Comparative Study on the Effect of GiSelA 5 Rootstock Propagation Methods on Sweet Cherry Growth and Physiology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Plant and Physiological Parameter Measurements
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonçalves, B.; Moutinho-Pereira, J.; Santos, A.; Silva, A.P.; Bacelar, E.; Correia, C.; Rosa, E. Scion–rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiol. 2006, 26, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, S.; Pinochet, J.; Gogorcena, Y.; Betran, J.A.; Moreno, M.A. Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Sci. Hort. 2007, 112, 73–79. [Google Scholar] [CrossRef]
- Cantın, C.M.; Pinochet, J.; Gogorcena, Y.; Moreno, M.A. Growth, yield and fruit quality of ‘Van’ and ‘Stark Hardy Giant’ sweet cherry cultivars as influenced by grafting on different rootstocks. Sci. Hortic. 2010, 123, 329–335. [Google Scholar] [CrossRef]
- Sitarek, M.; Grzyb, Z.S. Growth, productivity and fruit quality of ‘Kordia’ sweet cherry trees on eight clonal rootstocks. J. Fruit Ornam. Plant Res. 2010, 18, 169–176. [Google Scholar]
- Sitarek, M.; Bartosiewicz, B. Influence of five clonal rootstocks on the growth, productivity and fruit quality of ‘Sylvia’ and ‘Karina’ sweet cherry trees. J. Fruit Ornam. Plant Res. 2012, 20, 5–10. [Google Scholar] [CrossRef]
- Baryła, P.; Kapłan, M.; Krawiec, M. The effect of different types of rootstock on the quality of maiden trees of sweet cherry (Prunus avium L.) cv. ‘Regina’. Acta Agrobot. 2014, 67, 43–50. [Google Scholar] [CrossRef]
- Zec, G.; Čolović, V.; Milatović, D.; Čolić, S.; Vulić, T.; Dordević, B.; Durović, D. Rootstock influence on vigor and generative potential of young sweet cherry trees. J. Agric. Food Environ. Sci. 2017, 71, 137–141. [Google Scholar]
- Zimmermann, A. ‘Gisela 5’, a dwarfing rootstock for sweet cherries from Giessen in a trial. Obstbau 1994, 19, 62–63. [Google Scholar]
- Walter, E.; Franken, B.S. Evaluation of new German rootstocks for sweet cherry. ‘Gisela 5’ and other hybrids of P. cerasus · P. canescens [Prunus avium L.]. Riv. Fruttic. Ortofloric. 1998, 60, 24–28. [Google Scholar]
- Bassi, G. Influence of rootstocks on cherry production. Inf. Agrar. 2005, 61, 55–59. [Google Scholar]
- Liu, Q.; Zhang, L.; Li, B.; Zhao, H. A new cherry dwarf rootstock variety ‘Gisela 5’. Acta Hort. Sin. 2005, 32, 760. [Google Scholar]
- Sitarek, M.; Grzyb, Z.S.; Omiecińska, B. Performance of sweet cherry trees on ‘Gisela 5’ rootstock. Acta Hort. 2005, 667, 389–391. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, L.; Li, B.; Liu, Q. Brief report on the sweet cherry cultivars and rootstocks grown in Germany. China Fruits 2005, 4, 61–62. [Google Scholar]
- Kumar, A.; Sharma, V.; Thakur, M. In vitro rooting and hardening of clonal cherry rootstock Gisela5 (Pruns cerasus × Prunus canescesns). Indian J. Agric. Scienc. 2020, 90, 1032–1035. [Google Scholar] [CrossRef]
- Trobec, M.; Stampar, F.; Veberic, R.; Osterc, G. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock ‘GiSelA 5’ leafy cuttings. J. Plant Phys. 2005, 162, 589–597. [Google Scholar] [CrossRef]
- Štefančič, M.; Štampar, F.; Osterc, G. Influence of IAA and IBA on root development and quality of Prunus ‘GiSelA 5’ leafy cuttings. HortScience 2005, 40, 2052–2055. [Google Scholar] [CrossRef]
- Świerczyński, S. Assessment of the Effect of Treating ‘GiSelA 5’ Softwood Cuttings with Biostimulants and Synthetic Auxin on Their Root Formation and Some of Their Physiological Parameters. Plants 2023, 12, 658. [Google Scholar] [CrossRef]
