in response to two different ionizing radiations. Plants 2021, 10, 567. [Google Scholar] [CrossRef]
- Kim, J.; Ko, M.; Chang, K. Studies on Genetic Analysis by the Diallel Crosses in F2 Generation of Cowpea (Vigna sinensis savi.). Korean J. Crop Sci. 1983, 28, 216–226. [Google Scholar]
- Kim, D.-K.; Kim, Y.-S.; Park, H.-G.; Kwon, O.-D.; Shin, H.-R.; Choi, K.-J.; Lee, K.-D.; Rim, Y.-S. Proper sowing time and planting density of intermediate-erect type cowpea strains for labor-saving cultivation. Korean J. Crop Sci. 2014, 59, 325–331. [Google Scholar] [CrossRef]
- Lee, K.-H. Comparison of weed occurrence and growth of some leguminous plants for green manure cover crop during summer fallow. Korean J. Crop Sci. 2007, 52, 169–175. [Google Scholar]
- Kim, S.; Cha, Y.; Cho, J.; Youn, K.; Park, S. Variations of morphological traits, yield and yield components on different seeding dates of cowpea. Korean J. Crop Sci. 1985, 30, 419–426. [Google Scholar] [CrossRef]
- Lee, S. Studies on corn-legume intercropping systems. I. Growth characteristics, dry matter and organic matter yield of corn (Zea mays L.)-cowpea (Vigna sinensis King) intercropping. J. Korean Soc. Grassl. Sci. 1988, 8, 47–54. [Google Scholar]
- Lee, S.-K. Studies on Corn-Legume Intercropping System II. Effect of corn-cowpea intercropping system on chemical composition and yield. J. Korean Soc. Grassl. Forage Sci. 1988, 8, 128–134. [Google Scholar]
- Jeong, D.; Chung, H.-J. Physical, textural and sensory characteristics of legume-based gluten-free muffin enriched with waxy rice flour. Food Sci. Biotechnol. 2019, 28, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, H.-J.; Lee, B.W.; Lee, Y.Y.; Lee, B.K.; Woo, K.S. Effect of germination and roasting treatment on the quality and physicochemical characteristics of cowpea flour. J. Korean Soc. Food Sci. Nutr. 2018, 47, 288–297. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, T.H.; Cui, E.-J.; Baek, N.-I.; Hong, S.G.; Chung, I.-S.; Kim, J. Anti-inflammatory effects of cowpea (Vigna sinensis K.) seed extracts and its bioactive compounds. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 710–717. [Google Scholar] [CrossRef]
- Ha, T.J.; Lee, M.-H.; Jeong, Y.N.; Lee, J.H.; Han, S.-I.; Park, C.-H.; Pae, S.-B.; Hwang, C.-D.; Baek, I.-Y.; Park, K.-Y. Anthocyanins in cowpea [Vigna unguiculata (L.) Walp. ssp. unguiculata]. Food Sci. Biotechnol. 2010, 19, 821–826. [Google Scholar] [CrossRef]
- Kim, S.; Cha, Y.; Cho, J.; Kwun, K.; Son, S.; Park, S. Changes in development and nutrient composition of pod after flowering in cowpea (Vigna unguiculata (L) Walp). Korean J. Crop Sci. 1986, 31, 68–73. [Google Scholar]
- Diers, B.W.; Specht, J.; Rainey, K.M.; Cregan, P.; Song, Q.; Ramasubramanian, V.; Graef, G.; Nelson, R.; Schapaugh, W.; Wang, D. Genetic architecture of soybean yield and agronomic traits. G3 Genes Genomes Genet. 2018, 8, 3367–3375. [Google Scholar] [CrossRef]
- Aliyu, O.M.; Makinde, B.O. Phenotypic analysis of seed yield and yield components in cowpea (Vigna unguiculata L., Walp). Plant Breed. Biotechnol. 2016, 4, 252–261. [Google Scholar] [CrossRef]
- Owusu, E.Y.; Karikari, B.; Kusi, F.; Haruna, M.; Amoah, R.A.; Attamah, P.; Adazebra, G.; Sie, E.K.; Issahaku, M. Genetic variability, heritability and correlation analysis among maturity and yield traits in Cowpea (Vigna unguiculata (L) Walp) in Northern Ghana. Heliyon 2021, 7, e07890. [Google Scholar] [CrossRef]
- Alidu, M. Genetic Variability for Flowering Time, Maturity and Drought Tolerance in Cowpea [Vigna unguiculata (L.) Walp.]: A Review Paper. J. Agric. Ecol. Res. Int. 2019, 17, 1–18. [Google Scholar] [CrossRef]
- Jalal, A.; Rauf, K.; Iqbal, B.; Khalil, R.; Mustafa, H.; Murad, M.; Khalil, F.; Khan, S.; da Silva Oliveira, C.E.; Teixeira Filho, M.C.M. Engineering legume for drought stress tolerance: Constraints, accomplishments, and future prospects. S. Afr. J. Bot. 2023, 159, 482–491. [Google Scholar] [CrossRef]
