Investigation of Nitrogen Fixation Efficiency in Diverse Alfalfa Varieties Utilizing Sinorhizobium meliloti LL2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alfalfa Varieties and Rhizobia Strains
2.2. The Field Experiment
2.2.1. Site Overview
2.2.2. Seed Preparation
2.2.3. Seedling Cultivation
2.2.4. Rhizobia Inoculation
2.3. Indoor Sand Culture Experiment
2.4. Parameter Determination
2.4.1. Root Nodule Indexes
2.4.2. Nitrogen Fixation Indexes
2.4.3. Growth Indexes
2.5. Statistic Analysis
2.5.1. Principal Component Analysis
2.5.2. Membership Function
3. Results
3.1. SNF Ability Variations Among Different Alfalfa Varieties and Rhizobia Combinations
3.1.1. The Nodulation Ability of Different SNF Combinations Varies
3.1.2. Microstructure Characteristics of Root Nodules in Different SNF Combinations
3.2. Variations in the Nitrogen Fixation Capacity Among Different Alfalfa Varieties and Rhizobia Combinations
3.2.1. Nitrogen Fixation Ability
3.2.2. The Nitrogen Accumulation in Aboveground and Underground Tissue
3.2.3. Crude Protein Content
3.3. Growth Characteristics Among Different Alfalfa Varieties and Rhizobia Combinations
3.3.1. Plant Height
3.3.2. Aboveground and Underground Biomass
3.3.3. Stem–Leaf Ratio
3.4. Effect of SNF on Variation Coefficient
3.5. Differential Evaluation Concerning Effects of Rhizobia Strain LL2 on the SNF Efficiency of Different Varieties
3.5.1. Correlation Analysis
3.5.2. Screening of Main Indicators
3.5.3. The Comprehensive Assessment
4. Discussion
4.1. Differences in SNF Between Different Rhizobia–Alfalfa Combinations
4.2. Differences in Growth-Promoting Effects Between Different Rhizobia–Alfalfa Combinations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tateno, R.; Takeda, H. Nitrogen uptake and nitrogen use efficiency above and below ground along a topographic gradient of soil nitrogen availability. Oecologia 2010, 163, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Lucas, B.B.; Roberta, S.C.; Aline Carla, T.B.; Bergamasco, M.A.M.; Terçariol, M.C.; Ferreira, M.E.; da Cruz, M.C.P. Soil carbon and nitrogen forms and their relationship with nitrogen availability affected by cover crop species and nitrogen fertilizer doses. Nitrogen 2023, 4, 85. [Google Scholar] [CrossRef]
- Hegedus, P.B.; Ewing, S.A.; Jones, C. Using spatially variable nitrogen application and crop responses to evaluate crop nitrogen use efficiency. Nutr. Cycl. Agroecosyst. 2023, 126, 1–20. [Google Scholar] [CrossRef]
- Al-Baldawy, M.S.M.; Matloob, A.A.; Almammory, M.K. The importance of nitrogen-fixing bacteria Azotobacter chroococcum in biological control to root rot pathogens (review). IOP Conf. Ser. EES 2023, 1259, 012110. [Google Scholar] [CrossRef]
- Schnurr, J.A.; Jung, H.G.; Samac, D.A. A comparative study of alfalfa and Medicago truncatula stem traits: Morphology, chemical composition, and ruminal digestibility. Crop Sci. 2007, 47, 1672–1680. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Piano, E. Use of artificial environments to reproduce and exploit genotype x location interaction for lucerne in northern Italy. Theor. Appl. Genet. 2005, 110, 219–227. [Google Scholar] [CrossRef]
- Mohamed, H.A.; Al-Amri, S.; Abdel-Wahab, E.E. Enhancing Rhizobium–Legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change. Agriculture 2023, 13, 2092. [Google Scholar] [CrossRef]
