Analysis of Growth Variation in Maize Leaf Area Index Based on Time-Series Multispectral Images and Random Forest Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Data Acquisition
2.3. Multispectral Image Data Processing
2.4. Soil Sampling and Measurement
2.5. Statistical Analyses
3. Results
3.1. Presentation of Data Collected In Situ
3.2. Significance of Variables in Various Random Forest Models
3.3. Predictive Accuracy of the Models
3.4. Dynamics of the Maize Leaf Area Index
3.5. Factors Influencing the Leaf Area Index
4. Discussion
4.1. Importance of Variables in Prediction Models
4.2. Prediction Accuracy and Influencing Factors of the Random Forest Model
4.3. Environmental Effects on Time-Series LAI Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Feng, H.; Wu, D.; Yan, S.; Zhang, P.; Wang, W.; Zhang, J.; Ye, J.; Dai, G.; Fan, Y.; et al. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 2021, 22, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yuan, F.; Huang, Y.; Zhao, Y.; Jia, X.; Zhu, L.; Guo, J. Genome-wide association studies of grain quality traits in maize. Sci. Rep. 2021, 11, 9797. [Google Scholar] [CrossRef]
- Singh, I.; Sheoran, S.; Kumar, B.; Kumar, K.; Rakshit, S. Speed breeding in maize (Zea mays) vis-à-vis in other crops: Status and prospects. Indian J. Agric. Sci. 2021, 91, 1267–1273. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Guo, T.; Dzievit, M.J.; Yu, X.; Liu, P.; Price, K.P.; Yu, J. Genetic dissection of seasonal vegetation index dynamics in maize through aerial based high-throughput phenotyping. Plant Genome 2021, 14, 20155. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Zhou, J.; Khot, L.R.; Trapp, J.J.; Mndolwa, E.; Miklas, P.N. High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery. Comput. Electron. Agric. 2018, 151, 84–92. [Google Scholar] [CrossRef]
- Li, D.; Bai, D.; Tian, Y.; Li, Y.H.; Zhao, C.; Wang, Q.; Guo, S.; Gu, Y.; Luan, X.; Wang, R.; et al. Time series canopy phenotyping enables the identification of genetic variants controlling dynamic phenotypes in soybean. J. Integr. Plant Biol. 2023, 65, 117–132. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Yasutake, D.; Hirota, T.; Nomura, K. Nondestructive measurement method of leaf area index using near-infrared radiation and photosynthetically active radiation transmitted through a leafy vegetable canopy. HortScience 2023, 58, 16–22. [Google Scholar] [CrossRef]
- Bao, X.; Wen, X.; Sun, X. Effects of environmental conditions and leaf area index changes on seasonal variations in carbon fluxes over a wheat–maize cropland rotation. Int. J. Biometeorol. 2022, 66, 213–224. [Google Scholar] [CrossRef]
- Dimitrov, P.; Kamenova, I.; Roumenina, E.; Filchev, L.; Ilieva, I.; Jelev, G.; Alexander, G.; Martin, B.; Veneta, K.; Victor, K. Estimation of biophysical and biochemical variables of winter wheat through Sentinel-2 vegetation indices. Bulg. J. Agric. Sci. 2019, 25, 819. [Google Scholar]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- Hashimoto, N.; Saito, Y.; Yamamoto, S.; Ishibashi, T.; Ito, R.; Maki, M.; Homma, K. Feasibility of yield estimation based on leaf area dynamics measurements in rice paddy fields of farmers. Field Crops Res. 2022, 286, 108609. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, F.; Anderson, M.; Kustas, W.; Nieto, H.; Knipper, K.; Yang, Y.; White, W.; Alfieri, J.; Torres-Rua, A. Evaluation of satellite Leaf Area Index in California vineyards for improving water use estimation. Irrig. Sci. 2022, 40, 531–551. [Google Scholar] [CrossRef]
- Potgieter, A.B.; George-Jaeggli, B.; Chapman, S.C.; Laws, K.; Suárez, C.L.A.; Wixted, J.; Watson, J.; Eldridge, M.; Jordan, D. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Front. Plant Sci. 2017, 8, 1532. [Google Scholar] [CrossRef] [PubMed]
- Rodene, E.; Xu, G.; Delen, P.S.; Zhao, X.; Smith, C.; Ge, Y.; Schnable, J.; Yang, J. A UAV-based high-throughput phenotyping approach to assess time-series nitrogen responses and identify trait-associated genetic components in maize. Plant Phenome J. 2022, 5, 20030. [Google Scholar] [CrossRef]