- Baryła, P.; Kapłan, M. The estimation of the growth and branching of the six stocks under the cherry and the sweet cherry trees. Acta Sci. Pol. Hort. Cultus 2005, 4, 119–129. [Google Scholar]
- Papachatzis, A. Influence of rootstock on growth and reproductive characteristics of cherry cultivar ‘Stella’ during the period of complete fruiting. Lith. Inst. Hortic. Lith. Univ. Agric. 2006, 25, 212–217. [Google Scholar]
- Biśko, A.; Vujević, P.; Jelačić, T.; Milinović, B.; Halapija Kazija, D.; Kovačić, D. Evaluation of four dwarfing cherry rootstocks combined with ‘Kordia’ and ‘Regina’ in the agroenvironmental conditions of northwest Croatia. Acta Hortic. 2017, 1161, 273–280. [Google Scholar] [CrossRef]
- Bielick, P.; Rozpara, E. Growth and Yield of ‘Kordia’ sweet cherry trees with various rootstock and interstem combinations. J. Fruit Ornam. Plant Res. 2010, 18, 45–50. [Google Scholar]
- Stehr, R. Further experiences with dwarfing sweet cherry rootstocks in northern Germany. Acta Hortic. 2008, 795, 185–190. [Google Scholar] [CrossRef]
- Franken-Bembenek, S. GiSelAs, PIKUs und neue Giessener Klone: Ergebnisse aus europäischen und nordamerikanischen Kirschenunterlagenversuchen. Erwerbs-Obstbau 2010, 52, 17–25. [Google Scholar] [CrossRef]
- Atkinson, C.; Else, M. Understanding how rootstocks dwarf fruit trees. Horticulture Research International. Compact. Fruit Tree 2001, 34, 46–49. [Google Scholar]
- Neilsen, D.; Neilsen, G.H.; Forge, T.; Lang, G.A. Dwarfing rootstocks and training systems affest ini-tial growth, cropping and nutririon in ‘Skeena’ sweet cherry. Acta Hortic. 2016, 1130, 199–206. [Google Scholar] [CrossRef]
- Whiting, M.D.; Lang, G.A. ‘Bing’ Sweet Cherry on the Dwarfing Rootstock ‘Gisela 5’: Thinning Affects Fruit Quality and Vegetative Growth but not Net CO2 Exchange. J. Am. Soc. Hortic. Sci. 2004, 129, 407–415. [Google Scholar] [CrossRef]
- Malcolm, P.J.; Holford, P.; McGlasson, B.; Barchia, I. Leaf development, net assimilation and leaf nitrogen concentrations of five Prunus rootstocks in response to root temperature. Sci. Hortic. 2008, 115, 285–291. [Google Scholar] [CrossRef]
- Quentin, A.G.; Close, D.C.; Hennen, L.M.H.P.; Pinkard, E.A. Down-regulation of photosynthesis following girdling, but contrasting effects on fruit set and retention, in two sweet cherry cultivars. Plant Physiol. Biochem. 2013, 73, 359–367. [Google Scholar] [CrossRef]
- Götz, K.P.; Chmielewski, F.M.; Homann, T.; Huschek, G.; Matzneller, P.; Rawel, H.M. Seasonal changes of physiological parameters in sweet cherry (Prunus avium L.) buds. Sci. Hortic. 2014, 172, 183–190. [Google Scholar] [CrossRef]
- Perez, C.; Val, J.; Monge, E.; Val, J.; Montanes, L.; Monge, E. Photosynthetic changes of Prunus avium L. grafted on different rootstocks in relation to mineral deficiencies. Acta Hortic. 1997, 448, 81–85. Available online: https://www.actahort.org/books/448/448_8.htm (accessed on 1 October 2024). [CrossRef]
- Lichev, V.; Berova, M. Effects of rootstock on photosynthetic activity and productivity in the sweet cherry cultivar ‘Stella’. J. Fruit Ornam. Plant Res. 2004, 448, 81–85. [Google Scholar]
- Popescu, M.; Popescu, G.C. Effects of dwarfing ‘Gisela 5’ rootstock on reproductive potential, vegetative growth, and physiological features of some sweet cherry cultivars in high-density sweet cherry orchards. Curr. Trends Nat. Sci. 2015, 4, 82–90. Available online: http://www.natsci.upit.ro (accessed on 1 October 2024).