- Andrews, M.; Morag, E.A. Specificity in Legume-Rhizobia Symbioses. Int. J. Mol. Sci 2017, 18, 705. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Bashir, S.; El-Gendi, H.; Elbeaino, T.; El-Rahim, W.M.A.; Moawad, H. Protective activity of Rhizobium leguminosarum bv. viciae strain 33504-Mat209 against alfalfa mosaic virus infection in faba bean plants. Plants 2023, 12, 2658. [Google Scholar] [CrossRef]
- Bellabarba, A.; Decorosi, F.; Fagorzi, C.; El Hadj Mimoune, A.; Buccioni, A.; Santoni, M.; Pacini, G.C.; Bekki, A.; Azim, K.; Hafidi, M.; et al. Salt stress highlights the relevance of genotype × genotype interaction in the nitrogen-fixing symbiosis between sinorhizobium meliloti and alfalfa. Soil Syst. 2023, 7, 112. [Google Scholar] [CrossRef]
- Brun, P.; de los Mozos, M.; Alcántara, M.C.; Perea, F.; Camacho, M.; Rodriguez Navarro, D.N. Characterization of Spanish lentil germplasm: Seed composition and agronomic performance evaluation. Sustainability 2024, 16, 2548. [Google Scholar] [CrossRef]
- Meng, J. Effects of Inoculating Different Rhizobia on Growth and Seed Yield of Alfalfa. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2021. [Google Scholar] [CrossRef]
- Via, V.D.; Zanetti, M.E.; Blanco, F. How legumes recognize rhizobia. Plant Signal. Behav. 2016, 11, e1120396. [Google Scholar] [CrossRef] [PubMed]
- Provorov, N.A.; Tikhonovich, I.A. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiotic. Genet. Resour. Crop Evol. 2003, 50, 89–99. [Google Scholar] [CrossRef]
- Andrei, S.; Jannick, V.C.; Rosu, C.M.; Stedel, C.; Chan, C.; Simms, E.L.; Iticescu, C.; Tsikou, D.; Flemetakis, E.; Efrose, R.C. Nodules of Medicago spp. host a diverse community of rhizobial species in natural ecosystems. Agronomy 2024, 14, 2156. [Google Scholar] [CrossRef]
- Pan, J.; Fan, Y.; Li, R.; Chen, L.; Hu, X. Screening of high efficient symbiotic rhizobium for Medicago sativa cv. Gannong No.3 and M. sativa cv. Longdong. Pratac. Sci. 2016, 33, 1536–1549. [Google Scholar] [CrossRef]
- Kang, W.J. Biotype Classification of Medicago Sativa Rhizobia and Its Transcriptome Analysis. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2019. [Google Scholar] [CrossRef]
- Long, L.; Lv, L.; Qiu, J.; Sun, D.; Wei, S.; Wan, X.; Gao, C. Comprehensive evaluation of fruit quality for premium wangmo Castanea mollissima plants. PLoS ONE 2023, 18, e0295691. [Google Scholar] [CrossRef]
- Shubh Pravat, S.Y.; Bhandari, S.; Ghimire, N.P.; Mehata, D.K.; Majhi, S.K.; Bhattarai, S.; Shrestha, S.; Yadav, B.; Chaudhary, P.; Bhujel, S. Genetic variability, character association, path coefficient, and diversity analysis of rice (Oryza sativa L.) genotypes based on agro-morphological traits. Int. J. Agron. 2024, 2024, 9946332. [Google Scholar] [CrossRef]
- Wassie, M.; Zhang, W.; Zhang, Q.; Ji, K.; Chen, L. Effect of heat stress on growth and physiological traits of alfalfa (Medicago sativa L.) and a comprehensive evaluation for heat tolerance. Agronomy 2019, 9, 597. [Google Scholar] [CrossRef]
- Rakotoson, T.; Dusserre, J.; Letourmy, P.; Frouin, J.; Ratsimiala, I.R.; Rakotoarisoa, N.V.; Vom Brocke, K.; Ramanantsoanirina, A.; Ahmadi, N.; Raboin, L.M. Genome-Wide Association Study of Nitrogen Use Efficiency and Agronomic Traits in Upland Rice. Rice Sci. 2021, 28, 379–398. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, H.; Ren, J.; Bai, B.; Guo, P.; Lv, Z.; Kang, S.; Zhao, X.; Yu, H.; Zhao, T. Characterization and comprehensive evaluation of phenotypic and yield traits in salt-stress-tolerant peanut germplasm for conservation and breeding. Horticulturae 2024, 10, 147. [Google Scholar] [CrossRef]
