Evaluating Physiological and Yield Indices of Egyptian Barley Cultivars Under Drought Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physiological Experiments
2.1.1. Plant Materials and Drought Stress Treatments
2.1.2. Chlorophyll Content, Chlorophyll Fluorescence and Stomatal Conductance
2.2. Field Experiments
3. Results
3.1. Physiological Parameters Under Drought Condition
3.1.1. Plant Growth Under Drought Conditions
3.1.2. Photosynthetic Efficiency Percentage and Induction Under Drought Stress
3.1.3. Stomatal Conductance Under Drought Stress
3.1.4. Chlorophyll Content Under Drought Stress
3.2. Field Parameters Under Water Deficiency
3.2.1. Impact of Drought Stress on DH and DM, PH, SL and KS
3.2.2. Impact of Drought Stress on the Number of Spikes, KW, BY and GY
3.2.3. Drought Stress Susceptibility Index and Correlation Analysis
3.2.4. Genotype into Environment Interaction (GGE) Biplot for Grain Yield
3.2.5. Analysis of Variance Among All Factors
3.2.6. Mean Performance of Cultivars (Seasons and Irrigation Treatment Effects)
4. Discussion
4.1. Yield Components and Plant Traits Under Drought Stress
4.2. Identifying Drought-Tolerant Barley: Challenges and Key Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elakhdar, A.; Solanki, S.; Kubo, T.; Abed, A.; Elakhdar, I.; Khedr, R.; Hamwieh, A.; Capo-chichi, L.J.; Abdelsattar, M.; Franckowiak, J.D. Barley with improved drought tolerance: Challenges and perspectives. Environ. Exp. Bot. 2022, 201, 104965. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Kadam, N.N.; Xiao, G.; Melgar, R.J.; Bahuguna, R.N.; Quinones, C.; Tamilselvan, A.; Prasad, P.V.V.; Jagadish, K.S. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv. Agron. 2014, 127, 111–156. [Google Scholar]
- Kebede, A.; Kang, M.S.; Bekele, E. Chapter Five—Advances in mechanisms of drought tolerance in crops, with emphasis on barley. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 156, pp. 265–314. [Google Scholar]
- Zhang, X.; Ibrahim, Z.; Khaskheli, M.B.; Raza, H.; Zhou, F.; Shamsi, I.H. Integrative Approaches to Abiotic Stress Management in Crops: Combining Bioinformatics Educational Tools and Artificial Intelligence Applications. Sustainability 2024, 16, 7651. [Google Scholar] [CrossRef]
- Abdelrady, W.A.; Ma, Z.; Elshawy, E.E.; Wang, L.; Askri, S.M.H.; Ibrahim, Z.; Dennis, E.; Kanwal, F.; Zeng, F.; Shamsi, I.H. Physiological and biochemical mechanisms of salt tolerance in barley under salinity stress. Plant Stress 2024, 11, 100403. [Google Scholar] [CrossRef]
- Reddy, M.; Reddy, P.; Prasad, B.; Munilakshmi, U. Grain and milling quality of barley and their suitability for preparation of traditional south Indian products. IOSR J. Pharm. 2014, 4, 23–27. [Google Scholar]
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 20 October 2023).
- Schmid, K.; Kilian, B.; Russell, J. Barley domestication, adaptation and population genomics. In The Barley Genome; Springer: Berlin/Heidelberg, Germany, 2018; pp. 317–336. [Google Scholar]
- Close, T.J.; Bhat, P.R.; Lonardi, S.; Wu, Y.; Rostoks, N.; Ramsay, L.; Druka, A.; Stein, N.; Svensson, J.T.; Wanamaker, S. Development and implementation of high-throughput SNP genotyping in barley. BMC Genom. 2009, 10, 582. [Google Scholar] [CrossRef] [PubMed]
- Inostroza, L.; del Pozo, A.; Matus, I.; Castillo, D.; Hayes, P.; Machado, S.; Corey, A. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol. Breed. 2009, 23, 365–376. [Google Scholar]
- Khadka, K.; Earl, H.J.; Raizada, M.N.; Navabi, A. A physio-morphological trait-based approach for breeding drought tolerant wheat. Front. Plant Sci. 2020, 11, 715. [Google Scholar] [CrossRef]
