Ensiling Characteristics, Bacterial Community Structure, Co-Occurrence Networks, and Their Predicted Functionality in Alfalfa Haylage Silage with or Without Foliar Selenium Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Silage Preparation
2.2. Determination of Nutrient Indices and Fermentation Indices
2.3. Microbial Diversity Measurement
2.4. Data Processing and Statistical Analyses
3. Results
3.1. Chemical Composition of Alfalfa Haylage Silage
3.2. Fermentation Quality of Alfalfa Haylage Silage
3.3. Comprehensive Evaluation of Haylage Silage
3.4. Bacterial Community Analysis of Alfalfa Silage
4. Discussion
4.1. Effects of Se on the Chemical Composition of Alfalfa Haylage Silage
4.2. Effects of Se on the Fermentation Quality of Alfalfa Haylage Silage
4.3. Effects of Se on the Bacterial Community of Alfalfa Haylage Silage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Feudis, M.; Massaccesi, L.; D’Amato, R.; Businelli, D.; Casucci, C.; Agnelli, A. Impact of Na-selenite fertilization on the microbial biomass and enzymes of a soil under corn (Zea mays L.) cultivation. Geoderma 2020, 373, 114425. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, X.; Zhu, H.; Li, L.; Zhang, L.; Liu, M.; Liu, Z.; Peng, M.; Wang, C.; Li, Q.; et al. Effect of Lactobacillus plantarum enriched with organic/inorganic selenium on the quality and microbial communities of fermented pickles. Food Chem. 2021, 365, 130495. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Hu, H.; Hu, J.; Xiang, M.; Yang, Q. Comparative proteomics analysis of the responses to selenium in selenium-enriched alfalfa (Medicago sativa L.) leaves. Plant Physiol. Biochem. 2021, 165, 265–273. [Google Scholar] [CrossRef]
- Brummer, F.A.; Pirelli, G.; Hall, J.A. Selenium Supplementation Strategies for Livestock in Oregon; Oregon State University Extension Service: Condon, OR, USA, 2014; pp. 1–9. Available online: http://extension.oregonstate.edu/catalog (accessed on 17 May 2022).
- Schiavon, M.; Nardi, S.; Dalla Vecchia, F.; Ertani, A. Selenium biofortification in the 21(st) century: Status and challenges for healthy human nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef]
- Lintschinger, J.; Fuchs, N.; Moser, J.; Kuehnelt, D.; Goessler, W. Selenium-enriched sprouts. A Raw material for fortified cereal-based diets. J. Agric. Food Chem. 2000, 48, 5362–5368. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Yang, K.; Liu, M.; Qi, Y.; Zhang, T.; Fan, M.; Wei, X. Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro. J. Dairy Sci. 2018, 101, 1930–1942. [Google Scholar] [CrossRef]
- Yacoubi, R.; Job, C.; Belghazi, M.; Chaibi, W.; Job, D. Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J. Phys. Chem. Lett. 2011, 10, 3891–3903. [Google Scholar] [CrossRef]
- Wang, M.; Franco, M.; Cai, Y.; Yu, Z. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Anim. Feed. Sci. Tech. 2000, 270, 114702. [Google Scholar] [CrossRef]
- Duan, Z.; Li, X.; Li, X.; Zhang, H.; Zhang, J. Comparation of alfalfa silage and hay nutrition value. China Dairy Cattle 2018, 5, 16–19. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, H.; Cen, H.; Qian, W.; Wang, Y.; Ren, M.; Cheng, Y. Effects of various forms of selenium biofortification on photosynthesis, secondary metabolites, quality, and lignin deposition in alfalfa (Medicago sativa L.). Field Crops Res. 2023, 292, 108801. