Estimation of Total Digestible Nutrient Concentration for Short-Panicle Cultivars of Forage Rice (Oryza sativa L.) Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultivation and Measurement
2.2. Digestion Trial and Estimation of TDNs
2.3. Chemical Analysis of Silages
2.4. Statistical Analysis
3. Results
3.1. Growth and Yield Attributes of Short-Panicle Cultivars
3.2. Fermentation Quality of Silage Ensiled for 60 Days and Digestion Trial of Silage Fed to JB Beef Cattle at 60 Days from Ensilage in 2013
3.3. Relationship Between In Vivo and Estimated TDNs
4. Discussion
4.1. Comparision of Growth and Yield Attributes Between Short-Panicle and Traditional Cultivars
4.2. Fermentation Quality of Silage Ensiled for 60 Days and Digestion Trial of Silages Fed to JB Beef Cattle
4.3. Accuracy of Estimated TDNs from In Vivo TDNs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- E-Stat, Portal Site of Official Statistics of Japan. Statistics of Japan, 2022. Available online: https://www.e-stat.go.jp/dbview?sid=0002008247 (accessed on 19 September 2024).
- Jang, Y.; Sharavdorj, K.; Nadalin, P.; Lee, S.; Cho, J. Growth and forage value of two forage rice cultivars according to harvest time in reclaimed land of South Korea. Agronomy 2022, 12, 3118. [Google Scholar] [CrossRef]
- Jang, Y.; Sharavdorj, K.; Ahn, Y.; Cho, J. Effects of planting density and nitrogen fertilization on the growth of forage rice in reclaimed and general paddy fields. Plants 2024, 13, 13. [Google Scholar] [CrossRef]
- Kato, H. Development of rice varieties for whole crop silage (WCS) in Japan. Jpn. Agric. Res. Q. 2008, 42, 231–236. [Google Scholar] [CrossRef]
- Senda, M.; Ishikawa, T.; Kusa, K. Practical analyses of high-yield technology for forage rice. Jpn. J. Farm Manag. 2010, 48, 1–10. [Google Scholar] [CrossRef]
- Sakuyama, T. Increasing Risks and Uncertainties of Global Food Markets and Food System −In order to Ensure Stable Food Procurement−: Comments. J. Food Syst. Res. 2023, 30, 178–179. (In Japanese) [Google Scholar] [CrossRef]
- Takakai, F.; Kobayashi, M.; Sato, T.; Yasuda, K.; Kaneta, Y. Effects of forage rice cultivation on carbon and greenhouse gas balances in a rice paddy field. Atmosphere 2018, 9, 504. [Google Scholar] [CrossRef]
- Islam, M.R.; Ishida, M.; Ando, S.; Nishida, T.; Yoshida, N. Estimation of nutritive value of whole crop rice silage and its effect on milk production performance by dairy cows. Asian-Australas. J. Anim. Sci. 2004, 17, 1383–1389. [Google Scholar] [CrossRef]
- Kamiya, Y.; Kamiya, M.; Tanaka, M.; Shioya, S.; Hattori, I.; Sato, K.; Suzuki, T. Feeding value of whole crop rice silage for lactating dairy cows under high ambient temperature. Jpn. Agric. Res. Q. 2008, 42, 215–221. Available online: http://www.jircas.affrc.go.jp/ (accessed on 19 September 2024). [CrossRef]
- Yamamoto, Y.; Mizutani, M.; Inui, K.; Urakawa, S.; Hiraoka, H.; Goto, M. Feed intake and lactation of dairy cow fed on total missed ration of whole crop rice silage. Jpn. J. Grassl. Sci. 2005, 51, 40–47. [Google Scholar] [CrossRef]
- Nakanishi, N. Development of feeding whole crop rice silage to beef cattle. J. Agric. Res. 2005, 60, 504–506. [Google Scholar]
- Yamada, Y.; Higuchi, M.; Nakanishi, N. Effects of whole crop silage on meat quality and adipokine gene expression in fattening wagyu cattle. Jpn. Agric. Res. Q. 2017, 51, 27–30. [Google Scholar] [CrossRef]
- Kim, J.G.; Jo, C.; Zhao, G.Q.; Liu, C.; Nan, W.S.; Kim, H.J.; Ahn, E.G.; Min, H.-G. Feeding effect of whole crop rice based TMR on meat quality of Hanwoo steers. J. Korean Soc. Grassl. Forage Sci. 2019, 39, 264–271. [Google Scholar] [CrossRef]
