Genetic Dissection of Isoleucine and Leucine Contents in the Embryo and Maternal Plant of Rapeseed Meal Under Different Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Field Experiments
2.3. Trait Measurement
2.4. Statistical Analysis
2.5. Linkage Genetic Map and QTL Mapping
3. Results
3.1. Phenotypic Variation of Isoleucine and Leucine Content
3.2. Correlation Analysis of Isoleucine and Leucine Content
3.3. QTL Mapping Analysis
3.4. QTL Controlling Isoleucine Content
3.5. QTL Controlling Leucine Content
3.6. QTL Co-Location Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Möllers, C. Development of high oleic acid oilseed rape. In Proceedings of the 8th International Conference for Renewable Resources and Plant Biotechnology, NAROSSA, Magdeburg, Germany, 10–11 January 2002; pp. 10–11. [Google Scholar]
- Schweizer, M.; Segall, K.; Medina, S. Rapeseed/Canola protein isolates for use in the food industry. In Proceedings of the 12th International Rapeseed Congress; Fu, T.D., Guan, C.Y., Eds.; Science Press USA Inc.: Princeton Junction, NJ, USA, 2007. [Google Scholar]
- Gad, G.; Rainer, H. Metabolic engineering of amino acids and storage proteins in plants. Metab. Eng. 2002, 4, 3–11. [Google Scholar]
- Chen, G.L.; Wu, J.G.; Variath, M.T.; Yang, Z.W.; Shi, C.H. Analysis of embryo, cytoplasmic and maternal genetic correlations for seven essential amino acids in rapeseed meal (Brassica napus L.). J. Genet. 2011, 90, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.L.; Wu, J.G.; Variath, M.T.; Shi, C.H. Timing of gene expression from different genetic systems in shaping leucine and isoleucine contents of rapeseed (Brassica napus L.) meal. J. Genet. 2011, 90, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Q.; Zhong, M.; Li, X.H.; Yuan, D.J.; Xu, Y.B.; Liu, H.F.; He, Y.Q.; Luo, L.J.; Zhang, Q.F. The QTL controlling amino acid content in grains of rice (Oryza sativa) is co-localized with the regions involved in the amino acid metabolism path way. Mol. Breed. 2008, 21, 127–137. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, J.G.; Lou, X.Y.; Xu, H.M.; Shi, C.H. Mapping and analysis of QTLs on maternal and endosperm genomes for histidine and arginine in rice (Oryza sativa L.) across environments. Acta Agronom. Sin. 2008, 34, 369–375. [Google Scholar] [CrossRef]
- Shi, C.H.; Shi, Y.; Lou, X.Y.; Xu, H.M.; Zheng, X.; Wu, J.G. Identification of endosperm and maternal plant QTLs for protein and lysine contents of rice across different environments. Crop Pasture Sci. 2009, 60, 295–301. [Google Scholar] [CrossRef]
- Jiang, X.L.; Deng, Z.Y.; Ru, Z.G.; Wu, P.; Tian, J.C. Quantitative trait loci controlling amino acid contents in wheat (Triticum aestivum L.). Aust. J. Crop Sci. 2013, 7, 820–829. [Google Scholar]
- Panthee, D.R.; Pantalone, V.R.; Sams, C.E.; Saxton, A.M.; West, D.R.; Orf, J.H.; Killam, A.S. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor. Appl. Genet. 2006, 112, 546–553. [Google Scholar] [CrossRef]
- Liu, H.Y.; Quampah, A.; Chen, J.H.; Li, J.R.; Huang, Z.R.; He, Q.L.; Shi, C.H.; Zhu, S.J. QTL mapping based on different genetic systems for essential amino acid contents in cottonseeds in different environments. PLoS ONE 2013, 8, e57531. [Google Scholar] [CrossRef]
- Wen, J.; Xu, J.F.; Long, Y.; Wu, J.G.; Xu, H.M.; Meng, J.L.; Shi, C.H. QTL mapping based on the embryo and maternal genetic systems for non-essential amino acids in rapeseed (Brassica napus L.) meal. J. Sci. Food Agric. 2016, 96, 465–473. [Google Scholar] [CrossRef]