- Kang, J.; Hao, X.; Zhou, H.; Ding, R. An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect. Agric. Water Manag. 2021, 255, 107008. [Google Scholar] [CrossRef]
- Asiwe, J.N.A. Advanced Breeding Approaches for Developing Cowpea Varieties in Dryland Areas of Limpopo Province, South Africa. In Legumes Research-Volume 1; IntechOpen: London, UK, 2022. [Google Scholar]
- Narayana, M.; Angamuthu, M. Cowpea. In The Beans and the Peas; Elsevier: Amsterdam, The Netherlands, 2021; pp. 241–272. [Google Scholar]
- Attamah, P.; Kusi, F.; Kena, A.W.; Awuku, F.J.; Lamini, S.; Mensah, G.; Zackaria, M.; Owusu, E.Y.; Akromah, R. Pyramiding aphid resistance genes into the elite cowpea variety, Zaayura, using marker-assisted backcrossing. Heliyon 2024, 10, e31976. [Google Scholar] [CrossRef]
- Boukar, O.; Fatokun, C.A.; Huynh, B.-L.; Roberts, P.A.; Close, T.J. Genomic tools in cowpea breeding programs: Status and perspectives. Front. Plant Sci. 2016, 7, 757. [Google Scholar] [CrossRef]
- Kumari, V.V.; Balloli, S.; Kumar, M.; Ramana, D.; Prabhakar, M.; Osman, M.; Indoria, A.; Manjunath, M.; Maruthi, V.; Chary, G.R. Diversified cropping systems for reducing soil erosion and nutrient loss and for increasing crop productivity and profitability in rainfed environments. Agric. Syst. 2024, 217, 103919. [Google Scholar] [CrossRef]
- Ikhajiagbe, B.; Ogwu, M.C.; Omage, Z.E. Seed phenotypic variations in cowpea, Vigna unguiculata, from selected open markets in Edo State, Nigeria. Cell Biol. Dev. 2023, 7. [Google Scholar]
- Imbuhila, B.S. Influence of Cowpea Plant and Seed Characteristics and Packaging Material in Storage on Cowpea Weevil (Callosobruchus Maculatus) Infestation. Master’s Thesis, JKUAT-AGRICULTURE, Juja, Kenya, 2020. [Google Scholar]
- Bozokalfa, M.K.; Kaygisiz, A.T.; Eşiyok, D. Genetic diversity of farmer-preferred cowpea (Vigna unguiculata L. Walp) landraces in Turkey and evaluation of their relationships based on agromorphological traits. Genetika 2017, 49, 935–957. [Google Scholar] [CrossRef]
- Egbadzor, K.; Yeboah, M.; Offei, S.; Ofori, K.; Danquah, E. Farmers’ key production constraints and traits desired in cowpea in Ghana. J. Agric. Ext. Rural Dev. 2013, 5, 14–20. [Google Scholar]
- Herniter, I.A.; Muñoz-Amatriaín, M.; Lo, S.; Guo, Y.-N.; Lonardi, S.; Close, T.J. Identification of candidate genes controlling red seed coat color in cowpea (Vigna unguiculata [L.] Walp). Horticulturae 2024, 10, 161. [Google Scholar] [CrossRef]
- Addy, S.N.; Cichy, K.A.; Adu-Dapaah, H.; Asante, I.K.; Emmanuel, A.; Offei, S.K. Genetic studies on the inheritance of storage-induced cooking time in cowpeas [Vigna unguiculata (L.) Walp]. Front. Plant Sci. 2020, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Omomowo, O.I.; Babalola, O.O. Constraints and prospects of improving cowpea productivity to ensure food, nutritional security and environmental sustainability. Front. Plant Sci. 2021, 12, 751731. [Google Scholar] [CrossRef] [PubMed]
- Irefin, O.I. Assessment of Antinutrional Compositions of Two Cowpea (Vigna unguiculata L. Walp.) Varieties. Bachelor’s Thesis, Kogi State University, Anyigba, Nigeria, 2020. [Google Scholar]
- Banti, M.; Bajo, W. Review on nutritional importance and anti-nutritional factors of legumes. Int. J. Food Sci. Nutr. 2020, 9, 8–49. [Google Scholar] [CrossRef]
- Diouf, A.; Sarr, F.; Sene, B.; Ndiaye, C.; Fall, S.M.; Ayessou, N.C. Pathways for reducing anti-nutritional factors: Prospects for Vigna unguiculata. J. Nutr. Health Food Sci. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Khalid, I.I.; Elharadallou, S.B. Functional properties of cowpea (Vigna ungiculata L. Walp), and lupin (Lupinus termis) flour and protein isolates. J. Nutr. Food Sci. 2013, 3, 234. [Google Scholar]
- Appiah, F.; Asibuo, J.; Kumah, P. Physicochemical and Functional Properties of Bean Flours of Three Cowpea (Vigna unguiculata L. Walp) Varieties in Ghana. Afr. J. Food Sci. 2011, 21, 100–104. [Google Scholar]