- Tanno, K. Quantitative effects of cultural practices on growth and yield of forage rice having short panicles. Grass Forage Sci. 2020, 75, 326–338. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Mizutani, M.; Inui, K.; Urakawa, S.; Hiraoka, H.; Goto, M. Effects of different types of roughage on digestion of whole crop rice silage in total mixed ration. Jpn. J. Grassl. Sci. 2008, 54, 12–18. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Inui, K.; Urakawa, S.; Hiraoka, H.; Goto, M. Effect of roughage-based NDF content on dry matter intake, digestibility of rice grains and total mixed ration (TMR), and milk production of lactating cattle fed on the TMR containing whole crop rice silage. Jpn. J. Grassl. Sci. 2008, 54, 217–222. [Google Scholar] [CrossRef]
- Shinde, S. Feeding of rice whole crop silage for lactating dairy cow. Jpn. J. Grassl. Sci. 2010, 55, 365–372. [Google Scholar] [CrossRef]
- Matsushita, K.; Iida, S.; Ideta, O.; Sunohara, Y.; Maeda, H.; Tamura, Y.; Kouno, S.; Takakuwa, M. ‘Tachisuzuka’, a new novel rice cultivar with high straw yield and high sugar content for whole-crop silage. Breed. Sci. 2011, 61, 86–92. [Google Scholar] [CrossRef]
- Matsushita, K.; Ishii, T.; Ideta, O.; Iida, S.; Sunohara, Y.; Maeda, H.; Watanabe, H. Yield and lodging resistance of ‘Tachiayaka’, a novel rice cultivar with short panicles for whole-crop silage. Plant Prod. Sci. 2014, 17, 202–206. [Google Scholar] [CrossRef]
- Kono, S.; Shinde, S.; Kanda, N.; Shirota, K.; Fukuma, T.; Tsukazaki, Y. Nutrient value and ruminal degradability of whole crop silage prepared from Tachisuzuka as short panicle rice cultivar. Jpn. J. Grassl. Sci. 2014, 60, 91–96. [Google Scholar] [CrossRef]
- Hirose, T.; Kadoya, S.; Hashida, Y.; Okamura, M.; Ohsugi, R.; Aoki, N. Mutation of the SP1 gene is responsible for the small panicle trait in the rice cultivar Tachisuzuka, but not necessarily for high sugar content in the stem. Plant Prod. Sci. 2017, 20, 90–94. [Google Scholar] [CrossRef]
- Léran, S.; Varala, K.; Boyer, J.C.; Chiurazzi, M.; Crawford, N.; Daniel-Vedele, F.; David, L.; Dickstein, R.; Fernandez, E.; Forde, B.; et al. A unifield nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci. 2014, 19, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Qian, Q.; Fu, Z.; Zeng, D.; Meng, X.; Kyozuka, J.; Maekawa, M.; Zhu, X.; Zhang, J.; Li, J.; et al. Short panicle 1 encodes a putative PTR family transporter and determines rice panicle size. Plant J. 2009, 58, 592–605. [Google Scholar] [CrossRef]
- Hoshida, Y.; Kadoya, S.; Okamura, M.; Sugimura, Y.; Hirano, T.; Hirose, T.; Kondo, S.; Ohota, C.; Ohsugi, R.; Aoki, N. Characterization of sugar metabolism in the stem of Tachisuzuka, a whole-crop silage rice cultivar with high sugar content in the stem. Plant Prod. Sci. 2018, 21, 233–243. [Google Scholar] [CrossRef]
- Cheng, W.; Kimani, S.M.; Kanno, T.; Tang, S.; Oo, A.Z.; Tawaraya, K.; Sudo, S.; Sasaki, Y.; Yoshida, N. Forage rice varieties Fukuhibiki and Tachisuzuka emit larger CH4 than edible rice Haenuki. Soil Sci. Plant Nutr. 2018, 64, 77–83. [Google Scholar] [CrossRef]
- Fukagawa, S.; Inoue, A.; Yoshida, K.; Komura, H.; Ishii, Y.; Sato, K. Prediction of TDN concentration of forage rice (Oryza sativa L.) silage from in vitro dry matter digestibility and dry weight percentage of panicle. Jpn. J. Grassl. Sci. 2007, 53, 16–22. [Google Scholar] [CrossRef]
- Hattori, I.; Sato, K.; Kobayashi, K.; Ishida, M.; Yoshida, N.; Ando, S. Estimation of total digestible nutrients content of paddy rice silage. Jpn. J. Grassl. Sci. 2005, 51, 269–273. [Google Scholar]
- Nakano, H.; Hattori, I.; Sato, K.; Morita, S. Early planting and early nitrogen application increase stem total digestible nutrient concentration and yield of forage rice in southwestern Japan. Plant Prod. Sci. 2011, 14, 169–176. [Google Scholar] [CrossRef]
- Japan Grassland Agriculture and Forage Seed Association. The Guideline of Cultivation and Feeding for Whole Crop Rice Silage, No. 6; Japan Grassland Agriculture & Forage Seed Association: Tokyo, Japan, 2014; pp. 22–107. [Google Scholar]
- Nagasaki Prefecture. The Guideline of Agriculture and Forestry Techniques, Soil Science and Fertilization, Fertilization Standard for Forage Rice Cultivars. 2014; p. 26. Available online: https://www.maff.go.jp/j/seisan/kankyo/hozen_type/h_sehi_kizyun/attach/pdf/ngsk01-2.pdf (accessed on 8 March 2020).
