Characterization of Citrus Rootstock Under Conditions of Boron Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Citrus Plant Material and Growth Conditions
2.2. Total B Determination
2.3. Photosynthetic Parameters and Chlorophyll Determination
2.4. Quantitative Real-Time PCR Expression Analyses
2.5. Antioxidant Enzyme Activities
2.6. Phenol Determination
2.7. Malondialdehyde Determination
2.8. Statistical Analyses
3. Results
3.1. Boron Content and Expression Studies of CsXIP1;1 Gene in 2247 × 6070–02–2 and Carrizo Citrange Rootstocks Growth Under B Toxicity Conditions
3.2. Analysis of the B Toxicity Effect on Photosynthesis-Related Parameters in 2247 × 6070–02–2 and Carrizo Citrange Rootstocks
3.3. Evaluation of Antioxidant Protective Mechanisms in 2247 × 6070–02–2 and Carrizo Citrange Rootstocks Grown Under B Toxicity Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warington, K. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot. 1923, 37, 629–672. [Google Scholar] [CrossRef]
- Kobayashi, M.; Matoh, T.; Azuma, J.I. Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol. 1996, 110, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in plant biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- O’Neill, M.A.; Ishii, T.; Albersheim, P.; Darvill, A.G. Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 2004, 55, 109–139. [Google Scholar] [CrossRef]
- Tanaka, M.; Fujiwara, T. Physiological roles and transport mechanisms of boron: Perspectives from plants. Pflug. Arch. Eur. J. Physiol. 2008, 456, 671–677. [Google Scholar] [CrossRef]
- Dorta-santos, M.; Tejedor, M.; Jiménez, C.; Hernández-moreno, J.M.; Díaz, F.J. Using marginal quality water for an energy crop in arid regions. Effect of salinity and boron distribution patterns. Agric. Water Manag. 2016, 171, 142–152. [Google Scholar] [CrossRef]
- Landi, M.; Margaritopoulou, T.; Papadakis, I.E.; Araniti, F. Boron toxicity in higher plants: An update. Planta 2019, 250, 1011–1032. [Google Scholar] [CrossRef]
- Zhao, S.; Huq, M.E.; Fahad, S.; Kamran, M.; Riaz, M. Boron toxicity in plants: Understanding mechanisms and developing coping strategies; a review. Plant Cell Rep. 2024, 43, 238. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Tsiantas, P.I.; Gerogiannis, O.N.; Vemmos, S.N.; Psychoyou, M. Photosynthetic activity and concentration of chlorophylls, carotenoids, hydrogen peroxide and malondialdehyde in loquat seedlings growing under excess boron conditions. Acta Hortic. 2015, 1092, 221–226. [Google Scholar] [CrossRef]
- Macho-Rivero, M.A.; Camacho-Cristóbal, J.J.; Herrera-Rodríguez, M.B.; Müller, M.; Munné-Bosch, S.; González-Fontes, A. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. Physiol. Plant 2017, 160, 21–32. [Google Scholar] [CrossRef]
- Macho-Rivero, M.A.; Herrera-Rodríguez, M.B.; Brejcha, R.; Schffner, A.R.; Tanaka, N.; Fujiwara, T.; González-Fontes, A.; Camacho-Crisotobal, J.J. Boron toxicity reduces water transport from root to shoot in arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol. 2018, 59, 836–844. [Google Scholar] [CrossRef]
- Mamani-Huarcaya, B.M.; González-Fontes, A.; Navarro-Gochicoa, M.T.; Camacho-Cristóbal, J.J.; Ceacero, C.J.; Herrera-Rodríguez, M.B.; Fernández Cutire, O.; Rexach, J. Characterization of two Peruvian maize landraces differing in boron toxicity tolerance. Plant Physiol. Biochem. 2022, 185, 167–177. [Google Scholar] [CrossRef]
- Mamani-Huarcaya, B.M.; Navarro-Gochicoa, M.T.; Herrera-Rodríguez, M.B.; Camacho-Cristóbal, J.J.; Ceacero, C.J.; Fernández Cutire, Ó.; González-Fontes, A.; Rexach, J. Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity. Plants 2023, 12, 2322. [Google Scholar] [CrossRef]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Dimassi, K.N.; Therios, I.N. Response of two citrus genotypes to six boron concentrations: Concentration and distribution of nutrients, total absorption, and nutrient use efficiency. Aust. J. Agric. Res. 2003, 54, 571–580. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Dimassi, K.N.; Bosabalidis, A.M.; Therios, I.N.; Patakas, A.; Giannakoula, A. Boron toxicity in ‘Clementine’ mandarin plants. Plant Sci. 2004, 166, 539–547. [Google Scholar] [CrossRef]
