Identification of Genetic Loci Associated with Bolting Time in Radish (Raphanus sativus L.) by QTL Mapping and GWAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Evaluation of Bolting Time
2.2. DNA Extraction and Genotyping F2 and GWAS Populations
2.3. QTL and GWAS for Bolting Time
2.4. Identification of Candidate Genes and Development of Markers
3. Results
3.1. Variation in Bolting in the F2 Population
3.2. Construction of the Bin Map and QTL Analysis
3.3. GWAS for Bolting Time
3.4. QTL–GWAS and Candidate Genes
3.5. Marker Development and Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amasino, R.M.; Michaels, S.D. The Timing of Flowering. Plant Physiol. 2010, 154, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef] [PubMed]
- Chouard, P. Vernalizaion and its Relation to Dormancy. Annu. Rev. Plant Physiol. 1960, 11, 191–238. [Google Scholar] [CrossRef]
- Bernier, G.; Havelange, A.; Houssa, C.; Petitjean, A.; Lejeune, P. Physiological Signals That Induce Flowering. Plant Cell 1993, 5, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.H.; Coupland, G. Response of plant development to environment: Control of flowering by daylength and temperature. Curr. Opin. Plant Biol. 2000, 3, 37–42. [Google Scholar] [CrossRef]
- Engelen-Eigles, G.; Erwin, J.E. A model plant for vernalization studies. Sci. Hortic. 1997, 70, 197–202. [Google Scholar] [CrossRef]
- Michaels, S.D.; Amasino, R.M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 1999, 11, 949–956. [Google Scholar] [CrossRef]
- De Lucia, F.; Crevillen, P.; Jones, A.M.; Greb, T.; Dean, C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc. Natl. Acad. Sci. USA 2008, 105, 16831–16836. [Google Scholar] [CrossRef]
- Searle, I.; He, Y.; Turck, F.; Vincent, C.; Fornara, F.; Kröber, S.; Amasino, R.A.; Coupland, G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 2006, 20, 898–912. [Google Scholar] [CrossRef]
- Bastow, R.; Mylne, J.S.; Lister, C.; Lippman, Z.; Martienssen, R.A.; Dean, C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 2004, 427, 164–167. [Google Scholar] [CrossRef]
- Michaels, S.D.; Himelblau, E.; Kim, S.Y.; Schomburg, F.M.; Amasino, R.M. Integration of Flowering Signals in Winter-Annual Arabidopsis. Plant Physiol. 2005, 137, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Parcy, F. Flowering: A time for integration. Int. J. Dev. Biol. 2005, 49, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Yanovsky, M.J.; Kay, S.A. Molecular basis of seasonal time measurement in Arabidopsis. Nature 2002, 419, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Amasino, R. Vernalization, Competence, and the Epigenetic Memory of Winter. Plant Cell 2004, 16, 2553–2559. [Google Scholar] [CrossRef]
- Amasino, R. Seasonal and developmental timing of flowering. Plant J. 2010, 61, 1001–1013. [Google Scholar] [CrossRef]
- Sung, S.; Schmitz, R.J.; Amasino, R.M. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev. 2006, 20, 3244–3248. [Google Scholar] [CrossRef]
- Finnegan, E.J.; Dennis, E.S. Vernalization-Induced Trimethylation of Histone H3 Lysine 27 at FLC Is Not Maintained in Mitotically Quiescent Cells. Curr. Biol. 2007, 17, 1978–1983. [Google Scholar] [CrossRef]
- Mitsui, Y.; Yokoyama, H.; Nakaegawa, W.; Tanaka, K.; Komatsu, K.; Koizuka, N.; Okuzaki, A.; Matsumoto, T.; Takahara, M.; Tabei, Y. Epistatic interactions among multiple copies of FLC genes with naturally occurring insertions correlate with flowering time variation in radish. AoB Plants 2023, 15, plac066. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Zhang, L. A naturally occurring insertion in the RsFLC2 gene associated with late-bolting trait in radish (Raphanus sativus L.). Mol. Breed. 2018, 38, 137. [Google Scholar] [CrossRef]
