Adaptive Agronomic Strategies for Enhancing Cereal Yield Resilience Under Changing Climate in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Locations, Species, and Genotypes
2.2. Weather Conditions, Soil, and Management
- Very low (0–5 mg P2O5/100 g): soils in this range have critically low levels of phosphorus;
- Low (5–10 mg P2O5/100 g): soils have slightly better phosphorus content but are still insufficient for optimal plant growth;
- Medium (10–15 mg P2O5/100 g): soils with an adequate phosphorus level for many crops;
- High (15–20 mg P2O5/100 g): soils indicate a good potential for supporting robust plant growth;
- Very high (20 mg P2O5/100 g and above): the soil has an abundance of phosphorus.
- Very low K (very light soils: 0–2.5, light soils: 0–5, medium soils: 0–7.5, and heavy soils: 0–10 mg K2O/100 g);
- Low K (very light soils: 2.6–7.5, light soils: 5.1–10, medium soils: 7.6–12.5, and heavy soils: 10.1–15 mg K2O/100 g);
- Medium K (very light soils: 7.6–12.5, light soils: 10.1–15, medium soils: 12.6–20, and heavy soils: 15.1–25 mg K2O/100 g);
- High K (very light soils: 12.6–17.5, light soils: 15.1–20, medium soils: 20.1–25, and heavy soils: 25.1–30 mg K2O/100 g);
- Very high K (very Light Soils: 17.6+, light soils: 20.1+, medium soils: 25.1+, and heavy soils: 30.1+ mg K2O/100 g).
- Very low Mg (very light soils: 0–1, light soils: 0–2, medium soils: 0–3, and heavy soils: 0–4 mg Mg/100 g);
- Low Mg (very light soils: 1.1–2, light soils: 2.1–3, medium soils: 3.1–5, and heavy soils: 4.1–6 mg Mg/100 g);
- Medium K (very light soils: 2.1–4, light soils: 3.1–5, medium soils: 5.1–7, and heavy soils: 6.1–10 Mg/100 g);
- High K (very light soils: 4.1–6, light soils: 5.1–7, medium soils: 7.1–9, and heavy soils: 10.1–14 Mg/100 g);
- Very high K (very Light Soils: 6.1+, light soils: 7.1+, medium soils: 9.1+, and heavy soils: 14.1+ Mg/100 g).
2.3. Statistical Analysis
- ○
- CWB (quantitative);
- ○
- Soil nutrients: P, K, and Mg levels, from very low, low, medium, and high to very high (quantitative, from 0 to 4, respectively);
- ○
- Nitrogen application at moderate (a1) and high (a2) input levels, and application of P₂O₅, and K₂O (quantitative);
- ○
- Soil pH (quantitative);
- ○
- Previous crop type: cereal, legume, rapeseed, or root crop (qualitative).
3. Results
3.1. CWB Trends Influenced by Climate Change
3.2. Correlation Analysis
3.3. CART Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Sarwary, M.; Samiappan, S.; Khan, G.D.; Moahid, M. Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model. Sustainability 2023, 15, 10963. [Google Scholar] [CrossRef]
- Slater, L.J.; Huntingford, C.; Pywell, R.F.; Redhead, J.W.; Kendon, E.J. Resilience of UK crop yields to compound climate change. Earth Syst. Dyn. 2022, 13, 1377–1396. [Google Scholar] [CrossRef]
- Shenoy, S.; Gorinevsky, D.; Trenberth, K.E.; Chu, S. Trends of extreme US weather events in the changing climate. Proc. Natl. Acad. Sci. USA 2022, 119, e2207536119. [Google Scholar] [CrossRef] [PubMed]
- Garderen, L.V.; Feser, F.; Mindlin, J.; Shepherd, T. Attributing Extreme Weather Events and Mean Climate Change Using Dynamical and Event Storylines; EGU23-17183; Copernicus Meetings. 2023. Available online: https://ui.adsabs.harvard.edu/abs/2023EGUGA..2517183V/abstract (accessed on 1 October 2024).