- Akiyama, F. A study of sample preparation for determination of oligo-saccharides of forage crops with high performance liquid chromatography (HPLC). Bull. Natl. Grassl. Res. Inst. 1998, 58, 17–25. [Google Scholar]
- NARO. Japanese Feeding Standard for Beef Cattle; Japan Livestock Industry Association: Tokyo, Japan, 2009; p. 34. [Google Scholar]
- Goto, I.; Minson, D.J. Prediction of the dry matter digestibility of tropical grasses using a pepsin-cellulase assay. Anim. Feed. Sci. Technol. 1977, 2, 247–253. [Google Scholar] [CrossRef]
- Association of Self-sufficient Feed Evaluation. Guidebook for Forage Evaluation; Japan Grassland Agriculture and Forage Seed Association: Tokyo, Japan, 2009; pp. 64–89.
- Hosoda, K.; Ohmori, H.; Kamiya, M. Dry matter intake, nutrient digestibility, chewing activity, and ruminal fermentation of raising Japanese Black steers fed diets containing whole crop corn silage at three level. Grassl. Sci. 2019, 65, 241–248. [Google Scholar] [CrossRef]
- Fukagawa, S.; Ishii, Y.; Hattori, I. Fermentation quality of round-bale silage as affected by additives and ensiling seasons in dwarf napiergrass (Pennisetum purpureum Schumach). Agronomy 2016, 4, 48. [Google Scholar] [CrossRef]
- Fukagawa, S.; Ishii, Y.; Kataoka, K. Round-bale silage harvesting and processing effects on overwintering ability, dry matter yield, fermentation quality, and palatability of dwarf napiergrass (Pennisetum purpureum Schumach). Agronomy 2017, 7, 10. [Google Scholar] [CrossRef]
- Li, D.; Ren, H.; Zheng, L.; Hou, Y.; Wang, H. Effects of maize–lablab intercropping and lactic acid bacteria additives on forage yield, fermentation quality and profitability. Fermentation 2024, 10, 477. [Google Scholar] [CrossRef]
- Gusmini, G.; Itani, T.; Adrinal, A.; Ikeda, T.; Nishimura, K. Effect of nitrogen application from selected manures on growth, nitrogen uptake and biomass production of cultivated forage rice. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 110–113. [Google Scholar] [CrossRef]
- Fukushima, A.; Ohta, H.; Yokogami, N.; Tsuda, N. Dry matter trait and feed composition of rice varieties in the Tohoku Region of Japan. Jpn. J. Crop Sci. 2017, 86, 1–6. [Google Scholar] [CrossRef]
- Kawamoto, H.; Otani, R.; Oshibe, A.; Yamaguchi, H.; Deguchi, S.; Tanaka, O.; Uozumi, S.; Watanabe, H. Ensilage of wilted whole crop rice (Oryza sativa L.) using a roll baler for chopped material: Silage quality in long-term storage. Grassl. Sci. 2007, 53, 85–90. [Google Scholar] [CrossRef]
- Kawamoto, H.; Yamaguchi, H.; Komatsu, T.; Tanaka, O.; Oshibe, A. Effect of chopping and high-density ensiling on the silage fermentation of forage paddy rice (Oryza sativa L.). Jpn. J. Grassl. Sci. 2009, 54, 323–327. Available online: https://cir.nii.ac.jp/crid/1390001205756871552 (accessed on 19 September 2024).