- Tawiah, E.; Akonor, P.; Oduro-Yeboah, C.; Idun-Acquah, N.; Tengey, T.; Mingle, C.; Johnson, P.T. Compositional, physico-mechanical and functional properties of two Ghanaian cowpea (Vigna unguiculata) varieties. Afr. J. Food Agric. Nutr. Dev. 2021, 21, 18732–18747. [Google Scholar] [CrossRef]
- Ampah, J.K. Assessment of Nutritional Level, Functional Properties and Mineral Contents of Newly Developed Genotypes of Cowpea [Vigna Unguiculata (L.) Walp.] in Ghana. Master’s Thesis, University of Cape Coast, Cape Coast, Ghana, 2020. [Google Scholar]
- Park, Y.K.; Kim, J.; Ryu, M.S.; Jeong, D.-Y.; Yang, H.-J. Review of physiological compounds and health benefits of soybean paste (doenjang): Exploring its bioactive components. J. Ethn. Foods 2024, 11, 30. [Google Scholar] [CrossRef]
Variety | Year | Institution | Breeding | Agronomic Characteristics | Reference |
---|---|---|---|---|---|
Okhyun | 2022 | Jeollanamdo Agricultural Research and Extension Services (JARES) | IT145379 × IT208081 | Erect plant with an intermediate plant habit, heart-shaped leaflets, light purple-colored corolla, straight black brown mature pods, green cotyledons, black seed coat, 100-seed weight of ~12.9 g, average yield of 1.97 ton/ha | [21] |
Jang-alchan | 2019 | Jeollanamdo Agricultural Research and Extension Services (JARES) | IT145373 × IT145391 | Erect plant with an intermediate plant habit, heart-shaped leaflets, light purple-colored corolla, orange-yellow seed seed coat of faint luster, brown and straight matured pods, 100-seed weight was 14.1 g, average yield of 1.85 ton/ha | [22] |
Seonhyeon | 2017 | Jeollanamdo Agricultural Research and Extension Services (JARES) | IT145373 × IT101362 | Erect plant with an intermediate plant growth habit, green hypocotyls, light purple-colored corolla, heart-shaped leaflets, brown and slightly curved mature pods, black seed coat color, elliptical seeds shape, disease resistant, prone to waterlogging damage, average yield of 2.26 ton/h | [15] |
Okdang | 2013 | Jeollanamdo Agricultural Research and Extension Services (JARES) | Pure line selection from IT45384 foundation stock | Erect plant type and intermediate plant habit, short growing period, fewer tendrils, green hypocotyls, heart leaflet, purple flowers, orange-yellow seed coat with weak luster, elliptical seed shape, and brown and slightly curved mature pods, medium seed density, 100-seed weight of ~16.6 g, high lodging resistance, susceptible to waterlogging, average yield of 1.85 ton/ha. | [15,23] |
Research Area | Description | Reference |
---|---|---|
Genetic Diversity | Genetic diversity study of Korean cowpea germplasm based on single-nucleotide polymorphisms (SNP) markers. | [20] |
Genetic diversity analysis of Korean cowpea landraces, using simple sequence repeat markers and establishment of a core collection. | [8] | |
Genetics and Cultivar Development | Development of new cowpea cultivar ‘Okhyun’ with green cotyledons and a black seed coat and amenability to combine harvesting. | [21] |
Radio sensitivity of cowpea plants after gamma-ray and proton-beam irradiation shows the optimal dose of gamma-rays and proton-beams in cowpea ranges between 200–300 Gy. | [28] | |
Transcriptome analysis of cowpeas in response to two different ionizing radiations revealed the mechanism for gene regulation in response to two ionizing radiations. | [29] | |
Development of the ‘Seonhyeon’ cowpea cultivar with distinct plant and seed morphology. | [15] | |
Introduction of the ‘Okdang’ cultivar with intermediate plant habit, erect growth type, and amenability to combine harvesting. | [23] | |
Determination of the combining ability, the gene action, and the relationships between cowpea parents and their F2 hybrids showed that for most traits, mean square value of general combining ability (GCA) seems more important than those of specific combining ability (SCA). | [30] | |