- Świerczyński, S.; Borowiak, K.; Bosiacki, M.; Urbaniak, M.; Malinowska, A. Estimation of the growth of ‘Vanda’ maiden sweet cherry trees on three rootstocks and after application of foliar fertilization in a nursery. Acta Sci. Pol. Hort. Cultus 2019, 18, 109–118. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Espinoza-Meza, S.; Umemura, K.; Ortega-Farías, S.; Baffico-Hernández, A.; Neira-Román, J.; Fuentes, S. Evaluation of thermal-based physiological indicators for determining water-stress thresholds in drip-irrigated ‘Regina’ cherry trees. Irrig. Sci. 2024, 42, 445–459. [Google Scholar] [CrossRef]
- Blanco, V.; Domingo, R.; Pérez-Pastor, A.; Blaya-Ros, P.J.; Torres-Sánchez, R. Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees. Agric. Water Manag. 2018, 208, 83–94. [Google Scholar] [CrossRef]
- Franken-Bembenek, S. GiSelA 5 (148/2)—Dwarfing rootstock for sweet cherries. Act. Hort. 1998, 468, 279–283. [Google Scholar] [CrossRef]
- Lugli, S.; Correale, R.; Gaiani, A.; Grandi, M.; Muzzi, E.; Quartier, I.M.; Sansavini, S. New cherry rootstocks for intensive plantations. Riv. Fruttic. Ortofloric. 2005, 67, 41–47. [Google Scholar]
- Sitarek, M. Incompatibility problems in sweet cherry trees on dwarfing rootstocks. Agron. Vēstis Latv. J. Agron. 2006, 9, 140–145. [Google Scholar]
- Zenginbal, H.; Demir, T.; Demirsoy, H.; Beyhan, Ö. The grafting success of fourteen genotypes grafted on three different rootstocks on production of sweet cherry (Prunus avium L.) sapling. Acta Sci. Pol. Hortorum Cultus 2017, 16, 133–143. [Google Scholar]
- Baryła, P.; Kapłan, M.; Krawiec, M.; Kiczorowski, P. The effect of rootstocks on the efficiency of a nursery of sweet cherry (Prunus avium L.) trees cv. ‘Regina’. Acta Agrobot. 2013, 66, 121–128. [Google Scholar] [CrossRef]
- Bujdosó, G.; Hrotkó, K. Nursery value of some dwarfing cherry rootstocks in Hungary. Latv. J. Agron. Agron. Vēstis 2006, 9, 7–9. [Google Scholar]
- Zenginbal, H. The effect of different grafting methods on success grafting in different kiwifruit (Actinidia deliciosa, A. chev) cultivars. Inter. J. Agric. Res. 2007, 2, 736–740. [Google Scholar] [CrossRef]
- Özçağiran, R.; Ünal, A.; Özeker, E.; İsfendiyaroğlu, M. Mild Climate Fruit Types, Stone Fruits; Ege University Press: Izmir, Turkey, 2003; Volume 1, Number 553; 229p. [Google Scholar]
- Stachowiak, A.; Świerczyński, A. The influence of mycorrhizal vaccine on the growth of maiden sweet cherry trees of selected cultivars in nursery. Acta Sci. Pol. Hortorum Cultus 2009, 8, 3–11. [Google Scholar]
- Janes, H.; Pae, A. Evaluation of nine sweet cherry clonal rootstocks and one seedling rootstock. Agron. Res. 2004, 2, 23–27. [Google Scholar]
- Sitarek, M.; Grzyb, Z.S. Nursery Results of Bud-Take and Growth of Six Sweet Cherry Cultivars Budded on Four Clonal Rootstocks. Acta Hort. 2007, 732, 345–349. [Google Scholar] [CrossRef]
- Gjamovski, V.; Kiprijanovski, M.; Arsov, T. Evaluation of some cherry varieties grafted on Gisela 5 root-stock. Turk. J. Agric. For. 2016, 40, 737–745. [Google Scholar] [CrossRef]
- Milić, B.; Kalajdzic, J.; Keserović, Z.; Magazin, N.; Ognjanov, V.; Miodragović, M.; Popara, G. Early performance of four sweet cherry cultivars grafted on Gisela 5 and Colt rootstocks in a high density growing system. Acta Sci. Pol. Hortorum Cultus 2019, 18, 99–108. [Google Scholar] [CrossRef]