- Nakano, Y.; Tobisa, M.; Peak, J.S.; Mochizuki, T.; Furusawa, H.; Matsuishi, T.; Izumi, K.; Michibata, N.; Nada, Y.; Shimojo, M.; et al. Comparison of silage fermentation quality among varieties of soiling and floating rice plants. West Jpn. J. Anim. Sci. 2004, 47, 93–101. [Google Scholar] [CrossRef]
- Nishino, N.; Shinde, S. Ethanol and 2,3-butanediol production in whole crop rice silage. Grassl. Sci. 2007, 53, 196–198. [Google Scholar] [CrossRef]
- NARO. Standard Tables of Feed Composition in Japan (2009); Japan Livestock Industry Association: Tokyo, Japan, 2010; p. 60. [Google Scholar]
- Matsushita, K. Effect of low planting density on the spikelet number in ‘Tachisuzuka’, a rice (Oryza sativa L.) cultivar with a short panicle whole crop silage use. Grassl. Sci. 2013, 59, 124–127. [Google Scholar] [CrossRef]
- Fujimoto, H.; Matsushita, K.; Nakagomi, K.; Mori, S. Studies on optimum cultivation methods for seed production of rice cultivars with short panicles. Bull. NARO West. Reg. Agric. Res. Cent. 2016, 16, 21–35. Available online: https://cir.nii.ac.jp/crid/1390009224751754240?lang=en (accessed on 19 September 2024).
- Matsushita, K.; Nagaoka, I.; Sasahara, H.; Maeda, H.; Watanabe, H. Effect of fertilization on the spikelet number in ‘Tachiayaka’, a rice (Oryza sativa L.) cultivar with a short panicle for whole-crop silage use. Jpn. J. Crop Sci. 2017, 86, 35–40. [Google Scholar] [CrossRef]
- Hirayama, Y. Current status and changes of cultivated soils distributed over Nagasaki Prefecture from the results of the fixed fields survey (1979–2018). Bull. Nagasaki Agric. For. Tech. Dev. Cent. 2021, 11, 29–50. Available online: https://cir.nii.ac.jp/crid/1050293191191440000 (accessed on 19 September 2024).
Year | Site | Cultivar | Type | Trans-plant Date | Plant Spacing (Density) | Elemental Fertilizer (kg ha−1) | Harvest Stage | Ensiling Date | Harvest and Ensiling Practice | ||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | |||||||||
2013 | Unzen | Tachiaoba | Traditional | 22 Jun. | 30 × 22 cm (15.2 plants m−2) | 68 | 68 | 68 | Yellow-ripe | 30 Oct. | Flail-type harvester equipped with a round baler |
Tachisuzuka | Short-panicle | Yellow-ripe | |||||||||
2014 | Hirado | Tachiaoba | Traditional | 4 Jun. | 30 × 18 cm (18.5 plants m−2) | 92 | 92 | 92 | Dough-ripe | 17 Sep. | Disk mower and round baler |
Tachiayaka | Short-panicle | Dough-ripe | |||||||||
2014 | Unzen | Tachisuzuka | Short-panicle | 25 Jun. | 30 × 22 cm (15.2 plants m−2) | 95 | 95 | 95 | Yellow-ripe | 20 Oct. | Flail-type harvester equipped with a round baler |
Tachiayaka | Short-panicle | Yellow-ripe | |||||||||
2015 | Hirado | Tachiaoba | Traditional | 10 Jun. | 30 × 18 cm (18.5 plants m−2) | 102 | 102 | 102 | Dough-ripe | 30 Sep. | Disk mower and round baler |