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Hua, Y.; Wang, K.; Guo, Y.; Lu, Y.; Zhu, S.; Zhang, P.; Hu, G. Transcriptome and Metabolome Analysis of Selenium Treated Alfalfa Reveals Influence on Phenylpropanoid Biosynthesis to Enhance Growth. Plants 2023, 12, 2038. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Imtiaz, M.; Rizwan, M.; Yuan, Y.; Huang, H.; Tu, S. Dynamics of Selenium uptake, speciation, and antioxidant response in rice at different panicle initiation stages. Sci. Total Environ. 2019, 691, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Nancharaiah, Y.V.; Lens, P.N.L. Ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev. 2015, 79, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, J.; Wei, F.; Chen, X.; Li, M.; Li, C.; Xia, S.; Zhang, G.; You, W.; Cong, X.; et al. Microbial functional communities and the antibiotic resistome profile in a high-selenium ecosystem. Chemosphere 2023, 311, 136858. [Google Scholar] [CrossRef]
- Zhou, Y.; Bastida, F.; Liu, Y.; Liu, Y.; Xiao, Y.; Song, P.; Wang, T.; Li, Y. Selenium fertigation with nanobubbles influences soil selenium residual and plant performance by modulation of bacterial community. J. Hazard. Mater. 2022, 423, 127114. [Google Scholar] [CrossRef]
- Sun, P.; Ge, G.; Sun, L.; Du, S.; Liu, Y.; Yan, X.; Zhang, J.; Zhang, Y.; Wang, Z.; Jia, Y. Effects of selenium enrichment on fermentation characteristics, selenium content and microbial community of alfalfa silage. BMC Plant Biol. 2024, 24, 555. [Google Scholar] [CrossRef]
- Seppälä, A.; Albarran, Y.M.; Miettinen, H.; Siguero, M.P.; Juutinen, E.; Rinne, M. Selenium supplementation by addition of sodium selenate with silage additive. Agric. Food Sci. 2014, 23, 81–88. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Fernández-Menéndez, S.; Fernández-Sánchez, M.L.; Fernández-Colomer, B.; Remy, R.R.d.l.F.S.; Cotallo, G.D.C.; Freire, A.S.; Braz, B.F.; Santelli, R.E.; Sanz-Medel, A. Total zinc quantification by inductively coupled plasma-mass spectrometry and its speciation by size exclusion chromatography–inductively coupled plasma-mass spectrometry in human milk and commercial formulas: Importance in infant nutrition. J. Chromatogr. A 2016, 1428, 246–254. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- He, L.; Lv, H.; Xing, Y.; Wang, C.; You, X.; Zhang, Q. The nutrients in moringa oleifera leaf contribute to the improvement of stylo and alfalfa silage: Fermentation, nutrition and bacterial community. Bioresour. Technol. 2020, 301, 122733. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, C.; Xing, Y.; Zhou, W.; Pian, R.; Chen, X.; Zhang, Q. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresour. Technol. 2020, 296, 122336. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Shaver, R. Interpretation and use of silage fermentation analysis reports. Focus Forage 2001, 3, 1–5. [Google Scholar]
- Ding, Z.; Xu, D.; Bai, J.; Li, F.; Adesogan, A.; Zhang, P.; Yuan, X.J.; Guo, X. Characterization and identification of ferulic acid esterase-producing Lactobacillus species isolated from Elymus nutans silage and their application in ensiled alfalfa. J. Appl. Microbiol. 2019, 127, 985–995. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, Y.; Jia, H.; Ding, H.; Yue, T.; Yuan, Y. Biosynthesis of selenium nanoparticles of Monascus purpureus and their inhibition to Alicyclobacillus acidoterrestris. Food Control 2021, 130, 108366. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Jiang, Y.; Pech Cervantes, A.A.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef]