- Chen, S.; Feng, J.; Xiong, Y.; Xiong, Y.; Liu, Y.; Zhao, J.; Dong, Z.; Ma, X.; Yan, L. Evaluation and screening of wild Elymus sibiricus L. germplasm resources under salt stress. Agronomy 2023, 13, 2675. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Jia, R.; Bao, A.K. Evaluation of physiological characteristics and cold resistance of 10 alfalfa varieties under low temperature stres. Cao Ye Xue Bao 2024, 33, 76–88. [Google Scholar] [CrossRef]
- He, L.; Shi, S.L.; Kang, W.J.; Liu, C.C.; Wang, W.J.; Wu, B. Location and Sterilization of Endogenous Rhizobia in Alfalfa Seeds. Acta Agrestia Sin. 2022, 30, 2892–2898. [Google Scholar] [CrossRef]
- Lu, B.F.; Kang, W.J.; Shi, S.L.; Guan, J.; Jing, F.; Wu, B. Differences in fatty acid and central carbon metabolite distribution among different tissues of Alfalfa–Rhizobia symbiotic system. Agronomy 2024, 14, 511. [Google Scholar] [CrossRef]
- Wang, L.L. Molecular Mechanism of Leghemoglobin in Controlling Efficient Nodule Symbiotic Nitrogen Fixation. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2019. [Google Scholar] [CrossRef]
- Ma, C.; Liu, C.Y.; Yu, Y.Y.; Ma, S.; Pan, S.; Feng, H.; Chen, Q.; Xin, D.; Wu, X.; Wang, J. GmTNRP1, associated with rhizobial type-III effector NopT, regulates nitrogenase activity in the nodules of soybean (Glycine max). Food Energy Secur. 2023, 12, e466. [Google Scholar] [CrossRef]
- Zhou, N.; Li, W.; Wu, Z.; Li, X.; Yang, A.; Tong, P.; Chen, H. Sequential extractions: A new way for protein quantification-data from peanut allergens. Anal. Biochem. 2015, 484, 31–36. [Google Scholar] [CrossRef]
- Menge, D.N.L.; Wolf, A.A.; Funk, J.L.; Perakis, S.S.; Carreras Pereira, K.A. Nitrogen fixation and fertilization have similar effects on biomass allocation in nitrogen-fixing plants. Ecol. Evol. 2024, 14, e70309. [Google Scholar] [CrossRef]
- Yang, S.J.; He, Y.P.; Ke, M.; Li, L.; Liang, W.W.; Hou, Y.R. The Study on symbiotic of Alfalfa Rhizobia with Alfalfa in Different Substratum. Grass-Feed. Livest. 2018, 03, 33–39. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, A.; Yu, A.; Luo, L.; Yu, G.Q.; Zhu, J.B.; Wang, Y.Z. The GntR-type regulators GtrA and GtrB affect cell growth and nodulation of Sinorhizobium meliloti. J. Microbiol. 2008, 46, 137–145. [Google Scholar] [CrossRef]
- Noh, N.J.; Son, Y.; Koo, J.W.; Seo, K.W.; Kim, R.H.; Lee, Y.Y.; Yoo, K.S. Comparison of nitrogen fixation for north- and south-facing Robinia pseudoacacia stands in central Korea. J. Plant Biol. 2010, 53, 61–69. [Google Scholar] [CrossRef]
- Nzeyimana, F.; Onwonga, R.N.; Ayuke, F.O.; Chemining’wa, G.N.; Nabahungu, N.L.; Bigirimana, J.; Noella Josiane, U.K. Determination of abundance and symbiotic effectiveness of native rhizobia nodulating soybean and other legumes in Rwanda. Plant-Environ. Interact. 2024, 5, e10138. [Google Scholar] [CrossRef] [PubMed]
- Bodenhausen, N.; Horton, M.W.; Bergelson, J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 2013, 8, e56329. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Min, D. Harvesting schedule effects on forage yield and nutritive values in low-lignin alfalfa. J. Anim. Sci. Technol. 2022, 64, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Min, D.; Baral, R. Effect of potassium application rate on dry matter yield and forage nutritive value in alfalfa. Curr. Agric. Res. J. 2022, 10, 68–76. [Google Scholar] [CrossRef]