- Ahsan, S.; Bhat, M.S.; Alam, A.; Farooq, H.; Shiekh, H.A. Evaluating the impact of climate change on extreme temperature and precipitation events over the Kashmir Himalaya. Clim Dyn 2022, 58, 1651–1669. [Google Scholar] [CrossRef]
- Zeleke, A.; Tesfaye, K.; Tadesse, T.; Alem, T.; Ademe, D.; Adgo, E. Analysis of Climate Variability and Trends for Climate-Resilient Maize Farming System in Major Agroecology Zones of Ethiopia. Adv. Meteorol. 2023, 2023, e9562601. [Google Scholar] [CrossRef]
- DeFries, R.; Liang, S.; Chhatre, A.; Davis, K.F.; Ghosh, S.; Rao, N.D.; Singh, D. Climate resilience of dry season cereals in India. Sci. Rep. 2023, 13, 9960. [Google Scholar] [CrossRef]
- McAlvay, A.C.; DiPaola, A.; D’Andrea, A.C.; Ruelle, M.L.; Mosulishvili, M.; Halstead, P.; Power, A.G. Cereal species mixtures: An ancient practice with potential for climate resilience. A review. Agron. Sustain. Dev. 2022, 42, 100. [Google Scholar] [CrossRef]
- Doroszewski, A.; Jadczyszyn, J.; Kozyra, J.; Pudełko, R.; Stuczyński, T.; Mizak, K.; Łopatka, A.; Koza, P.; Górski, T.; Wróblewska, E. Podstawy systemu monitoringu suszy rolniczej. Woda-Sr. -Obsz. Wiej. 2012, 12, 77–91. [Google Scholar]
- Wójcik-Gront, E.; Gozdowski, D.; Derejko, A.; Pudełko, R. Analysis of the Impact of Environmental and Agronomic Variables on Agronomic Parameters in Soybean Cultivation Based on Long-Term Data. Plants 2022, 11, 2922. [Google Scholar] [CrossRef]
- Mussarat, M.; Shair, M.; Muhammad, D.; Mian, I.A.; Khan, S.; Adnan, M.; Fahad, S.; Dessoky, E.S.; El Sabagh, A.; Zia, A.; et al. Accentuating the Role of Nitrogen to Phosphorus Ratio on the Growth and Yield of Wheat Crop. Sustainability 2021, 13, 2253. [Google Scholar] [CrossRef]
- Rawal, N.; Pande, K.R.; Shrestha, R.; Vista, S.P. Nutrient use efficiency (NUE) of wheat (Triticum aestivum L.) as affected by NPK fertilization. PLoS ONE 2022, 17, e0262771. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Li, S.; Gao, L.; Sun, C.; Hu, J.; Ullah, A.; Gao, J.; Li, X.; Liu, S.; Jiang, D.; et al. Magnesium Application Promotes Rubisco Activation and Contributes to High-Temperature Stress Alleviation in Wheat During the Grain Filling. Front. Plant Sci. 2021, 12, 675582. [Google Scholar] [CrossRef] [PubMed]
- Kundzewicz, Z.W.; Matczak, P. Climate change regional review: Poland. WIREs Clim. Change 2012, 3, 297–311. [Google Scholar] [CrossRef]
- Iwańska, M.; Oleksy, A.; Dacko, M.; Skowera, B.; Oleksiak, T.; Wójcik-Gront, E. Use of classification and regression trees (CART) for analyzing determinants of winter wheat yield variation among fields in Poland. Biom. Lett. 2018, 55, 197–214. [Google Scholar] [CrossRef]
- Studnicki, M.; Wijata, M.; Sobczyński, G.; Samborski, S.; Gozdowski, D.; Rozbicki, J. Effect of genotype, environment and crop management on yield and quality traits in spring wheat. J. Cereal Sci. 2016, 72, 30–37. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Studnicki, M. Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) Tested Using a CART Model. Agriculture 2021, 11, 92. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Gozdowski, D. Effect of Climate Change in Years 2006-2019 on Crop Yields in Poland. Eur. J. Sustain. Dev. 2023, 12, 225. [Google Scholar] [CrossRef]
- Statistics Poland. Available online: https://stat.gov.pl/en/ (accessed on 20 May 2024).
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman and Hall/CRC: New York, NY, USA, 2017; p. 368. [Google Scholar]
- Santiago-Ventura, E.F.; Román-Sánchez, A. Potential Effects of Climatic Trends on Crop Yield in the Mediterranean; EGU23-16437; Copernicus Meetings. 2023. Available online: https://ui.adsabs.harvard.edu/abs/2023EGUGA..2516437S/abstract (accessed on 1 October 2024).