- Yang, F.Y.; Zhao, S.S.; Wang, Y.; Fan, X.M.; Wang, Y.P.; Feng, C.S. Assessment of bacterial community composition and dynamics in alfalfa silages with and without Lactobacillus plantarum inoculation using absolute quantification 16S rRNA sequencing. Front. Microbiol. 2021, 11, 629894. [Google Scholar] [CrossRef]
- Ohmomo, S.; Tanaka, O.; Kitamoto, H.K.; Cai, Y.M. Silage and microbial performance, old story but new problems. Japan Agricult. Res. Q. 2002, 36, 59–71. [Google Scholar] [CrossRef]
- Scherer, R.; Gerlach, K.; Südekum, K.H. Biogenic amines and gamma–amino butyric acid in silages: Formation, occurrence and influence on dry matter intake and ruminant production. Anim. Feed Sci. Technol. 2015, 210, 1–16. [Google Scholar] [CrossRef]
- Wang, C.; He, L.; Xing, Y.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Fermentation quality and microbial community of alfalfa and stylo silage mixed with Moringa oleifera leaves. Bioresour. Technol. 2019, 284, 240–247. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, J.; Zhang, Q.; Jiang, Y.; Wu, Z.; Yu, Z. Effects of mixing red clover with alfalfa at different ratios on dynamics of proteolysis and protease activities during ensiling. J. Dairy Sci. 2018, 101, 8954–8964. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E. Factors influencing silage quality and their implications for management. J. Dairy Sci. 1988, 71, 2992–3002. [Google Scholar] [CrossRef]
- Ellis, J.; Hindrichsen, I.; Klop, G.; Kinley, R.; Milora, N.; Bannink, A.; Dijkstra, J. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. J. Dairy Sci. 2016, 99, 7159–7174. [Google Scholar] [CrossRef]
- Dong, Z.; Shao, T.; Li, J.; Yang, L.; Yuan, X. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile Napier grass silages. J. Dairy Sci. 2020, 103, 4288–4301. [Google Scholar] [CrossRef]
- Ali, N.; Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Nazar, M.; Shao, T. Microbial diversity and fermentation profile of red clover silage inoculated with reconstituted indigenous and exogenous epiphytic microbiota. Bioresour. Technol. 2020, 314, 123606. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Liu, J.; Yang, F.; Zhu, W.; Yuan, X.; Hu, Y.; Cui, Z.; Wang, X. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 2017, 241, 349–359. [Google Scholar] [CrossRef]
- Wang, M.; Gao, R.; Franco, M.; Hannaway, D.B.; Ke, W.; Ding, Z.; Yu, Z.; Guo, X. Effect of Mixing Alfalfa with Whole-Plant Corn in Different Proportions on Fermentation Characteristics and Bacterial Community of Silage. Agriculture 2021, 11, 174. [Google Scholar] [CrossRef]
- Liu, B.Y.; Huan, H.L.; Gu, H.R.; Xu, N.X.; Shen, Q.; Ding, C.L. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresour. Technol. 2019, 273, 212–219. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Pan, G.; Yin, H.; Sun, J.; Yu, Z.; Bai, C.; Xue, Y. Effect of exogenous microorganisms on the fermentation quality, nitrate degradation and bacterial community of sorghum-sudangrass silage. Front. Microbiol. 2022, 13, 1052837. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Shao, T. Sequencing and microbiota transplantation to determine the role of microbiota on the fermentation type of oat silage. Bioresour. Technol. 2020, 309, 123371. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, X.; Guan, H.; Huang, L.; Ma, X.; Peng, Y.; Li, Z.; Nie, G.; Zhou, J.; Yang, W.; et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 2019, 279, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yuan, X.; Li, J.; Dong, Z.; Shao, T. Dynamics of microbial community and fermentation quality during ensilingof sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresour. Technol. 2019, 275, 280–287. [Google Scholar] [CrossRef]