Tachisuzuka | Short-panicle | Milk | |||||||||
2015 | Unzen | Tachiaoba | Traditional | 25 Jun. | 30 × 22 cm (15.2 plants m−2) | 102 | 102 | 102 | Dough-ripe | 16 Oct. | Flail-type harvester equipped with a round baler |
Tachisuzuka | Short-panicle | Yellow-ripe |
NH3-N/TN 1 | Evaluation | C2 + C3 Evaluation 2 | C4 + C5 + C6 Evaluation 3 | V-SCORE Evaluation 4 | ||
---|---|---|---|---|---|---|
Xa | Ya | Xb | Yb | Xc | Yc | Y |
≤5 | Ya = 50 | ≤0.2 | Yb = 10 | 0 | Yc = 40 | Y = Ya + Yb + Yc |
5–10 | Ya = 60 − 2 × Xa | 0.2–1.5 | Yb = (150 − 100 × Xa)/13 | 0–0.5 | Yc = 40 − 80 × Xc | |
10–20 | Ya = 80 − 4 × Xa | >1.5 | Yb = 0 | >0.5 | Yc = 0 | |
>20 | Ya = 0 |
Year | Site | Cultivar | Panicle Type | Culm Length (cm) | Panicle Length (cm) | Fresh Matter Yield (g m−2) | Dry Matter Yield (g m−2) | Dry Matter Percentage of Panicle to Whole Plant |
---|---|---|---|---|---|---|---|---|
2013 | Unzen | Tachiaoba | Traditional | 84.9 ± 0.9 1 b 2 | 23.5 ± 0.8 a 2 | 2680 ± 183 b | 1259 ± 68 ns | 42.6 ± 1.2 a |
Tachisuzuka | Short-panicle | 119.5 ± 3.2 a | 13.0 ± 0.7 b | 4195 ± 806 a | 1534 ± 281 | 18.8 ± 0.6 b | ||
2014 | Hirado | Tachiaoba | Traditional | 97.1 ± 1.5 b | 32.0 ± 0.6 a | 4469 ± 343 a | 1355 ± 116 ns | 30.2 ± 1.3 a |
Tachiayaka | Short-panicle | 107.6 ± 1.2 a | 13.6 ± 0.5 b | 3466 ± 213 b | 1363 ± 52 | 15.6 ± 0.6 b | ||
2014 | Unzen | Tachisuzuka | Short-panicle | 103.6 ± 1.7 b | 7.8 ± 0.6 ns | 3896 ± 392 ns | 1658 ± 171 ns | 16.3 ± 2.3 ns |
Tachiayaka | Short-panicle | 110.1 ± 2.5 a | 6.2 ± 1.7 | 3542 ± 480 | 1430 ± 166 | 7.5 ± 6.0 | ||
2015 | Hirado | Tachiaoba | Traditional | 95.9 ± 1.4 b | 23.2 ± 0.6 a | 4216 ± 363 ns | 1406 ± 96 ns | 16.0 ± 0.7 ns |
Tachisuzuka | Short-panicle | 112.0 ± 1.6 a | 14.5 ± 0.8 b | 4256 ± 592 | 1495 ± 216 | 17.3 ± 2.3 | ||
2015 | Unzen | Tachiaoba | Traditional | 93.6 ± 2.1 b | 20.7 ± 1.7 a | 4617 ± 279 ns | 1629 ± 53 ns | 27.4 ± 1.8 a |
Tachisuzuka | Short-panicle | 110.3 ± 1.6 a | 12.0 ± 0.3 b | 4841 ± 286 | 1846 ± 149 | 16.8 ± 1.0 b |
| |||||||||
Site | Cultivar | Type | Moisture (%) | pH | Organic Acid Composition | NH3-N/TN 3 (%) | V-SCORE 4 | ||
Lactic (% FW 5) | C2 + C3 1 (% FW) | C4 + C5 + C6 2 (% FW) | |||||||
Unzen | Tachiaoba | Traditional | 62.46 ± 1.75 6 a 7 | 4.63 ± 0.23 a | 0.91 ± 0.31 b | 0.18 ± 0.03 b | 0.15 ± 0.03 a | 1.15 ± 0.05 ns | 87.84 ± 2.16 b |
Tachisuzuka | Short-panicle | 66.61 ± 0.68 b | 4.26 ± 0.01 b | 1.62 ± 0.19 a | 0.30 ± 0.01 a | 0.01 ± 0.03 b | 1.91 ± 0.11 | 98.00 ± 2.09 a | |
| |||||||||
Site | Cultivar | Type | Plant Fraction | ||||||
Leaves and Stems (% DW 8) | Panicles (% DW) | Whole Plants (% DW) | |||||||
Unzen | Tachiaoba | Traditional | 4.64 ± 0.64 9 b 10 | 0.88 ± 0.11 ns | 3.04 ± 0.37 b | ||||
Tachisuzuka | Short-panicle | 12.5 ± 4.36 a | 0.99 ± 0.12 | 10.31 ± 3.63 a |