- Razaji, A.; Farzanian, M.; Sayfzadeh, S. The effects of seed priming by ascorbic acid on some morphological and biochemical aspects of rapeseed (Brassica napus L.) under drought stress condition. Int. J. Biosci. 2014, 4, 432–442. [Google Scholar]
- Zhou, F.; Ma, Z.; Rashwan, A.K.; Khaskheli, M.B.; Abdelrady, W.A.; Abdelaty, N.S.; Hassan Askri, S.M.; Zhao, P.; Chen, W.; Shamsi, I.H. Exploring the Interplay of Food Security, Safety, and Psychological Wellness in the COVID-19 Era: Managing Strategies for Resilience and Adaptation. Foods 2024, 13, 1610. [Google Scholar] [CrossRef] [PubMed]
- Khajeh-Hosseini, M.; Powell, A.A.; Bingham, I. The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Sci. Technol. 2003, 31, 715–725. [Google Scholar] [CrossRef]
- Lisar, S.Y.; Motafakkerazad, R.; Hossain, M.M.; Rahman, I.M. Causes, Effects and Responses. In Water Stress Plants; InTechOpen: London, UK, 2012. [Google Scholar]
- Worch, S.; Rajesh, K.; Harshavardhan, V.T.; Pietsch, C.; Korzun, V.; Kuntze, L.; Börner, A.; Wobus, U.; Röder, M.S.; Sreenivasulu, N. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol. 2011, 11, 1. [Google Scholar] [CrossRef]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.; Baenziger, P.S.; Börner, A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef]
- Cai, K.; Chen, X.; Han, Z.; Wu, X.; Zhang, S.; Li, Q.; Nazir, M.M.; Zhang, G.; Zeng, F. Screening of Worldwide Barley Collection for Drought Tolerance: The Assessment of Various Physiological Measures as the Selection Criteria. Front. Plant Sci. 2020, 11, 1159. [Google Scholar] [CrossRef]
- Kishor, P.B.K.; Rajesh, K.; Reddy, P.S.; Seiler, C.; Sreenivasulu, N. Drought Stress Tolerance Mechanisms in Barley and Its Relevance to Cereals. In Biotechnological Approaches to Barley Improvement; Kumlehn, J., Stein, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 161–179. [Google Scholar]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Pour Aboughadareh, A.; Naghavi, M.R.; Khalili, M. Water Deficit Stress Tolerance in Some of Barley Genotypes and Landraces under Field Conditions. Not. Sci. Biol. 2013, 5, 249–255. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Saed-Moucheshi, A.; Pessarakli, M.; Mozafari, A.A.; Sohrabi, F.; Moradi, M.; Marvasti, F.B. Screening barley varieties tolerant to drought stress based on tolerant indices. J. Plant Nutr. 2022, 45, 739–750. [Google Scholar] [CrossRef]
- Barati, M.; Majidi, M.M.; Mirlohi, A.; Pirnajmodini, F.; Sharif-Moghaddam, N. Response of Cultivated and Wild Barley Germplasm to Drought Stress at Different Developmental Stages. Crop Sci. 2015, 55, 2668–2681. [Google Scholar] [CrossRef]
- Mahmood, Y.; Hassan, H.N.; Mohammed, M.S. Yield Performance of Barley Hybrids (Hordeum vulgare L.) under Drought stress and non-stressed Conditions. Passer J. Basic Appl. Sci. 2021, 3, 107–113. [Google Scholar] [CrossRef]
- Rajendran, N.R.; Qureshi, N.; Pourkheirandish, M. Genotyping by Sequencing Advancements in Barley. Front. Plant Sci. 2022, 13, 931423. [Google Scholar] [CrossRef] [PubMed]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University: Ames, IA, USA, 1980; pp. 80–86. [Google Scholar]
- Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics, a Biometrical Approach; CABI: Wallingford, VT, USA, 1981. [Google Scholar]
- Levene, H. Robust tests for equality of variances. J. Am. Stat. Assoc. 1960, 69, 364–367. [Google Scholar]
- Ose, S.O. Using Excel and Word to structure qualitative data. J. Appl. Soc. Sci. 2016, 10, 147–162. [Google Scholar] [CrossRef]
- Vaezi, B.; Bavei, V.; Shiran, B. Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition. Afr. J. Agric. Res. 2010, 5, 881–892. [Google Scholar]
- El-Seidy, E.; Abd El-Razek, U.; Abdel-Latief, H.A.; El-Shawy, E. Evaluation of some barley varieties under the influence of different irrigation rates. J. Agric. Life Sci. 2019, 2, 247–257. [Google Scholar]