- Bassi, G.; Fajt, N.; Bisko, A.; Donik Purgaj, B.; Draicchio, P.; Folini, L.; Gusmeroli, F.; Steinbauer, L. Vegetative and productive performances of ‘Kordia’ and ‘Regina’ sweet cherry cultivars grafted on four clonal rootstocks in the Alpe Adria region. Acta Hortic. 2016, 1139, 159–166. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; García, F.; Ordaz, P.B. Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees. Tree Physiol. 2004, 24, 303–312. [Google Scholar] [CrossRef]
- Proietti, P.; Nasini, L.; Famiani, F. Effect of different leaf-to-fruit ratios on photosynthesis and fruit growth in olive (Olea europaea L.). Photosynthetica 2006, 44, 275–285. [Google Scholar] [CrossRef]
- Almadi, L.; Paoletti, A.; Cinosi, N.; Daher, E.; Rosati, A.; Di Vaio, C.; Famiani, F. A Biostimulant Based on Protein Hydrolysates Promotes the Growth of Young Olive Trees. Agriculture 2020, 10, 618. [Google Scholar] [CrossRef]
- Świerczyński, S.; Antonowicz, A.; Bykowska, J. The effect of the foliar application of biostimulants and fertilisers on the growth and physiological parameters of maiden apple trees cultivated with limited mineral fertilisation. Agronomy 2021, 11, 1216. [Google Scholar] [CrossRef]
- Rosati, A.; Paoletti, A.; Al Hariri, R.; Morelli, A.; Famiani, F. Resource investments in reproductive growth proportionately limit investments in whole-tree vegetative growth in young olive trees with varying crop loads. Tree Physiol. 2018, 38, 1267–1277. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.À.; Pérez-Alfocea, F.; Galmés, J. The influence of grafting on crops’ photosynthetic performance. Plant Sci. 2020, 295, 110250. [Google Scholar] [CrossRef] [PubMed]
- Peschiutta, M.L.; Bucci, S.J.; Scholz, F.G.; Kowal, R.F.; Goldstein, G. Leaf and stem hydraulic traits in relation to growth, water use and fruit yield in Prunus avium L. cultivars. Trees 2013, 27, 1559–1569. [Google Scholar] [CrossRef]
Variety | Year | Method of Propagation | Percentage of Obtained Maiden Trees | Height of Plants (cm) | Stem Diameter (mm) | Number of Side Shoots | Lenght of Side Shoots (cm) |
---|---|---|---|---|---|---|---|
‘Bellise’ | 2017 | Stem cutting | 90.88 a | 210.75 c | 20.49 c | 3.10 b | 180.8 c |
in vitro | 84.18 a | 201.60 c | 18.50 c | 1.80 a | 105.60 b | ||
2018 | Stem cutting | 86.35 a | 152.75 b | 15.06 b | 1.55 a | 32.25 a | |
in vitro | 81.39 a | 122.25 a | 12.76 a | 0.65 a | 19.85 a | ||
‘Earlise’ | 2017 | Stem cutting | 89.29 b | 243.20 c | 19.76 d | 4.10 c | 213.50 c |
in vitro | 82.23 a | 227.80 c | 17.37 c | 2.00 b | 115.10 b | ||
2018 | Stem cutting | 83.77 ab | 139.30 b | 13.84 b | 2.45 b | 79.05 ab | |
in vitro | 84.91 ab | 113.95 a | 11.03 a | 0.40 a | 10.05 a | ||
‘Lapins’ | 2017 | Stem cutting | 87.59 a | 151.35 a | 15.73 b | 0.00 a | 0.00 a |
in vitro | 87.90 a | 143.55 a | 10.27 a | 0.00 a | 0.00 a | ||
2018 | Stem cutting | 85.46 a | 151.35 a | 17.50 c | 0.00 a | 0.00 a | |
in vitro | 86.58 a | 138.80 a | 9.98 a | 0.00 a | 0.00 a | ||
‘Vanda’ | 2017 | Stem cutting | 83.08 b | 213.30 c | 18.15 b | 6.45 c | 321.75 c |
in vitro | 79.17 ab | 193.00 b | 17.32 b | 3.00 b | 192.15 b | ||
2018 | Stem cutting | 79.52 ab | 130.05 a | 13.26 a | 1.15 a | 21.89 a | |
in vitro | 75.27 a | 117.10 a | 12.01 a | 1.00 a | 22.20 a |