- Hlavinka, P.; Kersebaum, K.C.; Dubrovský, M.; Fischer, M.; Pohanková, E.; Balek, J.; Trnka, M. Water balance, drought stress and yields for rainfed field crop rotations under present and future conditions in the Czech Republic. Clim. Res. 2015, 65, 175–192. [Google Scholar] [CrossRef]
- Zhao, J.; Bindi, M.; Eitzinger, J.; Ferrise, R.; Gaile, Z.; Gobin, A.; Holzkämper, A.; Kersebaum, K.-C.; Kozyra, J.; Kriaučiūnienė, Z.; et al. Priority for climate adaptation measures in European crop production systems. Eur. J. Agron. 2022, 138, 126516. [Google Scholar] [CrossRef]
- Wójcik-Gront, E. Variables influencing yield-scaled Global Warming Potential and yield of winter wheat production. Field Crops Res. 2018, 227, 19–29. [Google Scholar] [CrossRef]
- Kalichkin, V.K.; Alsova, O.K.; Yu Maksimovich, K. Application of the decision tree method for predicting the yield of spring wheat. IOP Conf. Ser. Earth Environ. Sci. 2021, 839, 032042. [Google Scholar] [CrossRef]
- COBORU. Available online: https://www.coboru.gov.pl/index_en (accessed on 10 February 2024).
- ADMS—Agricultural Drought Monitoring System. Available online: https://susza.iung.pulawy.pl/en/kbw/2024,14/ (accessed on 10 May 2024).
- SMSR—Mapy KBW 2023-08-01–2023-09-30. Available online: https://susza.iung.pulawy.pl/en/kbw/2020,01/ (accessed on 15 April 2024).
- Weil, R.R.; Brady, R.C. Nature and Properties of Soils, 15th ed.; Pearson: Harlow, UK; London, UK; New York, NY, USA, 2016; p. 1104. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System); Version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Xu, X.; Shen, S.; Xiong, S.; Ma, X.; Fan, Z.; Han, H. Water Stress is a Key Factor Influencing the Parameter Sensitivity of the WOFOST Model in Different Agro-Meteorological Conditions. Int. J. Plant Prod. 2021, 15, 231–242. [Google Scholar] [CrossRef]
- Raj, A.S.; Siliveru, K.; McLean, R.; Prasad, P.V.V.; Lollato, R.P. Intensive management simultaneously reduces yield gaps and improves milling and baking properties of bread wheat. Crop Sci. 2023, 63, 936–955. [Google Scholar] [CrossRef]
- Palta, J.A.; Turner, N.C. Crop root system traits cannot be seen as a silver bullet delivering drought resistance. Plant Soil 2019, 439, 31–43. [Google Scholar] [CrossRef]
- Richards, R.; Rebetzke, G.; Condon, A.; Van Herwaarden, A. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci. 2002, 42, 111–121. [Google Scholar] [CrossRef]
- Madhukar, A.; Dashora, K.; Kumar, V. Climate Trends in Temperature and Water Variables during Wheat Growing Season and Impact on Yield. Environ. Process. 2021, 8, 1047–1072. [Google Scholar] [CrossRef]
- Rolle, M.; Tamea, S.; Claps, P. Climate-driven trends in agricultural water requirement: An ERA5-based assessment at daily scale over 50 years. Environ. Res. Lett. 2022, 17, 044017. [Google Scholar] [CrossRef]
- Abramoff, R.Z.; Ciais, P.; Zhu, P.; Hasegawa, T.; Wakatsuki, H.; Makowski, D. Adaptation Strategies Strongly Reduce the Future Impacts of Climate Change on Simulated Crop Yields. Earth’s Future 2023, 11, e2022EF003190. [Google Scholar] [CrossRef]