- Shao, M.; Nie, C.; Zhang, A.; Shi, L.; Zha, Y.; Xu, H.; Yang, H.; Yu, X.; Bai, Y.; Liu, S. Quantifying effect of maize tassels on LAI estimation based on multispectral imagery and machine learning methods. Comput. Electron. Agric. 2023, 211, 108029. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, Z.; Yang, T.; Li, J.; Peng, J.; Zhu, K.; Li, S.; Gong, H.; Yun, L.; Li, B. Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales. Comput. Electron. Agric. 2020, 178, 105786. [Google Scholar] [CrossRef]
- Li, M.; Shamshiri, R.R.; Schirrmann, M.; Weltzien, C.; Shafian, S.; Laursen, M.S. UAV oblique imagery with an adaptive micro-terrain model for estimation of leaf area index and height of maize canopy from 3D point clouds. Remote Sens. 2022, 14, 585. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Joshi, S.; Thoday-Kennedy, E.; Pasam, R.K.; Tibbits, J.; Hayden, M.; Spangenberg, G.; Kant, S. High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J. Exp. Bot. 2020, 71, 4604–4615. [Google Scholar] [CrossRef]
- Jiang, J.; Johansen, K.; Stanschewski, C.S.; Wellman, G.; Mousa, M.A.; Fiene, G.M.; Asiry, K.A.; Tester, M.; McCabe, M.F. Phenotyping a diversity panel of quinoa using UAV-retrieved leaf area index, SPAD-based chlorophyll and a random forest approach. Precis. Agric. 2022, 23, 961–983. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, G.; Zhou, L.; Lv, X.; Ji, Y.; Zhou, M. The interrelationship between water use efficiency and radiation use efficiency under progressive soil drying in maize. Front. Plant Sci. 2021, 12, 794409. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zheng, B.; Chenu, K.; Hu, P.; Chapman, S.C. Unsupervised plot-scale LAI phenotyping via UAV-based imaging, modelling, and machine learning. Plant Phenomics 2022, 4, 9768253. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, C.; Costa, L.F.; Sandhu, H.; Ampatzidis, Y.; Odero, D.C.; Arbelo, O.C.; Cherry, R.H. Sugarcane yield prediction and genotype selection using unmanned aerial vehicle-based hyperspectral imaging and machine learning. Agron. J. 2022, 114, 2320–2333. [Google Scholar] [CrossRef]
- Njane, S.N.; Tsuda, S.; Marrewijk, B.M.; Polder, G.; Katayama, K.; Tsuji, H. Effect of varying UAV height on the precise estimation of potato crop growth. Front. Plant Sci. 2023, 14, 1233349. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S. Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1482–1493. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Jasper, J.; Reusch, S.; Link, A. Active sensing of the N status of wheat using optimized wavelength combination: Impact of seed rate, variety and growth stage. Precis. Agric. 2009, 9, 23–30. [Google Scholar]
- Chen, M.; Yang, Z.; Abulaizi, M.; Hu, Y.; Tian, Y.; Hu, Y.; Yu, G.; Zhu, X.; Yu, P.; Jia, H. Soil bacterial communities in alpine wetlands in arid Central Asia remain stable during the seasonal freeze–thaw period. Ecol. Indic. 2023, 156, 111164. [Google Scholar] [CrossRef]
- Liu, S.; Jin, X.; Nie, C.; Wang, S.; Yu, X.; Cheng, M.; Shao, M.; Wang, Z.; Tuohuti, N.; Bai, Y. Estimating leaf area index using unmanned aerial vehicle data: Shallow vs. deep machine learning algorithms. Plant Physiol. 2021, 187, 1551–1576. [Google Scholar] [CrossRef]
- Murguia-Cozar, A.; Macedo-Cruz, A.; Fernandez-Reynoso, D.S.; Transito, J.A.S. Recognition of maize phenology in sentinel images with machine learning. Sensors 2021, 22, 94. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, M.; Ibrahim, A.M.; Xue, Q.; Jung, J.; Chang, A.; Rudd, J.C.; Maeda, M.; Rajan, N.; Neely, H.; Landivar, J. Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 176, 105665. [Google Scholar] [CrossRef]
- Ganeva, D.; Roumenina, E.; Dimitrov, P.; Gikov, A.; Jelev, G.; Dragov, R.; Bozhanova, V.; Taneva, K. Phenotypic traits estimation and preliminary yield assessment in different phenophases of wheat breeding experiment based on UAV multispectral images. Remote Sens. 2022, 14, 1019. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; Ye, Z.; Jiang, L.; Qiu, X.; Tian, Y.; Zhu, Y.; Cao, W. Machine learning approaches can reduce environmental data requirements for regional yield potential simulation. Eur. J. Agron. 2021, 129, 126335. [Google Scholar] [CrossRef]