- Bilgrami, S.; Liu, L.Z.; Farokhzadeh, S.; Najafabadi, A.S.; Ramandi, H.D.; Nasiri, N.; Darwish, I. Meta-analysis of QTLs controlling seed quality traits based on QTL alignment in Brassica napus. Ind. Crops Prod. 2022, 176, 114307. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, J.; Williams, R.W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 2007, 23, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Xu, J.F.; Long, Y.; Xu, H.M.; Wu, J.G.; Meng, J.L.; Shi, C.H. Mapping QTLs controlling beneficial fatty acids based on the embryo and maternal plant genomes in Brassica napus L. J. Am. Oil Chem. Soc. 2015, 92, 541–552. [Google Scholar] [CrossRef]
- Qiu, D.; Morgan, C.; Shi, J.; Long, Y.; Liu, J.; Li, R.; Zhuang, X.; Wang, Y.; Tan, X.; Dietrich, E.; et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor. Appl. Genet. 2006, 114, 67–80. [Google Scholar] [CrossRef]
- Chen, G.L.; Zhang, B.; Wu, J.G.; Shi, C.H. Nondestructive assessment of amino acid composition in rapeseed meal based on intact seeds by near-infrared reflectance spectroscopy. Anim. Feed Sci. Tech. 2011, 165, 111–119. [Google Scholar] [CrossRef]
- Shi, J.Q.; Li, R.Y.; Qiu, D.; Jiang, C.C.; Long, Y.; Morgan, C.; Bancroft, I.; Zhao, J.Y.; Meng, J.L. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 2009, 182, 851–861. [Google Scholar] [CrossRef]
- Zhu, J.; Weir, B.S. Mixed model approaches for genetic analysis of quantitative traits. In Proceedings of the International Conference “Mathematical Biology and Bioinformatics”; Chen, L.S., Ruan, S.G., Zhu, J., Eds.; World Scientific Publishing Co.: Singapore, 1998; pp. 321–330. [Google Scholar]
- McCouch, S.R.; Cho, Y.G.; Yano, P.E.; Blinstrub, M.; Morishima, H.; Kinoshita, T. Report on QTL nomenclature. Rice Genet. Newsl. 1997, 14, 11–13. [Google Scholar]
- Cheng, H.; Liu, X.; Xiao, Q.R.; Zhang, F.; Liu, N.; Tang, L.Z.; Wang, J.; Ma, X.K.; Tan, B.; Chen, J.S.; et al. Rapeseed meal and its application in pig diet: A review. Agriculture 2022, 12, 849. [Google Scholar] [CrossRef]
- Kaiser, F.; Harbach, H.; Schulz, C. Rapeseed proteins as fishmeal alternatives: A review. Rev. Aquac. 2022, 14, 1887–1911. [Google Scholar] [CrossRef]
- Mackay, T.F. The genetic architecture of quantitative traits. Annu. Rev. Genet. 2001, 35, 303–339. [Google Scholar] [CrossRef]
- Paterson, A.H.; Lander, E.S.; Hewitt, J.D.; Peterson, S.; Lincoln, S.E.; Tanksley, S.D. Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature 1988, 335, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Tanksley, S.D. Mapping polygenes. Annu. Rev. Genet. 1993, 27, 205–233. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.C. Interval mapping of multiple quantitative trait loci. Genetics 1993, 135, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.C.; Stam, P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 1994, 136, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Bostein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121, 185–199. [Google Scholar] [CrossRef]
- Wang, D.L.; Zhu, J.; Li, Z.K.; Paterson, A.H. Mapping QTLs with epistatic effects and genotype × environment interactions by mixed linear model approaches. Theor. Appl. Genet. 1999, 99, 1255–1264. [Google Scholar] [CrossRef]
- Wu, W.R.; Li, W.M. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theor. Appl. Genet. 1994, 89, 535–539. [Google Scholar] [CrossRef]
- Zhang, J.F.; Qi, C.K.; Pu, H.M.; Chen, S.; Chen, F.; Gao, J.Q.; Chen, X.J.; Gu, H.; Fu, S.Z. QTL identification for fatty acid content in rapeseed (Brassica napus L.). Acta Agronom. Sin. 2008, 34, 54–60. [Google Scholar] [CrossRef]
- Yan, X.Y.; Li, J.N.; Wang, R.; Jin, M.Y.; Chen, L.; Qian, W.; Wang, X.N.; Liu, L.Z. Mapping of QTLs controlling content of fatty acid composition in rapeseed (Brassica napus L.). Genes Genom. 2011, 33, 365–371. [Google Scholar] [CrossRef]