- Hu, T.; Wei, Q.; Wang, W.; Hu, H.; Mao, W.; Zhu, Q.; Bao, C. Genome-wide identification and characterization of CONSTANS-like gene family in radish (Raphanus sativus). PLoS ONE 2018, 13, e0204137. [Google Scholar] [CrossRef]
- Jung, H.; Jo, S.H.; Jung, W.Y.; Park, H.J.; Lee, A.; Moon, J.S.; Seong, S.Y.; Kim, J.-K.; Kim, Y.-S.; Cho, H.S. Gibberellin Promotes Bolting and Flowering via the Floral Integrators RsFT and RsSOC1-1 under Marginal Vernalization in Radish. Plants 2020, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Luo, X.; Li, Y.; Peng, X.; Wu, L.; Yang, G.; Xu, X.; Pei, Y.; Li, W.; Zhang, W. Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish (Raphanus sativus L.). Theor. Appl. Genet. 2023, 137, 445. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chhapekar, S.S.; Rameneni, J.J.; Kim, S.; Gan, T.H.; Choi, S.R.; Lim, Y.P. Identification of QTLs and Candidate Genes Related to Flower Traits and Bolting Time in Radish (Raphanus sativus L.). Agronomy 2021, 11, 1623. [Google Scholar] [CrossRef]
- Gan, C.X.; Cui, L.; Pang, W.X.; Wang, A.H.; Yu, X.Q.; Deng, X.H.; Song, L.P.; Piao, Z.Y. QTL Mapping of Bolting and Flowering Traits Based on High Density Genetic Map of Radish. Acta Hortic. Sin. 2021, 48, 1273–1281. [Google Scholar]
- Ahn, H.-I.; Han, K.; Yang, H.-B.; Lee, E.S.; Lee, Y.-R.; Kim, J.; Park, H.Y.; Kim, D.-S. Development and Investigation of HRM Markers to Discriminate Two Ogura Cytoplasmic Male Sterility Restorer Genes in Radish. Agronomy 2023, 14, 43. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.; Bobo, L. Performance Measurement and Assessment using Dartfish Software. In E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2010; Sanchez, J., Zhang, K., Eds.; Association for the Advancement of Computing in Education (AACE): Orlando, FL, USA, 2010; pp. 407–408. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Shirasawa, K.; Hirakawa, H.; Fukino, N.; Kitashiba, H.; Isobe, S. Genome sequence and analysis of a Japanese radish (Raphanus sativus) cultivar named ‘Sakurajima Daikon’ possessing giant root. DNA Res. 2020, 27, dsaa010. [Google Scholar] [CrossRef]
- Vasimuddin, M.; Misra, S.; Li, H.; Aluru, S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 314–324. [Google Scholar]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra, 1st ed.; O’Reilly Media: Newton, MA, USA, 2020. [Google Scholar]
- Han, K.; Jeong, H.J.; Yang, H.B.; Kang, S.M.; Kwon, J.K.; Kim, S.; Choi, D.; Kang, B.-C. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res. 2016, 23, 81–91. [Google Scholar] [CrossRef]
- De Givry, S.; Bouchez, M.; Chabrier, P.; Milan, D.; Schiex, T. CARHTA GENE: Multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 2005, 21, 1703–1704. [Google Scholar] [CrossRef]
- Wang, S.; Basten, C.J.; Zeng, Z.-B. Windows QTL Cartographer 2.5. 2012. Available online: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm (accessed on 1 August 2012).
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Nguyen, T.T.P.; Ahn, J.-H.; Kim, G.-J.; Sim, S.-C. Genome-wide association study identifies QTL for eight fruit traits in cultivated tomato (Solanum lycopersicum L.). Hortic. Res. 2021, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience 2018, 8, giy154. [Google Scholar] [CrossRef]
- Jung, W.Y.; Park, H.J.; Lee, A.; Lee, S.S.; Kim, Y.-S.; Cho, H.S. Identification of Flowering-Related Genes Responsible for Differences in Bolting Time between Two Radish Inbred Lines. Front. Plant Sci. 2016, 7, 1844. [Google Scholar] [CrossRef]
- Nie, S.; Li, C.; Xu, L.; Wang, Y.; Huang, D.; Muleke, E.M.; Sun, X.; Xie, Y.; Liu, L. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. BMC Genom. 2016, 17, 389. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, X.; Peng, X.; Jin, Y.; Tan, H.; Wu, L.; Li, J.; Pei, Y.; Xu, X.; Zhang, W. Development of SNP and InDel markers by genome resequencing and transcriptome sequencing in radish (Raphanus sativus L.). BMC Genom. 2023, 24, 445. [Google Scholar] [CrossRef]