- Mwangi, L. Impact of Climate Change on Agricultural Food Production. Int. J. Agric. 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Sharma, R.; Kukreja, V.; Gupta, R. Enhancing Wheat Crop Resilience: An Efficient Deep Learning Framework for the Detection and Classification of Rust Disease. In Proceedings of the 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India, 26–28 May 2023; pp. 1–5. [Google Scholar]
- Varshney, R.K.; Bohra, A. Boosting Resilience of Global Crop Production Through Sustainable Stress Management. In Global Climate Change and Plant Stress Management; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Karri, V.; Nalluri, N. Enhancing resilience to climate change through prospective strategies for climate-resilient agriculture to improve crop yield and food security. Plant Sci. Today 2024, 11, 21–33. [Google Scholar] [CrossRef]
- Kostadinova, S. Grain Yield and Protein of Barley in Dependence of Phosphorus and Potassium Nutrition; Scientific Papers. Series A. Agronomy; Agricultural University-Plovdiv: Plovdiv, Bulgaria, 2014; Volume LVII, pp. 232–235. ISSN 2285-5825. [Google Scholar]
- Corbett, D.; Lynch, B.; Wall, D.P.; Tuohy, P. The response of finely textured and organic soils to lime and phosphorus application: Results from an incubation experiment. Soil Use Manag. 2023, 39, 368–384. [Google Scholar] [CrossRef]
- Moore, F.C.; Lobell, D.B. The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. USA 2015, 112, 2670–2675. [Google Scholar] [CrossRef] [PubMed]
- Yeşilköy, S.; Şaylan, L. Yields and water footprints of sunflower and winter wheat under different climate projections. J. Clean. Prod. 2021, 298, 126780. [Google Scholar] [CrossRef]
- Agnolucci, P.; De Lipsis, V. Long-run trend in agricultural yield and climatic factors in Europe. Clim. Change 2020, 159, 385–405. [Google Scholar] [CrossRef]
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
spring barley | 10 | 9 | 37 | 37 | 37 | 35 | 30 | 27 | 21 | 22 | ||||
spring wheat | 13 | 14 | 14 | 32 | 32 | 28 | 24 | 21 | 19 | 20 | 20 | 18 | ||
winter barley | 6 | 7 | 24 | 23 | 11 | 20 | 17 | 13 | 12 | 10 | 9 | |||
winter triticale | 14 | 14 | 13 | 27 | 30 | 30 | 27 | 27 | 23 | 23 | 8 | |||
winter wheat | 15 | 13 | 13 | 24 | 36 | 30 | 31 | 32 | 32 | 30 | 31 | 30 | 29 | 23 |
Winter Triticale | Spring Wheat | Winter Wheat | Winter Barley | Spring Barley | |
---|---|---|---|---|---|
pH | 6.10 ± 0.62 | 6.18 ± 0.53 | 6.20 ± 0.51 | 6.13 ± 0.50 | 6.18 ± 0.57 |
N at a1 [kg ha−1] | 96.91 ± 18.00 | 92.37 ± 18.76 | 112.33 ± 18.03 | 91.65 ± 18.98 | 82.63 ± 22.73 |
N at a2 [kg ha−1] | 136.76 ± 17.87 | 134.30 ± 19.20 | 152.16 ± 18.66 | 131.68 ± 20.17 | 120.92 ± 23.54 |
P2O5[kg ha−1] | 50.73 ± 16.36 | 51.64 ± 20.20 | 52.28 ± 16.40 | 49.50 ± 16.57 | 49.00 ± 17.81 |
K2O[kg ha−1] | 82.62 ± 22.01 | 84.85 ± 23.45 | 88.30 ± 23.58 | 88.23 ± 23.43 | 81.12 ± 23.83 |
yield at a1 [t ha−1] | 7.46 ± 1.91 | 6.61 ± 1.58 | 8.48 ± 1.71 | 8.39 ± 2.02 | 6.44 ± 1.78 |
yield at a2 [t ha−1] | 8.96 ± 2.08 | 7.44 ± 1.79 | 9.59 ± 1.94 | 9.42 ± 2.20 | 7.14 ± 1.92 |