- Yang, L.T.; Pan, J.F.; Hu, N.J.; Chen, H.H.; Jiang, H.X.; Lu, Y.B.; Chen, L.S. Citrus Physiological and Molecular Response to Boron Stresses. Plants 2022, 11, 40. [Google Scholar] [CrossRef]
- Brown, P.H.; Shelp, B.J. Boron mobility in plants. Plant Soil 1997, 193, 85–101. [Google Scholar] [CrossRef]
- Du, W.; Pan, Z.Y.; Hussain, S.B.; Han, Z.X.; Peng, S.A.; Liu, Y.Z. Foliar supplied boron can be transported to roots as a boron-sucrose complex via phloem in citrus trees. Front. Plant Sci. 2020, 11, 250. [Google Scholar] [CrossRef]
- Guo, P.; Qi, Y.P.; Yang, L.T.; Ye, X.; Jiang, H.X.; Huang, J.H.; Chen, L.S. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC Plant Biol. 2014, 14, 284. [Google Scholar] [CrossRef]
- Wu, X.W.; Lu, X.P.; Riaz, M.; Yan, L.; Jiang, C.C. Boron deficiency and toxicity altered the subcellular structure and cell wall composition architecture in two citrus rootstocks. Hortic. Sci. 2018, 238, 147–154. [Google Scholar] [CrossRef]
- Wakuta, S.; Fujikawa, T.; Naito, S.; Takano, J. Tolerance to excess boron conditions acquired by stabilization of a BOR1 variant with weak polarity in Arabidopsis. Front. Cell Dev. Biol. 2016, 4, 4. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Tsiantas, P.I.; Tsaniklidis, G.; Landi, M.; Psychoyou, M.; Fasseas, C. Changes in sugar metabolism associated to stem bark thickening partially assist young tissues of Eriobotrya japonica seedlings under boron stress. J. Plant Physiol. 2018, 231, 337–345. [Google Scholar] [CrossRef]
- Hua, T.; Zhang, R.; Sun, H.; Liu, C. Alleviation of boron toxicity in plants: Mechanisms and approaches. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2975–3015. [Google Scholar] [CrossRef]
- Behera, B.; Kancheti, M.; Raza, M.B.; Shiv, A.; Mangal, V.; Rathod, G.; Altaf, M.A.; Kumar, A.; Aftab, T.; Kumar, R.; et al. Mechanistic insight on boron-mediated toxicity in plant vis-a-vis its mitigation strategies: A review. Int. J. Phytoremediat. 2023, 25, 9–26. [Google Scholar] [CrossRef]
- Jothi, M.; Takano, J. Understanding the regulatory mechanisms of B transport to develop crop plants with B efficiency and excess B tolerance. Plant Soil 2023, 487, 1–20. [Google Scholar] [CrossRef]
- Martínez-Mazón, P.; Bahamonde, C.; Herrera-Rodríguez, M.B.; Fernández-Ocaña, A.M.; Rexach, J.; González-Fontes, A.; Camacho-Cristóbal, J.J. Role of ABA in the adaptive response of Arabidopsis plants to long-term boron toxicity treatment. Plant Physiol. Biochem. 2023, 202, 107965. [Google Scholar] [CrossRef]
- Castle, W.S.; Baldwin, J.C.; Muraro, R.P. Rootstocks and the performance and economic returns of “Hamlin” sweet orange trees. Hort. Sci. 2010, 45, 875–881. [Google Scholar] [CrossRef]
- Papadakis, I.E. The Timeless Contribution of Rootstocks towards Successful Horticultural Farming: From Ancient Times to the Climate Change Era. Am. J. Agric. Biol. Sci. 2016, 11, 137–141. [Google Scholar] [CrossRef]
- Bowman, K.D.; Joubert, J. Chapter 6 Citrus rootstocks. In The Genus Citrus; Woodhead Publishing: Cambridge, UK, 2020; pp. 105–127. [Google Scholar] [CrossRef]
- Bowman, K.D.; McCollum, G.; Albrecht, U. SuperSour: A New Strategy for Breeding Superior Citrus Rootstocks. Front. Plant Sci. 2021, 12, 741009. [Google Scholar] [CrossRef]
- Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Cámara-Zapata, J.M.; Alfosea-Simón, M.; García-Sánchez, F. Response of three citrus genotypes used as rootstocks grown under boron excess conditions. Ecotoxicol. Environ. Saf. 2018, 159, 10–19. [Google Scholar] [CrossRef]
- Yang, W.; Yang, H.; Ling, L.; Chun, C.; Peng, L. Tolerance and Physiological Responses of Citrus Rootstock Cultivars to Boron Toxicity. Horticulturae 2023, 9, 44. [Google Scholar] [CrossRef]