- Wang, D.; Rensing, C.; Zheng, S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. J. Hazard. Mater. 2022, 421, 126684. [Google Scholar] [CrossRef]
- Hatfield, D.L. “Selenium: Its Molecular Biology and Role in Human Health”. Free Radical Res. 2002, 36, 235. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, C.; Zhang, T. Selenium transformation and selenium-rich foods. Food Biosci. 2021, 40, 100875. [Google Scholar] [CrossRef]
- Taylor, J.B.; Marchello, M.J.; Finley, J.W.; Neville, T.L.; Combs, G.F.; Caton, J.S. Nutritive value and display-life attributes of selenium-enriched beef-muscle foods. J. Food Compos. Anal. 2018, 21, 183–186. [Google Scholar] [CrossRef]
Items | Mowing Period | CK ± SEM | T ± SEM | p Value |
---|---|---|---|---|
DM, g/kg FM | Bud | 302.90 ± 0.46 | 292.28 ± 0.64 | 0.93 |
Initial bloom | 388.10 ± 1.45 | 370.88 ± 0.62 | 0.62 | |
Full bloom | 427.90 ± 0.62 | 427.82 ± 0.68 | 0.89 | |
CP, %DM | Bud | 20.42 ± 0.80 | 20.76 ± 0.58 | 0.42 |
Initial bloom | 20.63 ± 0.21 | 21.26 ± 0.62 | <0.05 | |
Full bloom | 22.21 ± 0.23 | 23.87 ± 0.59 | <0.05 | |
NDF, %DM | Bud | 41.54 ± 2.12 | 38.78 ± 1.61 | 0.24 |
Initial bloom | 40.80 ± 1.08 | 38.67 ± 1.75 | 0.14 | |
Full bloom | 37.52 ± 0.69 | 36.31 ± 1.58 | <0.05 | |
ADF, %DM | Bud | 33.31 ± 1.66 | 31.14 ± 1.23 | 0.64 |
Initial bloom | 31.42 ± 1.46 | 29.83 ± 1.80 | 0.29 | |
Full bloom | 26.86 ± 1.40 | 26.24 ± 1.53 | 0.27 | |
Ash, %DM | Bud | 11.75 ± 0.38 | 12.29 ± 0.21 | <0.05 |
Initial bloom | 10.99 ± 0.12 | 10.95 ± 0.09 | 0.24 | |
Full bloom | 10.11 ± 0.10 | 10.00 ± 0.31 | 0.17 | |
EE, %DM | Bud | 2.84 ± 0.13 | 3.04 ± 0.17 | <0.05 |
Initial bloom | 2.54 ± 0.14 | 2.67 ± 0.13 | 0.49 | |
Full bloom | 2.60 ± 0.10 | 2.48 ± 0.19 | 0.78 | |
Se, mg/kg | Bud | 1.33 ± 0.18 | 9.68 ± 0.81 | <0.05 |
Initial bloom | 0.85 ± 0.18 | 5.57 ± 0.08 | <0.05 | |
Full bloom | 0.51 ± 0.09 | 2.80 ± 0.56 | <0.05 |
Items | Mowing Period | Treatment | 0 d | 1 d | 3 d | 7 d | 45 d |
---|---|---|---|---|---|---|---|
Ammonia-N,%TN | Bud | CK | 0.53 Ac | 3.22 Ac | 6.27 Abc | 10.85 Aab | 13.16 ABab |
T | 0.35 ABc | 1.23 Bc | 4.05 Bbc | 9.62 Aab | 13.70 Aa | ||
Initial bloom | CK | 0.31 ABd | 0.99 Bd | 1.73 Cd | 3.83 Bc | 10.28 ABa | |
T | 0.11 Bc | 0.83 Bbc | 3.04 BCbc | 3.05 Bbc | 7.68 BCa | ||
Full bloom | CK | 0.23 ABc | 0.22 Bc | 0.90 Cbc | 1.85 Bab | 3.29 Dab | |
T | 0.28 ABe | 0.75 Bd | 1.21 Cc | 1.56 Bc | 3.24 CDa | ||
Lacticacid, %DM | Bud | CK | 1.81 Ca | 2.47 Ba | 1.97 Aa | 2.91 Aa | 2.66 Aa |
T | 1.71 Ca | 2.78 ABa | 2.60 Aa | 2.25 Aa | 2.76 Aa | ||
Initial bloom | CK | 1.23 Aa | 3.02 ABa | 2.67 Aa | 2.47 Aa | 3.11 ABCa | |
T | 1.45 Aa | 1.07 Ca | 2.72 Aa | 2.27 Aa | 2.69 BCa | ||
Full bloom | CK | 2.12 Acd | 3.89 Aab | 1.89 Ad | 3.23 Abc | 4.47 Aa | |
T | 2.63 Aa | 2.12 BCa | 2.62 Aa | 3.23 Aa | 3.63 ABa | ||
Acetic acid, %DM | Bud | CK | 0.16 Ab | 0.20 Ab | 0.40 ABb | 0.52 Aab | 0.78 Aa |
T | 0.08 Ad | 0.20 Acd | 0.49 Aabc | 0.35 ABbcd | 0.66 Aab | ||
Initial bloom | CK | 0.11 Ac | 0.10 Ac | 0.07 Cc | 0.21 BCbc | 0.60 Aa | |
T | 0.09 Ab | 0.10 Ab | 0.18 BCb | 0.20 BCb | 0.54 Aa | ||
Full bloom | CK | 0.07 Aa | 0.07 Aa | 0.08 Ca | 0.14 BCa | 0.10 Aa | |
