Abundance of Human Pathogenic Microorganisms in the Halophyte Salicornia europaea L.: Influence of the Chemical Composition of Shoots and Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Sites Description, Environmental Conditions and Sampling
2.2. Thermochemolysis and Pyrolysis-Gas Chromatography/Mass Spectrometry
2.3. Abundance of HPMOs in Bulk Soil, Rhizosphere, Shoot and Root of S. europaea
2.4. Bulk and Rhizosphere Soil Analysis
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, D.; Buhmann, A.K.; Flowers, T.J.; Seal, C.E.; Papenbrock, J. Salicornia as a crop plant in temperate regions: Selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoBP 2014, 6, plu071. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, E.-Y.; Hillman, P.F.; Ko, J.; Yang, I.; Nam, S.-J. Chemical Structure and Biological Activities of Secondary Metabolites from Salicornia europaea L. Molecules 2021, 26, 2252. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Al-Azzawi, M.; Aronson, J.; Flowers, T.J. eHALOPH a database of salt-tolerant plants: Helping put halophytes to work. Plant Cell Physiol. 2016, 57, e10. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Pérez, S.; Rajabi Dehnavi, A.; Leszczyński, K.; Lubińska-Mielińska, S.; Ludwiczak, A.; Piernik, A. Salicornia europaea L. Functional Traits Indicate Its Optimum Growth. Plants 2022, 11, 1051. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.D.; Gago, C.; Guerreiro, A.; Sousa, A.R.; Julião, M.; Miguel, M.G.; Faleiro, M.L.; Panagopoulos, T. Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads. Horticulturae 2021, 7, 6. [Google Scholar] [CrossRef]
- Rhee, M.H.; Park, H.-J.; Cho, J.Y. Salicornia herbacea: Botanical chemical and pharmacological review of halophyte marsh plant. J. Med. Plant Res. 2009, 3, 548–555. [Google Scholar]
- Cárdenas-Pérez, S.; Piernik, A.; Chanona-Pérez, J.J.; Grigore, M.N.; Perea-Flores, M.J. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environ. Exp. Bot. 2021, 191, 104606. [Google Scholar] [CrossRef]
- Puccinelli, M.; Marchioni, I.; Botrini, L.; Carmassi, G.; Pardossi, A.; Pistelli, L. Growing Salicornia europaea L. with Saline Hydro-ponic or Aquaculture Wastewater. Horticulturae 2024, 10, 196. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Pinto, D.C.G.A.; Cunha, Â.; Silva, H. Halophytes as Medicinal Plants against Human Infectious Diseases. Appl. Sci. 2022, 12, 7493. [Google Scholar] [CrossRef]
- Cesarino, I.; Simões, M.S.; dos Santos Brito, M.; Fanelli, A.; da Franca Silva, T.; Romanel, E. Building the wall: Recent advances in understanding lignin metabolism in grasses. Acta Physiol. Plant. 2016, 38, 269. [Google Scholar] [CrossRef]
- Cesarino, I. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Curr. Opin. Biotechnol. 2019, 56, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Jeon, H.S.; Kim, S.H.; Chung, J.H.; Roppolo, D.; Lee, H.J.; Cho, H.J.; Tobimatsu, Y.; Ralph, J.; Park, O.K. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 2019, 38, e101948. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, N.H.; Selvaraj, G.; Wei, Y.; King, J. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J. Exp. Bot. 2008, 60, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Miedes, E.; Vanholme, R.; Boerjan, W.; Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 2014, 5, 358. [Google Scholar] [CrossRef]
- Cavaco, A.R.; Matos, A.R.; Figueiredo, A. Speaking the language of lipids: The cross-talk between plants and pathogens in defence and disease. Cell. Mol. Life Sci. 2021, 78, 4399–4415. [Google Scholar] [CrossRef]