Yield a1 | Yield a2 | Yield a1 | Yield a2 | Yield a1 | Yield a2 | Yield a1 | Yield a2 | Yield a1 | Yield a2 | |
---|---|---|---|---|---|---|---|---|---|---|
Winter Triticale | Spring Wheat | Winter Wheat | Spring Barley | Winter Barley | ||||||
year | −0.11 | −0.08 | −0.03 | −0.07 | 0.14 | 0.06 | −0.11 | −0.13 | 0.24 | 0.17 |
pH | 0.14 | 0.13 | 0.08 | 0.08 | 0.05 | 0.05 | 0.19 | 0.17 | 0.06 | 0.07 |
N at a1 | 0.02 | −0.01 | −0.06 | −0.07 | −0.12 | |||||
N at a2 | 0.01 | −0.02 | −0.05 | −0.09 | −0.08 | |||||
P2O5 | 0.06 | 0.00 | 0.02 | 0.07 | 0.09 | 0.08 | 0.10 | 0.11 | 0.19 | 0.24 |
K2O | 0.08 | 0.02 | 0.01 | 0.07 | 0.04 | 0.05 | 0.04 | 0.05 | −0.06 | −0.05 |
P2O5 in soil * | −0.01 | −0.03 | 0.02 | 0.02 | −0.07 | −0.08 | −0.02 | −0.03 | −0.22 | −0.20 |
K2O in soil * | 0.02 | 0.07 | 0.03 | −0.01 | 0.06 | 0.06 | 0.19 | 0.18 | −0.03 | −0.02 |
Mg in soil * | 0.01 | 0.00 | 0.08 | 0.09 | −0.03 | 0.00 | 0.00 | −0.01 | 0.01 | 0.02 |
CWB1 | −0.04 | 0.13 | 0.22 | 0.26 | 0.07 | 0.14 | 0.20 | 0.26 | 0.02 | 0.10 |
CWB4 | 0.06 | 0.14 | 0.26 | 0.36 | −0.06 | 0.03 | 0.20 | 0.27 | −0.01 | 0.05 |
CWB7 | −0.05 | 0.02 | 0.05 | 0.11 | −0.19 | −0.13 | 0.06 | 0.12 | −0.13 | −0.09 |
Winter Triticale | Spring Wheat | Winter Wheat | Winter Barley | Spring Barley | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a1 | a2 | a1 | a2 | a1 | a2 | a1 | a2 | |
pH | 78 | 72 | 59 | 62 | 43 | 63 | 74 | 80 | 94 | 72 |
N fertilizer (a1 or a2) | 75 | 75 | 86 | 79 | 49 | 61 | 100 | 100 | 68 | 67 |
P2O5 fertilizer | 100 | 100 | 42 | 41 | 55 | 64 | 85 | 96 | 62 | 57 |
K2O fertilizer | 62 | 62 | 45 | 40 | 42 | 60 | 62 | 45 | 57 | 42 |
P2O5 in soil | 19 | 27 | 25 | 30 | 48 | 52 | 69 | 67 | 33 | 29 |
K2O in soil | 41 | 60 | 38 | 37 | 32 | 39 | 35 | 34 | 58 | 65 |
Mg in soil | 59 | 41 | 54 | 54 | 50 | 50 | 62 | 46 | 38 | 36 |
CWB1 (21.03–20.05) | 62 | 92 | 89 | 100 | 88 | 93 | 81 | 76 | 100 | 100 |
CWB4 (21.04–20.06) | 88 | 100 | 92 | 95 | 100 | 99 | 93 | 100 | 82 | 93 |
CWB7 (21.05–20.07) | 82 | 82 | 100 | 97 | 82 | 100 | 97 | 73 | 78 | 90 |
prior crop | 45 | 38 | 52 | 38 | 41 | 75 | 63 | 43 | 35 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Gront, E.; Gozdowski, D.; Pudełko, R.; Lenartowicz, T. Adaptive Agronomic Strategies for Enhancing Cereal Yield Resilience Under Changing Climate in Poland. Agronomy 2024, 14, 2702. https://doi.org/10.3390/agronomy14112702
Wójcik-Gront E, Gozdowski D, Pudełko R, Lenartowicz T. Adaptive Agronomic Strategies for Enhancing Cereal Yield Resilience Under Changing Climate in Poland. Agronomy. 2024; 14(11):2702. https://doi.org/10.3390/agronomy14112702
Chicago/Turabian StyleWójcik-Gront, Elżbieta, Dariusz Gozdowski, Rafał Pudełko, and Tomasz Lenartowicz. 2024. "Adaptive Agronomic Strategies for Enhancing Cereal Yield Resilience Under Changing Climate in Poland" Agronomy 14, no. 11: 2702. https://doi.org/10.3390/agronomy14112702
APA StyleWójcik-Gront, E., Gozdowski, D., Pudełko, R., & Lenartowicz, T. (2024). Adaptive Agronomic Strategies for Enhancing Cereal Yield Resilience Under Changing Climate in Poland. Agronomy, 14(11), 2702. https://doi.org/10.3390/agronomy14112702