- Miao, C.; Xu, Y.; Liu, S.; Schnable, P.S.; Schnable, J.C. Increased power and accuracy of causal locus identification in time series genome-wide association in sorghum. Plant Physiol. 2020, 183, 1898–1909. [Google Scholar] [CrossRef]
- Wang, C.; Pan, W.; Song, X.; Yu, H.; Zhu, J.; Liu, P.; Li, X. Predicting plant growth and development using time-series images. Agronomy 2022, 12, 2213. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; Xiao, Y.; Rasheed, A.; Xia, X.; Ma, Y.; Fu, L.; Chen, Z.; He, Z. Application of multi-layer neural network and hyperspectral reflectance in genome-wide association study for grain yield in bread wheat. Field Crops Res. 2022, 289, 108730. [Google Scholar] [CrossRef]
- Sainju, U.M.; Liptzin, D.; Ghimire, R.; Dangi, S. Relationship between soil carbon and nitrogen, soil properties, and dryland crop yields. Agron. J. 2022, 114, 395–414. [Google Scholar] [CrossRef]
Full Name | Abbreviation | Formulas a | Ref. | Category |
---|---|---|---|---|
Excess green vegetation index | ExG | (2G − R − B)/(G + R + B) | [22] | Visible bands |
Normalized green–red difference index | NGRDI | (G − R)/(G + R) | [19] | |
Normalized pigment chlorophyll ratio index | NPCI | (R − B)/(R + B) | [19] | |
Red–green ratio index | RGRI | R/G | [19] | |
True color vegetation index | TCVI | 1.4 × (2R − 2B)/2R − G − 2B + 0.4) | [19] | |
Green chlorophyll index | CIgreen | NIR/G − 1 | [15] | NIR bands |
Difference vegetation index | DVI | NIR − R | [19] | |
Enhanced vegetation index | EVI | 2.5 × (NIR − R)/(NIR + 6R − 7.5G + 1) | [16] | |
Green–blue normalized difference vegetation index | GBNDVI | (NIR − (G + B))/(NIR + (G + B)) | [19] | |
Green normalized difference vegetation index | GNDVI | (NIR − G)/(NIR + G) | [19] | |
Normalized difference vegetation index | NDVI | (NIR − R)/(NIR + R) | [24] | |
Plant senescence reflectance index | PSRI | (R − G)/NIR | [25] | |
Ratio vegetation index | RVI | NIR/R | [15] | |
Soil-adjusted vegetation index | SAVI | (NIR − R)/(NIR+ R +0.25) + 0.25 | [15] | |
Chlorophyll index red edge | CIre | NIR/RE − 1 | [24] | RE bands |
Modified enhanced vegetation index | MEVI | 2.5 × (NIR − RE)/(NIR + 6RE − 7.5G + 1) | [19] | |
Normalized difference red edge index | NDRE | (NIR − RE)/(NIR + RE) | [11] | |
NIR-RE normalized difference vegetation index | NIRRENDVI | ((NIR + RE)/2 − R)/((NIR + RE)/2 + R) | [26] | |
Red edge difference vegetation index | REDVI | NIR − RE | [27] | |
Red edge normalized difference vegetation index | RENDVI | (RE − R)/(RE + R) | [19] | |
Red edge ratio vegetation index | RERVI | NIR/RE | [28] | |
Soil-adjusted red edge index | SARE | (NIR − RE)/(NIR + RE + 0.25) + 0.25 | [19] |
Stage | F-Value | ||
---|---|---|---|
Environment | Genotype | Environment × Genotype | |
V6 | 73.14 *** | 1.46 *** | 1.40 *** |
V8 | 242.87 *** | 1.61 *** | 1.42 *** |
V10 | 55.29 *** | 1.71 *** | 1.22 ** |
V14 | 164.96 *** | 1.60 *** | 1.18 * |
VT | 22.58 *** | 2.09 *** | 1.17 * |
R1 | 192.18 *** | 1.78 *** | 1.18 * |
R2 | 459.75 *** | 1.51 *** | 0.92 |
R3 | 1357.43 *** | 1.67 *** | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ren, J.; Wu, P. Analysis of Growth Variation in Maize Leaf Area Index Based on Time-Series Multispectral Images and Random Forest Models. Agronomy 2024, 14, 2688. https://doi.org/10.3390/agronomy14112688
Wang X, Ren J, Wu P. Analysis of Growth Variation in Maize Leaf Area Index Based on Time-Series Multispectral Images and Random Forest Models. Agronomy. 2024; 14(11):2688. https://doi.org/10.3390/agronomy14112688
Chicago/Turabian StyleWang, Xuyang, Jiaojiao Ren, and Penghao Wu. 2024. "Analysis of Growth Variation in Maize Leaf Area Index Based on Time-Series Multispectral Images and Random Forest Models" Agronomy 14, no. 11: 2688. https://doi.org/10.3390/agronomy14112688
APA StyleWang, X., Ren, J., & Wu, P. (2024). Analysis of Growth Variation in Maize Leaf Area Index Based on Time-Series Multispectral Images and Random Forest Models. Agronomy, 14(11), 2688. https://doi.org/10.3390/agronomy14112688