- Saeidi, M.; Abdoli, M.; Azhand, M.; Khas-Amiri, M. Evaluation of drought resistance of barley (Hordeum vulgare L.) cultivars using agronomic characteristics and drought tolerance indices. Albanian J. Agric. Sci. 2013, 12, 545. [Google Scholar]
- Cammarano, D.; Ronga, D.; Francia, E.; Akar, T.; Al-Yassin, A.; Benbelkacem, A.; Grando, S.; Romagosa, I.; Stanca, A.M.; Pecchioni, N. Genetic and management effects on barley yield and phenology in the Mediterranean basin. Front. Plant Sci. 2021, 12, 655406. [Google Scholar] [CrossRef]
- Ghotbi-Ravandi, A.A.; Sedighi, M.; Aghaei, K.; Mohtadi, A. Differential changes in D1 protein content and quantum yield of wild and cultivated barley genotypes caused by moderate and severe drought stress in relation to oxidative stress. Plant Mol. Biol. Report. 2021, 39, 501–507. [Google Scholar] [CrossRef]
- Hebbache, H.; Benkherbache, N.; Bouchakour, M.; Mefti, M. Effect of water deficit stress on physiological traits of some Algerian barley genotypes. J. Cent. Eur. Agric. 2021, 22, 295–304. [Google Scholar] [CrossRef]
- Khodaeiaminjan, M.; Bergougnoux, V. Barley grain development during drought stress: Current status and perspectives. In Cereal Grains-Volume 1; IntechOpen: London, UK, 2021. [Google Scholar]
- Mwadzingeni, L.; Shimelis, H.; Tesfay, S.; Tsilo, T.J. Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses. Front. Plant Sci. 2016, 7, 01276. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Slack, S.; York, L.; Roghazai, Y.; Lynch, J.; Bennett, M.; Foulkes, J. Wheat shovelomics II: Revealing relationships between root crown traits and crop growth. bioRxiv 2018. bioRxiv:280917. [Google Scholar]
- Farhat, W.; Shehab-Eldeen, M.; Khedr, R.A. Agronomic and physiological studies on some exotic and local bread wheat genotypes under saline soil conditions in North Delta region. Egypt. J. Plant Breed. 2020, 24, 471–497. [Google Scholar]
- Djemel, A.; Cherchali, F.Z.; Benchikh-Le-Hocine, M.; Malvar, R.; Revilla, P. Assessment of drought tolerance among Algerian maize populations from oases of the Saharan. Euphytica 2018, 214, 149. [Google Scholar] [CrossRef]
- Cominelli, E.; Conti, L.; Tonelli, C.; Galbiati, M. Challenges and perspectives to improve crop drought and salinity tolerance. N. Biotechnol. 2013, 30, 355–361. [Google Scholar] [CrossRef]
- Fita, A.; Rodríguez-Burruezo, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 2015, 6, 978. [Google Scholar] [CrossRef]
- Elakhdar, A.; El-Naggar, A.A.; Kubo, T.; Kumamaru, T. Genome-wide transcriptomic and functional analyses provide new insights into the response of spring barley to drought stress. Physiol. Plant. 2023, 175, e14089. [Google Scholar] [CrossRef]
- Savin, R.; Nicolas, M.E. Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Funct. Plant Biol. 1996, 23, 201–210. [Google Scholar] [CrossRef]
- Wallwork, M.; Jenner, C.; Logue, S.; Sedgley, M. Effect of high temperature during grain-filling on the structure of developing and malted barley grains. Ann. Bot. 1998, 82, 587–599. [Google Scholar] [CrossRef]
- Sallam, A.; Mourad, A.M.; Hussain, W.; Stephen Baenziger, P. Genetic variation in drought tolerance at seedling stage and grain yield in low rainfall environments in wheat (Triticum aestivum L.). Euphytica 2018, 214, 169. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Sirault, X.R.; Furbank, R.T.; Jones, H.G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot. 2010, 61, 3499–3507. [Google Scholar] [CrossRef]
- Passioura, J.B. The perils of pot experiments. Funct. Plant Biol. 2006, 33, 1075–1079. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.-W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Cai, K.; Gao, H.; Wu, X.; Zhang, S.; Han, Z.; Chen, X.; Zhang, G.; Zeng, F. The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley. Int. J. Mol. Sci. 2019, 20, 4111. [Google Scholar] [CrossRef]