Agronomy and Agronomic Practices | Proper sowing date and planting density significantly improves yield and labor-saving potential. | [31] |
Effects of sowing date on agronomic characteristics of intermediate-erect type cowpeas grown in plastic greenhouse showed that seed yields were highest for sowing in middle-April. | [17] | |
Agronomic characteristics and seed quality of cowpea germplasm under various environmental conditions revealed that the accessions were classified into indeterminate type (72.7%), intermediate type (25.7%), and determinate type (1.6%) growth, with significant variability observed in seed coat color. | [12] | |
Comparison of weed occurrence and growth of some leguminous plants for green manure cover crop during summer fallow shows that cowpeas most effectively suppressed weed growth. | [32] | |
Variations of morphological traits, yield, and yield components on different seeding dates of cowpeas showed poor bloom in late sowing after August. | [33] | |
Study of the role of cowpeas in corn–legume intercropping systems for improved growth and yield showed that at the ripe stage yields were higher under intercropping (18.1 t) than under monocropping (16.6 t). | [34,35] | |
Studies on corn–cowpea intercropping system revealed increased protein yield without decreasing dry matter yield in comparison with corn monocropping system. | [35] | |
Nutrition, Quality, and Physicochemical Characteristics | Physical, textural, and sensory characteristics of legume-based gluten-free muffin enriched with waxy rice flour revealed that the overall acceptance of muffin containing Okdang cultivar of cowpeas was the highest among legume-based muffins. | [36] |
A study on differences in starch characteristics between cowpea and mungbean cultivars grown in Korea showed that cowpea starches had higher median diameter, relative crystallinity, gelatinization temperature, and pasting temperature but lower amylose leaching than mungbean starches. | [19] | |
Effects of germination and roasting on the quality and physicochemical properties of cowpea flour. | [37] | |
Quality and physicochemical characteristics of the Korean cowpea cultivars grown in different seeding periods | [16] | |
Anti-inflammatory effects of black-eyed cultivar of cowpea seed extracts and its bioactive compounds | [38] | |
Analysis of anthocyanins in Korean cowpea germplasm, relevant for nutritional and functional food uses. | [39] | |
Determination of the effects of soybean oil and chitosan on the quality characteristics of Omija Jelly made of various starches (mungbean starch, cowpea starch, and corn starch). | [18] | |
Determination of the changes in development and nutrient composition of cowpea pod after flowering | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-K.; Iwar, K.; Ochar, K.; Park, S.-Y.; Go, E.-B.; Lee, K.-D.; Kim, S.-H. Cowpea (Vigna unguiculata) Cultivation and Breeding in the Republic of Korea: Advances and Future Perspectives. Agronomy 2024, 14, 2679. https://doi.org/10.3390/agronomy14112679
Kim D-K, Iwar K, Ochar K, Park S-Y, Go E-B, Lee K-D, Kim S-H. Cowpea (Vigna unguiculata) Cultivation and Breeding in the Republic of Korea: Advances and Future Perspectives. Agronomy. 2024; 14(11):2679. https://doi.org/10.3390/agronomy14112679
Chicago/Turabian StyleKim, Dong-Kwan, Kanivalan Iwar, Kingsley Ochar, Sin-Young Park, Eun-Byul Go, Kyung-Dong Lee, and Seong-Hoon Kim. 2024. "Cowpea (Vigna unguiculata) Cultivation and Breeding in the Republic of Korea: Advances and Future Perspectives" Agronomy 14, no. 11: 2679. https://doi.org/10.3390/agronomy14112679
APA StyleKim, D. -K., Iwar, K., Ochar, K., Park, S. -Y., Go, E. -B., Lee, K. -D., & Kim, S. -H. (2024). Cowpea (Vigna unguiculata) Cultivation and Breeding in the Republic of Korea: Advances and Future Perspectives. Agronomy, 14(11), 2679. https://doi.org/10.3390/agronomy14112679