Year | Site | Cultivar | Type | Moisture (%) | pH | Organic Acid Composition | NH3-N/TN 3 (%) | V-SCORE 4 | ||
---|---|---|---|---|---|---|---|---|---|---|
Lactic (% FW) | C2 + C3 1 (% FW) | C4 + C5 + C6 2 (% FW) | ||||||||
2013 | Unzen | Tachisuzuka | Short-panicle | 65.68 ± 1.96 5 a 6 | 4.14 ± 0.14 c | 1.96 ± 1.05 c | 0.84 ± 0.30 b | 0.12 ± 0.10 ns | 6.34 ± 0.23 a | 82.95 ± 6.17 ns |
2014 | Hirado | Tachiayaka | Short-panicle | 43.51 ± 2.18 c | 5.25 ± 0.16 a | 0.12 ± 0.15 c | 0.46 ± 0.07 b | 0.05 ± 0.05 | 2.09 ± 0.04 b | 91.66 ± 3.77 |
2014 | Unzen | Tachiayaka | Short-panicle | 65.14 ± 0.56 a | 3.96 ± 0.09 c | 1.62 ± 0.31 bc | 0.94 ± 0.04 a | 0.08 ± 0.01 | 6.90 ± 0.43 a | 83.93 ± 1.43 |
2015 | Hirado | Tachisuzuka | Short-panicle | 55.15 ± 1.42 b | 4.77 ± 0.10 b | 1.73 ± 0.21 bc | 0.36 ± 0.03 b | 0.11 ± 0.01 | 3.23 ± 0.78 b | 90.32 ± 1.07 |
2015 | Unzen | Tachisuzuka | Short-panicle | 62.31 ± 2.77 a | 3.85 ± 0.09 c | 5.04 ± 0.79 a | 0.62 ± 0.03 ab | 0.09 ± 0.08 | 3.51 ± 0.31 b | 89.87 ± 6.52 |
Year | Site | Cultivar | Type | Harvest Stage | In Vivo TDN 1 (%) | IVDMD (%) | CA (% DM) | Estimated TDN 2 (%) | Error Rate (%) |
---|---|---|---|---|---|---|---|---|---|
2013 | Unzen | Tachisuzuka | Short-panicle | Yellow-ripe | 49.5 ± 1.6 3 c 4 | 54.5 ± 3.3 c | 20.3 ± 0.9 a | 48.5 ± 1.6 c | 2.0 |
2014 | Unzen | Tachiayaka | Short-panicle | Yellow-ripe | 52.9 ± 1.5 bc | 64.3 ± 0.6 ab | 17.4 ± 0.7 b | 53.8 ± 0.6 b | 1.7 |
2014 | Hirado | Tachiayaka | Short-panicle | Dough-ripe | 59.5 ± 1.1 a | 67.6 ± 3.2 a | 12.5 ± 0.3 c | 58.1 ± 0.9 a | 2.4 |
2015 | Unzen | Tachisuzuka | Short-panicle | Yellow-ripe | 53.8 ± 3.3 b | 66.6 ± 1.2 ab | 16.6 ± 1.3 b | 55.0 ± 0.6 b | 2.2 |
2015 | Hirado | Tachisuzuka | Short-panicle | Dough-ripe | 58.3 ± 1.3 a | 61.0 ± 0.8 b | 13.0 ± 0.6 c | 55.6 ± 0.5 ab | 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukagawa, S.; Ninomiya, K.; Ishii, Y. Estimation of Total Digestible Nutrient Concentration for Short-Panicle Cultivars of Forage Rice (Oryza sativa L.) Silage. Agronomy 2024, 14, 2710. https://doi.org/10.3390/agronomy14112710
Fukagawa S, Ninomiya K, Ishii Y. Estimation of Total Digestible Nutrient Concentration for Short-Panicle Cultivars of Forage Rice (Oryza sativa L.) Silage. Agronomy. 2024; 14(11):2710. https://doi.org/10.3390/agronomy14112710
Chicago/Turabian StyleFukagawa, Satoru, Kyohei Ninomiya, and Yasuyuki Ishii. 2024. "Estimation of Total Digestible Nutrient Concentration for Short-Panicle Cultivars of Forage Rice (Oryza sativa L.) Silage" Agronomy 14, no. 11: 2710. https://doi.org/10.3390/agronomy14112710
APA StyleFukagawa, S., Ninomiya, K., & Ishii, Y. (2024). Estimation of Total Digestible Nutrient Concentration for Short-Panicle Cultivars of Forage Rice (Oryza sativa L.) Silage. Agronomy, 14(11), 2710. https://doi.org/10.3390/agronomy14112710