Variety | Year | Method of Propagation | Number of Roots | Fresh Mass of Trees (kg) | Fresh Mass of Leaves (g) | Leaf Blade Area (cm−1) |
---|---|---|---|---|---|---|
‘Bellise’ | 2017 | Stem cutting | 13.20 b | 1.28 b | 264.10 c | 9754.52 b |
in vitro | 11.40 a | 1.18 b | 262.10 c | 9889.68 b | ||
2018 | Stem cutting | 12.70 b | 0,72 a | 157.01 b | 6428.16 a | |
in vitro | 10.80 a | 0.61 a | 143.46 a | 6210.45 a | ||
‘Earlise’ | 2017 | Stem cutting | 14.20 b | 1.33 c | 256.34 c | 9393.50 b |
in vitro | 13.45 ab | 1.01 b | 253.34 c | 9312.58 b | ||
2018 | Stem cutting | 12.60 ab | 0.61 a | 150.30 b | 5885.37 a | |
in vitro | 11.90 a | 0.53 a | 133.08 a | 5811.48 a | ||
‘Lapins’ | 2017 | Stem cutting | 17.40 b | 1.10 c | 274.67 b | 9872.21 b |
in vitro | 15.10 a | 0.88 b | 172.67 b | 9883.03 b | ||
2018 | Stem cutting | 17.80 b | 0.71 a | 160.25 a | 6319.30 a | |
in vitro | 15.90 ab | 0.68 a | 149.32 a | 6381.47 a | ||
‘Vanda’ | 2017 | Stem cutting | 17.40 c | 1.35 b | 271.65 b | 9652.63 b |
in vitro | 14.50 ab | 1.25 b | 262.25 b | 9542.65 b | ||
2018 | Stem cutting | 16.30 bc | 0.98 a | 146.87 a | 5777.47 a | |
in vitro | 13.30 a | 0.92 a | 142.97 a | 5768.61 a |
Variety | Year | Method of Propagation | Physiological Indicators | |||
---|---|---|---|---|---|---|
Pn | E | C | Int. CO2 | |||
‘Bellise’ | 2017 | Stem cutting | 13.26 b | 2.86 d | 10.84 d | 410.28 c |
in vitro | 9.69 a | 1.04 a | 26.62 a | 429.01 d | ||
2018 | Stem cutting | 15.41 c | 2.33 c | 84.19 c | 145.66 b | |
in vitro | 13.15 b | 1.75 b | 72.16 b | 65.64 a | ||
‘Earlise’ | 2017 | Stem cutting | 10.87 b | 2.19 b | 71.09 b | 412.08 c |
in vitro | 5.26 a | 1.30 a | 27.93 a | 425.09 c | ||
2018 | Stem cutting | 6.10 a | 1.29 a | 32.91 a | 111.28 a | |
in vitro | 10.01 b | 2.09 b | 79.42 b | 151.76 b | ||
‘Lapins’ | 2017 | Stem cutting | 10.06 b | 1.88 a | 70.74 a | 424.54 a |
in vitro | 13.12 c | 2.98 c | 89.29 c | 443.10 b | ||
2018 | Stem cutting | 8.70 a | 2.07 a | 78.50 b | 425.09 a | |
in vitro | 10.59 b | 2.62 b | 88.76 c | 424.73 a | ||
‘Vanda’ | 2017 | Stem cutting | 20.61 d | 3.61 c | 128.71 c | 414.19 b |
in vitro | 8.36 a | 1.82 a | 32.19 a | 470.03 c | ||
2018 | Stem cutting | 9.41 b | 2.26 b | 84.27 b | 216.73 a | |
in vitro | 11.14 c | 1.92 a | 132.28 c | 215.27 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świerczyński, S.; Schroeter-Zakrzewska, A. Comparative Study on the Effect of GiSelA 5 Rootstock Propagation Methods on Sweet Cherry Growth and Physiology. Agronomy 2024, 14, 2701. https://doi.org/10.3390/agronomy14112701
Świerczyński S, Schroeter-Zakrzewska A. Comparative Study on the Effect of GiSelA 5 Rootstock Propagation Methods on Sweet Cherry Growth and Physiology. Agronomy. 2024; 14(11):2701. https://doi.org/10.3390/agronomy14112701
Chicago/Turabian StyleŚwierczyński, Sławomir, and Anita Schroeter-Zakrzewska. 2024. "Comparative Study on the Effect of GiSelA 5 Rootstock Propagation Methods on Sweet Cherry Growth and Physiology" Agronomy 14, no. 11: 2701. https://doi.org/10.3390/agronomy14112701
APA StyleŚwierczyński, S., & Schroeter-Zakrzewska, A. (2024). Comparative Study on the Effect of GiSelA 5 Rootstock Propagation Methods on Sweet Cherry Growth and Physiology. Agronomy, 14(11), 2701. https://doi.org/10.3390/agronomy14112701