- Subhadra, S.; Mohapatra, T.; Rakesh, S.; Hussain, Z. Mapping of QTLs for oil content and fatty acid composition in Indian mustard [Brassica juncea (L.) Czern. and Coss.]. J. Plant Biochem. Biotechnol. 2013, 22, 80–89. [Google Scholar]
Growth | Traits | Parent | BC1F1 (DH × Tapidor) | BC2F1 (DH × Ningyou7) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Tapidor | Ningyou7 | Means | SD | Minimum | Maximum | Skewness | Kurtosis | Means | SD | Minimum | Maximum | Skewness | Kurtosis | |
2012 | Ile | 1.602 | 1.430 ** | 1.427 | 0.084 | 1.220 | 1.689 | 0.189 | 0.120 | 1.386 | 0.081 | 1.180 | 1.684 | 0.548 | 0.878 |
Leu | 2.912 | 2.525 ** | 2.563 | 0.125 | 2.271 | 2.935 | 0.224 | 0.164 | 2.493 | 0.137 | 2.121 | 2.919 | 0.381 | 0.492 | |
2013 | Ile | 1.409 | 1.402 | 1.272 | 0.083 | 1.043 | 1.499 | 0.072 | −0.172 | 1.223 | 0.071 | 1.079 | 1.428 | 0.356 | 0.092 |
Leu | 2.660 | 2.462 ** | 2.351 | 0.127 | 2.015 | 2.694 | −0.106 | −0.086 | 2.254 | 0.115 | 1.998 | 2.581 | 0.199 | −0.026 |
QTL | Linkage Group | Marker Interval | Position | Range | R2 | Ae | De | Am | AeE1 | DeE1 | AmE1 | AeE2 | DeE2 | AmE2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qIleC-1-1 | A1 | BRMS-098-PW157 | 14.4 | 12.9–15.4 | 3.26 | 0.2788 ** | −0.262 ** | −0.0004 | 0.0026 | −0.0026 | 0.0043 | 0.0001 | −0.0001 | −0.0043 |
qIleC-4-2 | A4 | HS-K02-2-HBR094 | 18.5 | 17.5–19.4 | 19.43 | −0.6764 ** | 0.6444 ** | 0.0104 ** | 0.0002 | −0.0002 | −0.0002 | 0 | 0 | 0.0002 |
qIleC-5-3 | A5 | CNU029-BRAS095 | 57.7 | 57.3–58.0 | 4.19 | 0.3125 ** | −0.301 ** | 0.0034 | 0.0001 | −0.0001 | 0.0021 | 0.0002 | −0.0002 | −0.002 |
qIleC-7-4 | A7 | RPSAA-ZNS06M34-50 | 68.1 | 67.1–68.9 | 18.37 | −0.6531 ** | 0.6301 ** | 0.0007 | 0.0002 | −0.0002 | −0.0035 | 0 | 0 | 0.0034 |
qIleC-9-5 | A9 | PW123AH-PW123BE | 21.6 | 19.6–23.3 | 4.51 | 0.3253 ** | −0.3112 ** | −0.0017 | 0.0003 | −0.0003 | 0 | 0.0001 | −0.0001 | 0 |
qIleC-12-6 | C2 | EM18ME6-220-NA12C03 | 116.3 | 108.0–124.3 | 5.73 | 0.3653 ** | −0.3519 ** | 0.0028 | 0.0039 | −0.0038 | 0.0026 | 0.0001 | −0.0001 | −0.0027 |
qLeuC-1-1 | A1 | HBR006-HBR018 | 31.3 | 29.8–32.3 | 35.67 | 1.2792 ** | −1.2431 ** | 0.0019 | 0.0004 | −0.0004 | 0.0003 | −0.0002 | 0.0002 | −0.0003 |
qLeuC-4-2 | A4 | HS-K02-2-HBR094 | 18.5 | 15.2–19.4 | 13.16 | −0.7823 ** | 0.7504 ** | −0.0003 | 0.0001 | −0.0001 | −0.0002 | −0.0014 | 0.0014 | 0.0002 |
qLeuC-12-3 | C2 | EM18ME6-220-NA12C03 | 118.3 | 111.3–124.3 | 7.23 | −0.5526 ** | 0.5782 ** | 0.0023 | 0.0076 | −0.0075 | 0.0072 | −0.0002 | 0.0002 | −0.0073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Xu, H.; Shi, C.; Zang, Y.; Zhu, Z.; Wu, J. Genetic Dissection of Isoleucine and Leucine Contents in the Embryo and Maternal Plant of Rapeseed Meal Under Different Environments. Agronomy 2024, 14, 2733. https://doi.org/10.3390/agronomy14112733
Xu J, Xu H, Shi C, Zang Y, Zhu Z, Wu J. Genetic Dissection of Isoleucine and Leucine Contents in the Embryo and Maternal Plant of Rapeseed Meal Under Different Environments. Agronomy. 2024; 14(11):2733. https://doi.org/10.3390/agronomy14112733
Chicago/Turabian StyleXu, Jianfeng, Haiming Xu, Chunhai Shi, Yunxiang Zang, Zhiyu Zhu, and Jianguo Wu. 2024. "Genetic Dissection of Isoleucine and Leucine Contents in the Embryo and Maternal Plant of Rapeseed Meal Under Different Environments" Agronomy 14, no. 11: 2733. https://doi.org/10.3390/agronomy14112733
APA StyleXu, J., Xu, H., Shi, C., Zang, Y., Zhu, Z., & Wu, J. (2024). Genetic Dissection of Isoleucine and Leucine Contents in the Embryo and Maternal Plant of Rapeseed Meal Under Different Environments. Agronomy, 14(11), 2733. https://doi.org/10.3390/agronomy14112733