- Kusano, M.; Fukushima, A.; Redestig, H.; Saito, K. Metabolomic approaches toward understanding nitrogen metabolism in plants. J. Exp. Bot. 2011, 62, 1439–1453. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, J.; Huang, D. The utilization and roles of nitrogen in plants. Forests 2024, 15, 1191. [Google Scholar] [CrossRef]
- Pei, B.; Zhang, Y.; Liu, T.; Cao, J.; Ji, H.; Hu, Z.; Wu, X.; Wang, F.; Lu, Y.; Chen, N.; et al. Effects of seaweed fertilizer application on crops’ yield and quality in field conditions in China—A meta-analysis. PLoS ONE 2024, 19, e0307517. [Google Scholar] [CrossRef]
- Gourion, B.; Berrabah, F.; Ratet, P.; Stacey, G. Rhizobium-legume symbioses: The crucial role of plant immunity. Trends Plant Sci. 2015, 20, 186–194. [Google Scholar] [CrossRef]
- Teulet, A.; Camuel, A.; Perret, X.; Giraud, E. The Versatile Roles of Type III Secretion Systems in Rhizobium-Legume Symbioses. Annu. Rev. Microbiol. 2022, 76, 45–65. [Google Scholar] [CrossRef]
- Nan, L.L.; Shi, S.L.; Guo, Q.E.; Tian, F.; Fan, J.J. Analysis of dynamic variations in crown characteristics of different root-type alfalfa plants. Chin. J. Eco-Agric. 2012, 20, 914–920. [Google Scholar] [CrossRef]
- Barron, S.; Mus, F.; Peters, J.W. Nitrogen-fixing gamma proteobacteria Azotobacter vinelandii—A blueprint for nitrogen-fixing plants? Microorganisms 2024, 12, 2087. [Google Scholar] [CrossRef]
Code | Scientific Name | Habitat | Source |
---|---|---|---|
WL168 | M. sativa WL168HQ | America | Beijing Rytway Ecotechnology Co., Ltd. (Beijing, China) |
WL298 | M. sativa WL298HQ | ||
WL319 | M. sativa WL319HQ | ||
QS | M. sativa Qingshui | China | Prataculture of Gansu Agricultural University |
LZ | M. sativa Longzhong | ||
G9 | M. sativa Gannong No.9 | ||
G3 | M. sativa Gannong No.3 | ||
G5 | M. sativa Gannong No.5 |
Index | Average | Standard Deviation | Standard Deviation (%) |
---|---|---|---|
Number of effective root nodules per plant | 7.678 | 0.688 | 8.96 |
Single effective root nodule weight (mg) | 0.808 | 0.340 | 42.09 |
Number of infected root nodule cells | 1883.625 | 514.603 | 27.32 |
Nitrogenase activity (μmol·g−1·h−1) | 0.409 | 0.243 | 59.40 |
Aboveground tissue nitrogen accumulation (mg·plant−1) | 102.4 | 37.375 | 36.50 |
Underground tissue nitrogen accumulation (mg·plant−1) | 22.83 | 6.030 | 27.18 |
Nitrogen fixation percentage (%) | 56.121 | 9.533 | 16.99 |
Nitrogen fixation amount (mg·pot−1) | 0.311 | 0.062 | 19.81 |
Plant total nitrogen (14N + 15N) (%) | 3.310 | 0.304 | 9.19 |
Crude protein | 16.488 | 0.866 | 5.25 |
Plant height | 62.554 | 5.872 | 9.39 |
Aboveground dry weight (g·plant−1) | 3.881 | 1.449 | 37.34 |
Underground dry weight (g·plant−1) | 1.229 | 0.351 | 28.55 |
Stem–leaf ratio | 0.886 | 0.181 | 20.38 |
Alfalfa Varieties | Coefficient of Variation (%) | ||||||
---|---|---|---|---|---|---|---|
Aboveground Tissue Nitrogen Accumulation | Underground Tissue Nitrogen Accumulation | Crude Protein | Plant Height | Aboveground Dry Weight | Underground Dry Weights | Stem–Leaf Ratio | |
G3 | 17.32 | 5.72 | 1.96 | 10.76 | 15.29 | 29.47 | 1.88 |
G5 | 31.09 | 14.01 | 8.03 | 2.88 | 22.84 | 17.88 | 11.40 |
G9 | 16.55 | 0.64 | 3.61 | 0.24 | 15.33 | 6.69 | 8.10 |
WL168 | 21.75 | 13.27 | 7.75 | 11.24 | 22.42 | 18.27 | 9.44 |
WL298 | 22.32 | 21.52 | 5.91 | 3.47 | 24.26 | 15.92 | 7.30 |
WL319 | 23.85 | 17.50 | 2.69 | 5.95 | 20.95 | 9.13 | 9.13 |
QS | 65.69 | 21.68 | 4.55 | 13.06 | 57.23 | 21.20 | 10.86 |
LZ | 0.02 | 6.41 | 2.47 | 11.10 | 5.15 | 4.06 | 1.81 |
Factor | Principal Component | |||
---|---|---|---|---|
I | II | III | IV | |