- Walley, J.W.; Kliebenstein, D.J.; Bostock, R.M.; Dehesh, K. Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol. 2013, 16, 520–526. [Google Scholar] [CrossRef]
- Ludovici, M.; Ialongo, C.; Reverberi, M.; Beccaccioli, M.; Scarpari, M.; Scala, V. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis of Fusarium verticillioides and maize kernels. Food Addit. Contam. Part A 2014, 31, 2026–2033. [Google Scholar] [CrossRef]
- Siebers, M.; Brands, M.; Wewer, V.; Duan, Y.; Hölzl, G.; Dörmann, P. Lipids in plant–microbe interactions. Biochim. Biophys. Acta 2016, 1861 Pt B, 1379–1395. [Google Scholar] [CrossRef]
- Bhatia, V.; Nag, R.; Burgess, C.M.; Gaffney, M.; Celayeta, J.M.F.; Cummins, E. Microbial risks associated with Ready-To-Eat Fresh Produce (RTEFP)—A focus on temperate climatic conditions. Postharvest Biol. Technol. 2024, 213, 112924. [Google Scholar] [CrossRef]
- Barak, J.D.; Schroeder, B.K. Interrelationships of food safety and plant pathology: The life cycle of human pathogens on plants. Annu. Rev. Phytopathol. 2012, 50, 241–266. [Google Scholar] [CrossRef]
- Warriner, K.; Spaniolas, S.; Dickinson, M.; Wright, C.; Waites, W.M. Internalization of bioluminescent Escherichia coli and Salmonella Montevideo in growing bean sprouts. J. Appl. Microbiol. 2003, 95, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Deering, A.J.; Pruitt, R.E.; Mauer, L.J.; Reuhs, B.L. Identification of the Cellular Location of Internalized Escherichia coli O157:H7 in Mung Bean Vigna radiata using Immunocytochemical Techniques. J. Food Prot. 2011, 74, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Deering, A.J.; Mauer, L.J.; Pruitt, R.E. Internalization of E. coli O157:H7 and Salmonella spp. in plants: A review. Food Res. Int. 2012, 45, 567–575. [Google Scholar] [CrossRef]
- McCoy Sanders, J.; Alarcon, V.; Marquis, G.; Tabb, A.; Van Kessel, J.A.; Sonnier, J.; Haley, B.J.; Baek, I.; Qin, J.; Kim, M.; et al. Inactivation of Escherichia Coli, Salmonella Enterica, and Listeria Monocytogenes Using the Contamination Sanitization Inspection and Disinfection (CSI-D) Device. Heliyon 2024, 10, e30490. [Google Scholar] [CrossRef] [PubMed]
- Géhu, J.-M.; Bioret, F. Étude Synécologique et Phytocoenotique des Communautés à Salicornes des Vases Salées du Littoral Breton; Bulletin de la Société Botanique duy Centre-Ouest NS: Bouguenais, France, 1992; Volume 23, pp. 347–419. [Google Scholar]
- ISO 7712:1983; Laboratory glassware—Disposable Pasteur pipettes. ISO: Geneva, Switzerland, 1983.
- ISO 11290; Microbiology of the food chain—Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. ISO: Geneva, Switzerland, 2017.
- EN-ISO 6579-1; Microbiology of the food chain—Horizontal method for detection, enumeration and serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- EN ISO 7932; Microbiology of food and feed—Horizontal method for the enumeration of presumptive B. cereus—Colony count method at 30 °C. ISO: Geneva, Switzerland, 2004.
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis. Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006; pp. 596–599. [Google Scholar]
- Van Reeuwijk, L.P. Technical Paper 09: Procedures for Soil Analysis, 6th ed.; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- Pokojska, U. Przewodnik Metodyczny do Analizy Wód; UMK: Toruń, Poland, 1999; pp. 25–27. [Google Scholar]