- Berni, R.; Luyckx, M.; Xu, X.; Legay, S.; Sergeant, K.; Hausman, J.F.; Lutts, S.; Cai, G.; Guerriero, G. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ. Exp. Bot. 2019, 161, 98–106. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Lal, M.K.; Kumar, R.; Chourasia, K.N.; Naga, K.C.; Kumar, D.; Das, S.K.; Zinta, G. Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol. Plant 2021, 172, 1212–1226. [Google Scholar] [CrossRef]
- Landi, M.; Degl’Innocenti, E.; Pardossi, A.; Guidi, L. Antioxidant and photosynthetic responses in plants under boron toxicity: A review. Am. J. Agric. Biol. Sci. 2012, 7, 255–270. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Kumar, R. Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants. Appl. Biochem. Biotech. 2014, 174, 93–115. [Google Scholar] [CrossRef]
- Guo, P.; Qi, Y.P.; Yang, L.T.; Ye, X.; Huang, J.H.; Chen, L.S. Long-term boron-excess-induced alterations of gene profiles in roots of two citrus species differing in boron-tolerance revealed by cDNA-AFLP. Front. Plant Sci 2016, 7, 898. [Google Scholar] [CrossRef]
- Jin, L.F.; Liu, Y.Z.; Yin, X.X.; Peng, S.A. Transcript analysis of citrus miRNA397 and its target LAC7 reveals a possible role in response to boron toxicity. Acta Physiol. Plant 2016, 38, 18. [Google Scholar] [CrossRef]
- Huang, J.H.; Lin, X.J.; Zhang, L.Y.; Wang, X.D.; Fan, G.C.; Chen, L.S. MicroRNA Sequencing Revealed Citrus Adaptation to Long-Term Boron Toxicity through Modulation of Root Development by miR319 and miR171. Int. J. Mol. Sci. 2019, 20, 1422. [Google Scholar] [CrossRef]
- Aparicio-Durán, L.; Gmitter, F.G., Jr.; Arjona-López, J.M.; Grosser, J.W.; Calero-Velázquez, R.; Hervalejo, Á.; Arenas-Arenas, F.J. Evaluation of Three New Citrus Rootstocks under Boron Toxicity Conditions. Agronomy 2021, 11, 2490. [Google Scholar] [CrossRef]
- Aparicio-Durán, L.; Arjona-López, J.M.; Hervalejo, A.; Calero-Velázquez, R.; Arenas-Arenas, F.J. Preliminary Findings of New Citrus Rootstocks Potentially Tolerant to Foot Rot Caused by Phytophthora. Horticulturae 2021, 7, 389. [Google Scholar] [CrossRef]
- Aparicio-Durán, L.; Gmitter, F.G., Jr.; Arjona-López, J.M.; Calero-Velázquez, R.; Hervalejo, Á.; Arenas-Arenas, F.J. Water-Stress Influences on Three New Promising HLB-Tolerant Citrus Rootstocks. Horticulturae 2021, 7, 336. [Google Scholar] [CrossRef]
- Tan, F.Q.; Tu, H.; Liang, W.J.; Long, J.-M.; Wu, X.M.; Zhang, H.Y.; Guo, W.W. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (Citrus junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biol. 2015, 15, 89. [Google Scholar] [CrossRef]
- Ruiz, M.; Quiñones, A.; Martínez-Alcántara, B.; Aleza, P.; Morillon, R.; Navarro, L.; Primo-Millo, E.; Martínez-Cuenca, M.R. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.). Front. Plant Sci. 2016, 7, 701. [Google Scholar] [CrossRef]
- Oustric, J.; Morillon, R.; Luro, F.; Herbette, S.; Lourkisti, R.; Giannettini, J.; Berti, L.; Santini, J. Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) Enhances natural chilling stress tolerance of common clementine (Citrus Clementina Hort. Ex Tan). J. Plant Physiol. 2017, 214, 108–115. [Google Scholar] [CrossRef]
- Zapien-Macias, J.M.; Ferrarezi, R.S.; Spyke, P.D.; Castle, W.S.; Gmitter, F.G.; Grosser, J.W., Jr.; Rossi, L. Early Performance of Recently Released Rootstocks with Grapefruit, Navel Orange, and Mandarin Scions under Endemic Huanglongbing Conditions in Florida. Horticulturae 2022, 8, 1027. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil; Agricultural Experiment Station: Berkeley, CA, USA, 1950; Circular 347. [Google Scholar]
- Beato, V.M.; Rexach, J.; Navarro-Gochicoa, M.T.; Camacho-Cristóbal, J.J.; Herrera-Rodríguez, M.B.; Maldonado, J.M.; González-Fontes, A. A tobacco asparagine synthetase gene responds to carbon and nitrogen status and its root expression is affected under boron stress. Plant Sci. 2010, 178, 289–298. [Google Scholar] [CrossRef]