- Yadav, A.K.; Carroll, A.J.; Estavillo, G.M.; Rebetzke, G.J.; Pogson, B.J. Wheat drought tolerance in the field is predicted by amino acid responses to glasshouse-imposed drought. J. Exp. Bot. 2019, 70, 4931–4948. [Google Scholar] [CrossRef]
Cultivars | Yp | Ys | DSI | YI | YSI | STI | GMP | SDI | TOL |
---|---|---|---|---|---|---|---|---|---|
Giza 123 | 4.43 | 3.22 | 1.44 | 0.90 | 0.73 | 0.73 | 3.77 | 1.73 | 1.21 |
Giza 126 | 4.41 | 3.82 | 0.70 | 1.06 | 0.87 | 0.86 | 4.10 | 1.87 | 0.59 |
Giza 132 | 4.33 | 3.72 | 0.74 | 1.04 | 0.86 | 0.82 | 4.02 | 1.86 | 0.61 |
Giza 134 | 4.75 | 4.30 | 0.51 | 1.20 | 0.90 | 1.04 | 4.52 | 1.90 | 0.46 |
Giza 130 | 4.22 | 3.62 | 0.75 | 1.01 | 0.86 | 0.78 | 3.91 | 1.86 | 0.60 |
Giza 136 | 4.28 | 3.58 | 0.86 | 1.00 | 0.84 | 0.78 | 3.91 | 1.84 | 0.70 |
Giza 138 | 4.70 | 4.16 | 0.61 | 1.16 | 0.88 | 1.00 | 4.42 | 1.88 | 0.55 |
Giza 2000 | 4.51 | 3.88 | 0.74 | 1.08 | 0.86 | 0.89 | 4.18 | 1.86 | 0.63 |
Giza 135 | 4.33 | 2.98 | 1.65 | 0.83 | 0.69 | 0.66 | 3.59 | 1.69 | 1.35 |
Giza 129 | 4.30 | 2.67 | 2.00 | 0.74 | 0.62 | 0.58 | 3.39 | 1.62 | 1.63 |
Variable | DH | DM | PH | SM | SL | KS | TKW | BY | GY | |
---|---|---|---|---|---|---|---|---|---|---|
Year | ||||||||||
2019/2020 | 86 | 130 | 108.02 | 411 | 9.60 | 64.83 | 50.18 | 12.17 | 3.96 | |
2020/2021 | 88 | 132 | 107.26 | 420 | 9.65 | 66.02 | 51.68 | 12.23 | 4.06 | |
F test | ** | ** | NS | ** | NS | ** | ** | NS | ** | |
Irrigation treatments | ||||||||||
Normal irrigation | 90.55 | 133.81 | 113.86 | 435.91 | 10.66 | 71.62 | 54.60 | 13.31 | 4.43 | |
Drought stress | 83.45 | 126.97 | 101.43 | 395.86 | 8.60 | 59.23 | 47.26 | 11.10 | 3.59 | |
F test | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
2019/20 | Normal irrigation | 89.49 | 133.23 | 113.59 | 428.47 | 10.64 | 71.07 | 53.82 | 13.25 | 4.41 |
Drought stress | 82.43 | 125.34 | 102.45 | 394.18 | 8.56 | 58.59 | 46.54 | 11.10 | 3.52 | |
2020/21 | Normal irrigation | 91.61 | 134.38 | 114.13 | 443.34 | 10.67 | 72.18 | 55.37 | 13.37 | 4.44 |
Drought stress | 84.48 | 128.60 | 100.40 | 397.53 | 8.63 | 59.87 | 47.99 | 11.09 | 3.67 | |
LSD0.05 | 1.27 | 1.10 | 1.99 | 2.79 | 2.789 | 0.19 | 0.88 | 0.17 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrady, W.A.; Elshawy, E.E.; Abdelrahman, H.A.; Hassan Askri, S.M.; Ibrahim, Z.; Mansour, M.; El-Degwy, I.S.; Ghazy, T.; Aboulila, A.A.; Shamsi, I.H. Evaluating Physiological and Yield Indices of Egyptian Barley Cultivars Under Drought Stress Conditions. Agronomy 2024, 14, 2711. https://doi.org/10.3390/agronomy14112711
Abdelrady WA, Elshawy EE, Abdelrahman HA, Hassan Askri SM, Ibrahim Z, Mansour M, El-Degwy IS, Ghazy T, Aboulila AA, Shamsi IH. Evaluating Physiological and Yield Indices of Egyptian Barley Cultivars Under Drought Stress Conditions. Agronomy. 2024; 14(11):2711. https://doi.org/10.3390/agronomy14112711
Chicago/Turabian StyleAbdelrady, Wessam A., Elsayed E. Elshawy, Hassan A. Abdelrahman, Syed Muhammad Hassan Askri, Zakir Ibrahim, Mohamed Mansour, Ibrahim S. El-Degwy, Taha Ghazy, Aziza A. Aboulila, and Imran Haider Shamsi. 2024. "Evaluating Physiological and Yield Indices of Egyptian Barley Cultivars Under Drought Stress Conditions" Agronomy 14, no. 11: 2711. https://doi.org/10.3390/agronomy14112711
APA StyleAbdelrady, W. A., Elshawy, E. E., Abdelrahman, H. A., Hassan Askri, S. M., Ibrahim, Z., Mansour, M., El-Degwy, I. S., Ghazy, T., Aboulila, A. A., & Shamsi, I. H. (2024). Evaluating Physiological and Yield Indices of Egyptian Barley Cultivars Under Drought Stress Conditions. Agronomy, 14(11), 2711. https://doi.org/10.3390/agronomy14112711