- Hulkko, L.S.S.; Turcios, A.E.; Kohnen, S.; Chaturvedi, T.; Papenbrock, J.; Thomsen, M.H. Cultivation and characterisation of Salicornia europaea, Tripolium pannonicum and Crithmum maritimum biomass for green biorefinery applications. Sci. Rep. 2022, 12, 20507. [Google Scholar] [CrossRef]
- Cybulska, I.; Chaturvedi, T.; Brudecki, G.P.; Kádár, Z.; Meyer, A.S.; Baldwin, R.; Thomsen, M.H. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. Bioresour. Technol. 2014, 153, 165–172. [Google Scholar] [CrossRef]
- Sholahuddin, S.; Arinawati, D.Y.; Nathan, V.K.; Asada, C.; Nakamura, Y. Antioxidant and antimicrobial activities of lignin-derived products from all steam-exploded palm oil mill lignocellulosic biomass waste. Chem. Biol. Technol. Agric. 2024, 11, 5. [Google Scholar] [CrossRef]
- Sattler, S.; Funnell-Harris, D. Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier against pathogens? Front. Plant Sci. 2013, 4, 70. [Google Scholar] [CrossRef]
- Bonello, P.; Storer, A.J.; Gordon, T.R.; Wood, D.L.; Heller, W. Systemic effects of Heterobasidion annosum on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem. and potential effects on bark-beetle-associated fungi. J. Chem. Ecol. 2003, 29, 1167–1182. [Google Scholar] [CrossRef]
- Menden, B.; Kohlhoff, M.; Moerschbacher, B.M. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry 2007, 68, 513–520. [Google Scholar] [CrossRef]
- Le Gall, H.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell Wall Metabolism in Response to Abiotic Stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, M.R.; Navarro, D.A.; Ponce, N.M.A.; Rojas, A.M.; Stortz, C.A. Perennial halophyte Salicornia neei Lag.: Cell wall composition and functional properties of its biopolymers. Food Chem. 2021, 350, 128659. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Aliniaeifard, S.; Garshina, D.; Garipova, S.; Pusenkova, L.; Allagulova, C.; Fedorova, K.; Baymiev, A.; Koryakov, I.; Sobhani, M. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. J. Plant Physiol. 2021, 263, 153462. [Google Scholar] [PubMed]
- Li, C.; Qi, Y.; Zhao, C.; Wang, X.; Zhang, Q. Transcriptome Profiling of the Salt Stress Response in the Leaves and Roots of Halophytic Eutrema salsugineum. Front. Genet. 2021, 12, 770742. [Google Scholar] [CrossRef]
- Dracatos, P.M.; Cogan, N.O.; Dobrowolski, M.P.; Sawbridge, T.I.; Spangenberg, G.C.; Smith, K.F.; Forster, J.W. Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet. 2008, 117, 203–219. [Google Scholar] [CrossRef]
- Ishida, H.; Suzuno, H.; Sugiyama, N.; Innami, S.; Tadokoro, T.; Maekawa, A. Nutritive evaluation on chemical components of leaves. stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem. 2000, 68, 359–367. [Google Scholar] [CrossRef]
- Yang, L.; Bai, Y.; Yang, J.; Gao, Y.; Shi, P.; Hou, C.; Wang, Y.; Gu, X.; Liu, W. Transcriptomic and lipidomic analysis reveals the salt-adapted in Salicornia europaea. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Lv, S.; Tai, F.; Guo, J.; Jiang, P.; Lin, K.; Wang, D.; Zhang, X.; Li, Y. Phosphatidylserine Synthase from Salicornia europaea Is Involved in Plant Salt Tolerance by Regulating Plasma Membrane Stability. Plant Cell Physiol. 2021, 62, 66–79. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, C.; Guo, Z.; Zhang, Q.; Li, S.; Zhang, X.; Gong, J.; Shen, Y. Herbivore exposure alters ion fluxes and improves salt tolerance in a desert shrub. Plant Cell Environ. 2020, 43, 400–419. [Google Scholar] [CrossRef]