T | 0.04 Aa | 0.11 Aa | 0.12 Ca | 0.06 Ca | 0.06 Aa | ||
Propionic acid, %DM | Bud | CK | 0.08 Aa | 0.08 Aa | 0.11 BA | 0.08 Aa | 0.14 Aa |
T | 0.08 Aa | 0.13 Aa | 0.21 Aa | 0.09 Aa | 0.16 Aa | ||
Initial bloom | CK | 0.08 Aa | 0.12 Aa | 0.07 Ba | 0.11 Aa | 0.15 Aa | |
T | 0.09 Aa | 0.06 Aa | 0.12 Ba | 0.10 Aa | 0.11 Aa | ||
Full bloom | CK | 0.10 Aa | 0.18 Aa | 0.11 Ba | 0.10 Aa | 0.18 Aa | |
T | 0.12 Aa | 0.14 Aa | 0.14 Ba | 0.14 Aa | 0.14 Aa | ||
Butyric acid, %DM | Bud | CK | 0.00 Bb | 0.00 Bb | 0.04 Aab | 0.01 BCab | 0.06 Aa |
T | 0.04 ABa | 0.05 Aa | 0.04 Aa | 0.00 Ca | 0.05 Aa | ||
Initial bloom | CK | 0.08 Aab | 0.00 Bc | 0.04 Abc | 0.09 Aab | 0.08 Aab | |
T | 0.06 Bab | 0.01 Bb | 0.02 Ab | 0.05 Aab | 0.05 Aab | ||
Full bloom | CK | 0.07 ABa | 0.00 Bb | 0.02 Aab | 0.02 BCab | 0.05 Aab | |
T | 0.07 ABb | 0.01 Bb | 0.02 Aab | 0.05 ABab | 0.05 Aab | ||
pH | Bud | CK | 5.16 Ad | 5.52 Ac | 5.75 Aab | 5.86 Aa | 5.04 Ad |
T | 5.00 ABb | 5.50 Aa | 5.74 Aa | 5.79 Aa | 4.95 Ab | ||
Initial bloom | CK | 4.99 ABd | 4.99 Bbc | 5.26 Bb | 5.50 Ba | 5.10 Acd | |
T | 4.97 ABbc | 5.16 Babc | 5.33 Ba | 5.38 BCa | 4.86 Ac | ||
Full bloom | CK | 5.19 Aa | 5.15 Ba | 5.19 Ba | 5.12 Da | 5.08 Aa | |
T | 5.20 Bb | 5.20 Ba | 5.24 Ba | 5.19 CDa | 5.01 Cb |
Treatment | Correlation Coefficient | Association Order |
---|---|---|
TB-45 | 0.686 | 3 |
CKB-45 | 0.618 | 5 |
TI-45 | 0.672 | 4 |
CKI-45 | 0.614 | 6 |
TF-45 | 0.726 | 1 |
CKF-45 | 0.725 | 2 |
Treatment | Silage Time | Chao1 | Observed Species | Shannon | Simpson |
---|---|---|---|---|---|
CK | 0 d | 879.35 A | 863.67 A | 7.90 A | 0.98 A |
1 d | 451.89 B | 445.67 BC | 6.60 B | 0.97 AB | |
3 d | 354.01 B | 333.67 C | 5.56 BCD | 0.95 ABC | |
7 d | 243.59 B | 234.00 C | 5.27 CD | 0.95 BC | |
45 d | 278.59 B | 267.00 C | 5.14 CD | 0.93 CD | |
T | 0 d | 763.79 A | 722.67 AB | 6.58 B | 0.95 BC |
1 d | 321.69 B | 318.33 C | 6.03 BC | 0.96 ABC | |
3 d | 332.30 B | 313.33 C | 5.48 CD | 0.95 ABC | |
7 d | 350.02 B | 327.67 C | 5.03 CD | 0.93 CD | |
45 d | 244.27 B | 235.33 C | 4.76 D | 0.90 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wang, F.; Sun, S.; Zou, Y.; Gao, Z.; Hua, Y.; Qin, L.; Hu, G. Ensiling Characteristics, Bacterial Community Structure, Co-Occurrence Networks, and Their Predicted Functionality in Alfalfa Haylage Silage with or Without Foliar Selenium Application. Agronomy 2024, 14, 2709. https://doi.org/10.3390/agronomy14112709
Wang K, Wang F, Sun S, Zou Y, Gao Z, Hua Y, Qin L, Hu G. Ensiling Characteristics, Bacterial Community Structure, Co-Occurrence Networks, and Their Predicted Functionality in Alfalfa Haylage Silage with or Without Foliar Selenium Application. Agronomy. 2024; 14(11):2709. https://doi.org/10.3390/agronomy14112709
Chicago/Turabian StyleWang, Kexin, Fengdan Wang, Shengnan Sun, Yilin Zou, Zifeng Gao, Yi Hua, Ligang Qin, and Guofu Hu. 2024. "Ensiling Characteristics, Bacterial Community Structure, Co-Occurrence Networks, and Their Predicted Functionality in Alfalfa Haylage Silage with or Without Foliar Selenium Application" Agronomy 14, no. 11: 2709. https://doi.org/10.3390/agronomy14112709
APA StyleWang, K., Wang, F., Sun, S., Zou, Y., Gao, Z., Hua, Y., Qin, L., & Hu, G. (2024). Ensiling Characteristics, Bacterial Community Structure, Co-Occurrence Networks, and Their Predicted Functionality in Alfalfa Haylage Silage with or Without Foliar Selenium Application. Agronomy, 14(11), 2709. https://doi.org/10.3390/agronomy14112709