- Han, K.; Yang, H.-B.; Lee, J.; Lee, E.S.; Lee, H.-E.; Kim, D.-S. Selection of the Northeast Asian radish varieties for the development of the cost-cutting and efficient marker assisted backcrossing system. Horticultural Science and Technology. 2022, 40 (Suppl. 2), 289. [Google Scholar]
- Kitashiba, H.; Li, F.; Hirakawa, H.; Kawanabe, T.; Zou, Z.; Hasegawa, Y.; Tonosaki, K.; Shirasawa, S.; Fukushima, A.; Yokoi, S.; et al. Draft Sequences of the Radish (Raphanus sativus L.) Genome. DNA Res. 2014, 21, 481–490. [Google Scholar] [CrossRef]
- Jeong, Y.-M.; Kim, N.; Ahn, B.O.; Oh, M.; Chung, W.-H.; Chung, H.; Jeong, S.; Lim, K.-B.; Hwang, Y.-J.; Kim, G.-B.; et al. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor. Appl. Genet. 2016, 129, 1357–1372. [Google Scholar] [CrossRef]
- Yi, G.; Park, H.; Kim, J.-S.; Chae, W.B.; Park, S.; Huh, J.H. Identification of three FLOWERING LOCUS C genes responsible for vernalization response in radish (Raphanus sativus L.). Hortic. Environ. Biotechnol. 2015, 55, 548–556. [Google Scholar] [CrossRef]
Vernalization Period | QTL Name | Chr. | Genetic Position (bp) | Physical Position (Mbp) * | LOD | PVE (%) | Additive Effect | Dominant Effect |
---|---|---|---|---|---|---|---|---|
2 weeks | RsBT2.1 | 2 | 260.1–268 | 36.3–38.6 | 3.3 | 0.1 | 1.9 | 4.9 |
RsBT4.1 | 4 | 223.6–237.9 | 42.6–45.9 | 3.1 | 0.4 | −3.6 | −3.9 | |
3 weeks | RsBT2.2 | 2 | 168.1–171.9 | 40.6–41.7 | 4.3 | 6.5 | 1.8 | −0.3 |
RsBT3.1 | 3 | 128.7–131.3 | 27.5–28.5 | 5.7 | 11.9 | 2.0 | −1.3 | |
RsBT4.2 | 4 | 22–24.4 | 8.3–9.6 | 5.8 | 9.6 | 2.4 | −0.2 | |
RsBT4.3 | 4 | 29.2–35.8 | 10.3–12.5 | 6.1 | 10.6 | 2.6 | −0.3 | |
RsBT4.4 | 4 | 37.3–41.4 | 13.1–14.4 | 5.1 | 8.3 | 2.4 | −0.1 | |
RsBT5.1 | 5 | 58–61.6 | 22.2–23.3 | 5.6 | 3.4 | −2.1 | −1.3 | |
RsBT7.1 | 7 | 14.7–16.3 | 4.7–5.2 | 7.7 | 5.1 | −2.7 | −1.5 | |
RsBT7.2 | 7 | 19.4–24.6 | 5.7–7.4 | 7.5 | 5.3 | −2.8 | −1.4 | |
RsBT8.1 | 8 | 52.3–53.7 | 14.2–16 | 4.1 | 5.5 | −2.0 | −0.2 | |
RsBT8.2 | 8 | 57.7–65.1 | 16.3–18.4 | 4.7 | 4.4 | −2.0 | −0.7 |
SNP | Chr. | Position (bp) | −LOG(P) | MAF | PVE (%) |
---|---|---|---|---|---|
R2_24501949 | 2 | 24,501,949 | 26.7 | 0.32 | 39.68 |
R2_36182766 | 2 | 36,182,766 | 10.5 | 0.14 | 3.26 |
R3_19830045 | 3 | 19,830,045 | 8.8 | 0.18 | 10.24 |
R4_11119288 | 4 | 11,119,288 | 10.5 | 0.32 | 5.74 |
R4_27162164 | 4 | 27,162,164 | 10.1 | 0.05 | 15.13 |
R4_49690167 | 4 | 49,690,167 | 8.1 | 0.39 | 3.86 |
R9_28875894 | 9 | 28,875,894 | 7.6 | 0.07 | 5.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.; Ahn, H.-I.; Yang, H.-B.; Lee, Y.-R.; Lee, E.-S.; Lee, J.; Jang, C.-S.; Kim, D.-S. Identification of Genetic Loci Associated with Bolting Time in Radish (Raphanus sativus L.) by QTL Mapping and GWAS. Agronomy 2024, 14, 2700. https://doi.org/10.3390/agronomy14112700
Han K, Ahn H-I, Yang H-B, Lee Y-R, Lee E-S, Lee J, Jang C-S, Kim D-S. Identification of Genetic Loci Associated with Bolting Time in Radish (Raphanus sativus L.) by QTL Mapping and GWAS. Agronomy. 2024; 14(11):2700. https://doi.org/10.3390/agronomy14112700
Chicago/Turabian StyleHan, Koeun, Hong-Il Ahn, Hee-Bum Yang, Ye-Rin Lee, Eun-Su Lee, Junho Lee, Chang-Soon Jang, and Do-Sun Kim. 2024. "Identification of Genetic Loci Associated with Bolting Time in Radish (Raphanus sativus L.) by QTL Mapping and GWAS" Agronomy 14, no. 11: 2700. https://doi.org/10.3390/agronomy14112700
APA StyleHan, K., Ahn, H. -I., Yang, H. -B., Lee, Y. -R., Lee, E. -S., Lee, J., Jang, C. -S., & Kim, D. -S. (2024). Identification of Genetic Loci Associated with Bolting Time in Radish (Raphanus sativus L.) by QTL Mapping and GWAS. Agronomy, 14(11), 2700. https://doi.org/10.3390/agronomy14112700