- Kolattukudy, P.E.; Rogers, L.M.; Li, D.; Hwang, C.S.; Flaishman, M.A. Surface signaling in pathogenesis. Proc. Natl. Acad. Sci. USA 1995, 92, 4080–4087. [Google Scholar] [CrossRef]
- Reina-Pinto, J.J.; Yephremov, A. Surface lipids and plant defenses. Plant Physiol. Biochem. 2009, 47, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 2016, 40, 133–159. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.A.; Lee, D.H.; Heu, S. The interaction of human enteric pathogens with plants. Plant Pathol. J. 2014, 30, 109–116. [Google Scholar] [CrossRef] [PubMed]
Old Marsh Soil | Old Marsh RS | Young Marsh Soil | Young Marsh RS | |
---|---|---|---|---|
Corg (%) | 1.8 ± 1.6 a | 1.2 ± 2 a | 2.8 ± 0.6 a | 3.7 ± 0.2 a |
Nt (%) | 0.2 ± 0.1 ab | 0.2 ± 0.1 b | 0.4 ± 0 ab | 0.4 ± 0 a |
C:N | 7.2 ± 3.1 a | 4.3 ± 5.4 a | 7.6 ± 0.7 a | 8.5 ± 0.6 a |
CaCO3 (%) | 6.9 ± 2.1 c | 13.2 ± 3.8 c | 27.5 ± 0.7 b | 35.4 ± 2.8 a |
Pcitr (mg kg−1) | 257 ± 72.8 b | 147.4 ± 12.6 b | 413.8 ± 79.5 a | 285.8 ± 12.6 ab |
pH | 7.6 ± 0.1 ab | 7.5 ± 0.3 ab | 7.5 ± 0.1 b | 8.1 ± 0.1 a |
EC (mS cm−1) | 10.4 ± 1.6 b | 15.6 ± 6.3 ab | 24.4 ± 2.3 a | 14.1 ± 1.6 b |
Cl− (mg L−1) | 2933.8 ± 488.8 b | 4910.5 ± 2385.9 ab | 7745.1 ± 1067.1 a | 4435.5 ± 820.6 ab |
SO42− (mg L−1) | 440.5 ± 74.1 b | 638.6 ± 286.6 b | 2409.4 ± 271.7 a | 721.5 ± 116.3 b |
HCO3− (mg L−1) | 252.6 ± 58 b | 462.6 ± 74.2 a | 439.6 ± 42 a | 427.4 ± 69 a |
Br− (mg L−1) | 9.7 ± 2.5 b | 18.5 ± 8.2 ab | 22.9 ± 2.4 a | 13 ± 2.2 ab |
Ca (mg L−1) | 63.8 ± 26.8 b | 73.8 ± 33.5 b | 547.7 ± 76.3 a | 156 ± 20 b |
Mg (mg L−1) | 95.9 ± 36.6 b | 131.2 ± 70.6 b | 549.7 ± 61.6 a | 233.9 ± 35.4 b |
Na (mg L−1) | 964.6 ± 351.1 b | 1418.5 ± 681 b | 3753.5 ± 359.7 a | 1795.4 ± 293.8 b |
K (mg L−1) | 71.4 ± 65.6 a | 74.9 ± 29.5 a | 160.3 ± 29.2 a | 154.8 ± 1.4 a |
Particle-Size Fraction | Old Marsh | Young Marsh |
---|---|---|
Clay | 13.9 | 18.7 |
Fine silt | 2.9 | 3.2 |
Medium silt | 4.6 | 12.6 |
Coarse silt | 17.9 | 41.9 |
Fine sand | 60.7 | 23.6 |
Texture class | Loamy sand/clayey sand | Loamy silt/clayey silt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marangi, M.; Szymanska, S.; Eckhardt, K.-U.; Beske, F.; Jandl, G.; Hrynkiewicz, K.; Pétillon, J.; Baum, C.; Leinweber, P. Abundance of Human Pathogenic Microorganisms in the Halophyte Salicornia europaea L.: Influence of the Chemical Composition of Shoots and Soils. Agronomy 2024, 14, 2740. https://doi.org/10.3390/agronomy14112740
Marangi M, Szymanska S, Eckhardt K-U, Beske F, Jandl G, Hrynkiewicz K, Pétillon J, Baum C, Leinweber P. Abundance of Human Pathogenic Microorganisms in the Halophyte Salicornia europaea L.: Influence of the Chemical Composition of Shoots and Soils. Agronomy. 2024; 14(11):2740. https://doi.org/10.3390/agronomy14112740
Chicago/Turabian StyleMarangi, Matteo, Sonia Szymanska, Kai-Uwe Eckhardt, Felix Beske, Gerald Jandl, Katarzyna Hrynkiewicz, Julien Pétillon, Christel Baum, and Peter Leinweber. 2024. "Abundance of Human Pathogenic Microorganisms in the Halophyte Salicornia europaea L.: Influence of the Chemical Composition of Shoots and Soils" Agronomy 14, no. 11: 2740. https://doi.org/10.3390/agronomy14112740
APA StyleMarangi, M., Szymanska, S., Eckhardt, K. -U., Beske, F., Jandl, G., Hrynkiewicz, K., Pétillon, J., Baum, C., & Leinweber, P. (2024). Abundance of Human Pathogenic Microorganisms in the Halophyte Salicornia europaea L.: Influence of the Chemical Composition of Shoots and Soils. Agronomy, 14(11), 2740. https://doi.org/10.3390/agronomy14112740