Eigenvalue | 4.724 | 3.593 | 2.100 | 1.889 |
Contribution rate/% | 33.740 | 25.662 | 15.002 | 13.490 |
Accumulative contribution rate/% | 33.740 | 59.402 | 74.404 | 87.894 |
Number of effective root nodules per plant | 0.012 | −0.183 | −0.349 | 0.057 |
Single effective root nodule weight | 0.131 | 0.115 | 0.154 | 0.159 |
Number of infected root nodule cells | 0.163 | 0.01 | −0.187 | 0.194 |
Nitrogenase activity | 0.171 | 0.059 | 0.035 | 0.21 |
Aboveground tissue nitrogen accumulation | 0.202 | 0.002 | 0.076 | −0.103 |
Underground tissue nitrogen accumulation | 0.111 | 0.185 | −0.191 | −0.065 |
Nitrogen fixation percentage | −0.033 | 0.252 | −0.067 | 0.021 |
Nitrogen fixation amount | −0.059 | 0.243 | −0.003 | 0.199 |
Plant total nitrogen (14N + 15N) | −0.096 | 0.085 | 0.147 | 0.367 |
Crude protein | −0.009 | 0.084 | 0.322 | −0.216 |
Plant height | 0.126 | −0.134 | 0.264 | 0.053 |
Aboveground dry weight | 0.198 | −0.037 | 0.1 | −0.106 |
Underground dry weights | 0.118 | 0.141 | −0.208 | −0.161 |
Stem–leaf ratio | −0.048 | 0.134 | −0.001 | −0.378 |
Treatment | The D Value | Rank |
---|---|---|
G9-LL2 | 0.937902821 | 1 |
QS-LL2 | 0.585020043 | 2 |
G5-LL2 | 0.575772789 | 3 |
LZ-LL2 | 0.426585897 | 4 |
G3-LL2 | 0.334872736 | 5 |
WL298-LL2 | 0.316787268 | 6 |
WL168-LL2 | 0.268595499 | 7 |
WL319-LL2 | 0.210707858 | 8 |
Type | Feature | Symbiotic Combinations |
---|---|---|
Aboveground accumulation type | The aboveground dry weight exhibited a significant increase, while no statistically significant difference was observed in the underground dry weight. | G9-LL2 |
Aboveground and underground accumulation type | The dry weight of both aboveground and underground biomass exhibited an increase. | QS-LL2 |
Aboveground accumulation, underground depletion type | The aboveground biomass demonstrated a significant increase, whereas the underground biomass exhibited a substantial decrease. | G5-LL2 |
Zero-growth type | The aboveground and underground dry weights did not exhibit any statistically significant disparity. | WL168-LL2, WL319-LL2, LZ-LL2 |
Aboveground and underground depletion type | The aboveground and underground biomass demonstrated a substantial reduction. | WL298-LL2 |
Underground depletion type | The aboveground biomass did not exhibit any significant difference, whereas a notable decrease was observed in the underground biomass. | G3-LL2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Kang, W.; Shi, S.; Guan, J.; Du, Y.; He, F.; Lu, B.; Wang, M. Investigation of Nitrogen Fixation Efficiency in Diverse Alfalfa Varieties Utilizing Sinorhizobium meliloti LL2. Agronomy 2024, 14, 2732. https://doi.org/10.3390/agronomy14112732
Han Y, Kang W, Shi S, Guan J, Du Y, He F, Lu B, Wang M. Investigation of Nitrogen Fixation Efficiency in Diverse Alfalfa Varieties Utilizing Sinorhizobium meliloti LL2. Agronomy. 2024; 14(11):2732. https://doi.org/10.3390/agronomy14112732
Chicago/Turabian StyleHan, Yilin, Wenjuan Kang, Shangli Shi, Jian Guan, Yuanyuan Du, Fuqiang He, Baofu Lu, and Ming Wang. 2024. "Investigation of Nitrogen Fixation Efficiency in Diverse Alfalfa Varieties Utilizing Sinorhizobium meliloti LL2" Agronomy 14, no. 11: 2732. https://doi.org/10.3390/agronomy14112732
APA StyleHan, Y., Kang, W., Shi, S., Guan, J., Du, Y., He, F., Lu, B., & Wang, M. (2024). Investigation of Nitrogen Fixation Efficiency in Diverse Alfalfa Varieties Utilizing Sinorhizobium meliloti LL2. Agronomy, 14(11), 2732. https://doi.org/10.3390/agronomy14112732