- de Andrade, J.C.; Ferreira, M.; Baccan, N.; Bataglia, O.C. Spectrophotometric determination of boron in plants using monosegmented continuous flow analysis. Analyst 1988, 113, 289–293. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Elavarthi, S.; Martin, B. Spectrophotometric Assays for Antioxidant Enzymes in Plants. In Plant Stress Tolerance; Sunkar, R., Ed.; Humana Press: Totowa, NJ, USA, 2010; Volume 639. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; MGillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances as say for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Han, S.; Tang, N.; Jiang, H.X.; Yang, L.T.; Li, Y.; Chen, L.S. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci. 2009, 176, 143–153. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef]
- Bienert, M.D.; Muries, B.; Crappe, D.; Chaumont, F.; Bienert, G.P. Overexpression of X Intrinsic Protein 1;1 in Nicotiana tabacum and Arabidopsis reduces boron allocation to shoot sink tissues. Plant Direct 2019, 3, 1–16. [Google Scholar] [CrossRef]
- Danielson, J.A.H.; Johanson, U. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol. 2008, 8, 45. [Google Scholar] [CrossRef]
- Bienert, G.P.; Bienert, M.D.; Jahn, T.P.; Boutry, M.; Chaumont, F. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J. 2011, 66, 306–317. [Google Scholar] [CrossRef]
- de Paula Santos Martins, C.; Pedrosa, A.M.; Du, D.; Goncalves, L.P.; Yu, Q.; Gmitter, F.G., Jr.; Costa, M.G.C. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.). PLoS ONE 2015, 10, e0138786. [Google Scholar] [CrossRef]
- Guo, Z.; Wei, M.; Xu, C.; Wang, L.; Li, J.; Liu, J.; Zhong, Y.; Chi, B.; Song, S.; Zhang, L.; et al. Genome-wide identification of Avicennia marina aquaporins reveals their role in adaptation to intertidal habitats and their relevance to salt secretion and vivipary. Plant Cell Environ. 2024, 47, 832–853. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Dimassi, K.N.; Bosabalidis, A.M.; Therios, I.N.; Patakas, A.; Giannakoula, A. Effects of B excess on some physiological and anatomical parameters of ‘Navelina’ orange plants grafted on two rootstocks. Environ. Exp. Bot. 2004, 51, 247–257. [Google Scholar] [CrossRef]
- Simón-Grao, S.; Nieves, M.; Cámara-Zapata, J.M.; Martínez-Nicolás, J.J.; Rivero, R.M.; Fernández-Zapata, J.C.; García-Sánchez, F. The Forner Alcaide no. 5 citrus genotype shows a different physiological response to the excess of boron in the irrigation water in relation to its two genotype progenitors. Sci. Hortic. 2019, 245, 19–28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Gochicoa, M.T.; Aparicio-Durán, L.; Delfín, A.; Ceacero, C.J.; Herrera-Rodríguez, M.B.; Arenas-Arenas, F.J.; Camacho-Cristóbal, J.J.; González-Fontes, A.; Rexach, J. Characterization of Citrus Rootstock Under Conditions of Boron Toxicity. Agronomy 2024, 14, 2741. https://doi.org/10.3390/agronomy14112741
Navarro-Gochicoa MT, Aparicio-Durán L, Delfín A, Ceacero CJ, Herrera-Rodríguez MB, Arenas-Arenas FJ, Camacho-Cristóbal JJ, González-Fontes A, Rexach J. Characterization of Citrus Rootstock Under Conditions of Boron Toxicity. Agronomy. 2024; 14(11):2741. https://doi.org/10.3390/agronomy14112741
Chicago/Turabian StyleNavarro-Gochicoa, María Teresa, Lidia Aparicio-Durán, Alba Delfín, Carlos J. Ceacero, María Begoña Herrera-Rodríguez, Francisco J. Arenas-Arenas, Juan J. Camacho-Cristóbal, Agustín González-Fontes, and Jesús Rexach. 2024. "Characterization of Citrus Rootstock Under Conditions of Boron Toxicity" Agronomy 14, no. 11: 2741. https://doi.org/10.3390/agronomy14112741
APA StyleNavarro-Gochicoa, M. T., Aparicio-Durán, L., Delfín, A., Ceacero, C. J., Herrera-Rodríguez, M. B., Arenas-Arenas, F. J., Camacho-Cristóbal, J. J., González-Fontes, A., & Rexach, J. (2024). Characterization of Citrus Rootstock Under Conditions of Boron Toxicity. Agronomy, 14(11), 2741. https://doi.org/10.3390/agronomy14112741