Industrial Hemp Variety Performance in Latvia Under Baltic Sea Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing Condition
2.2. Yield of Hemp Plant’s Biomass, Stem, Fibers, Seed, and Height of Hemp Plants
2.3. Calorific Value and Ash Melting Point of Hemp Shives
2.4. Statistical Analyses
3. Results and Discussion
3.1. Growth Condition
3.2. Hemp Growth Dynamics and Growing Density
3.3. Hemp Total Biomass, Stem, and Fiber Yield
3.4. Seed Yield, 1000-Seed Weight, Oil Content, and Oil Yield
3.5. The Potential of Hemp Shives as a Solid Fuel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sieracka, D.; Frankowski, J.; Wacławek, S.; Czekała, W. Hemp Biomass as a Raw Material for Sustainable Development. Appl. Sci. 2023, 13, 9733. [Google Scholar] [CrossRef]
- Satriani, A.; Loperte, A.; Pascucci, S. The Cultivation of Industrial Hemp as Alternative Crop in a Less-Favoured Agricultural Area in Southern Italy: The Pignola Case Study. Pollutants 2021, 1, 169–180. [Google Scholar] [CrossRef]
- Nath, M.K. Benefits of Cultivating Industrial Hemp (Cannabis Sativa ssp. Sativa)—A Versatile Plant for a Sustainable Future. Chem. Proc. 2022, 10, 14. [Google Scholar] [CrossRef]
- Visković, J.; Zheljazkov, V.D.; Sikora, V.; Noller, J.; Latković, D.; Ocamb, C.M.; Koren, A. Industrial Hemp (Cannabis sativa L.) Agronomy and Utilization: A Review. Agronomy 2023, 13, 931. [Google Scholar] [CrossRef]
- Mariz, J.; Guise, C.; Lu, T.; Rodrigues, L.; Silva, C.J. Hemp: From Field to Fiber—A Review. Textiles 2024, 4, 165–182. [Google Scholar] [CrossRef]
- Quaicoe, O.; Asiseh, F.; Isikhuemhen, O.S. Qualitative Analysis of Industrial Hemp Production, Markets, and Sustainability in North Carolina, United States. Agriculture 2023, 13, 887. [Google Scholar] [CrossRef]
- Naeem, M.Y.; Corbo, F.; Crupi, P.; Clodoveo, M.L. Hemp: An Alternative Source for Various Industries and an Emerging Tool for Functional Food and Pharmaceutical Sectors. Processes 2023, 11, 718. [Google Scholar] [CrossRef]
- Tupciauskas, R.; Rizhikovs, J.; Brazdausks, P.; Fridrihsone, V.; Andzs, M. Influence of Steam Explosion Pre-Treatment Conditions on Binder-Less Boards from Hemp Shives and Wheat Straw. Ind. Crops Prod. 2021, 170, 113717. [Google Scholar] [CrossRef]
- Kaur, G.; Kander, R. The Sustainability of Industrial Hemp: A Literature Review of Its Economic, Environmental, and Social Sustainability. Sustainability 2023, 15, 6457. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A Review on the Current State of Knowledge of Growing Conditions, Agronomic Soil Health Practices and Utilities of Hemp in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef]
- Sebastian, S.V.J.; Dong, X.; Trostle, C.; Pham, H.; Joshi, M.V.; Jessup, R.W.; Burow, M.D.; Provin, T.L. Hemp Agronomy: Current Advances, Questions, Challenges, and Opportunities. Agronomy 2023, 13, 475. [Google Scholar] [CrossRef]
- Beluns, S.; Gaidukovs, S.; Platnieks, O.; Gaidukova, G.; Mierina, I.; Grase, L.; Starkova, O.; Brazdausks, P.; Thakur, V.K. From Wood and Hemp Biomass Wastes to Sustainable Nanocellulose Foams. Ind. Crops Prod. 2021, 170, 113780. [Google Scholar] [CrossRef]
- Diakité, M.S.; Lenormand, H.; Lequart, V.; Arufe, S.; Martin, P.; Leblanc, N. Cell Wall Composition of Hemp Shiv Determined by Physical and Chemical Approaches. Molecules 2021, 26, 6334. [Google Scholar] [CrossRef] [PubMed]
- Karche, T.; Singh, M.R. The Application of Hemp Cannabis sativa L. for a Green Economy: A Review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Tanasă, F.; Zănoagă, M.; Teacă, C.A.; Nechifor, M.; Shahzad, A. Modified Hemp Fibers Intended for Fiber-Reinforced Polymer Composites Used in Structural Applications—A Review. I. Methods of Modification. Polym. Compos. 2020, 41, 5–31. [Google Scholar] [CrossRef]
- Viscusi, G.; Napolitano, F.; Gorrasi, G. Modified Hemp Fibers as a Novel and Green Adsorbent for Organic Dye Adsorption: Adsorption, Kinetic Studies and Modeling. Euro-Mediterr. J. Environ. Integr. 2024, 9, 591–604. [Google Scholar] [CrossRef]
- Palanikumar, K.; Natarajan, E.; Markandan, K.; Ang, C.K.; Franz, G. Targeted Pre-Treatment of Hemp Fibers and the Effect on Mechanical Properties of Polymer Composites. Fibers 2023, 11, 43. [Google Scholar] [CrossRef]
- da Silveira, P.H.P.M.; Ribeiro, M.P.; Silva, T.T.; Lima, A.M.; Lemos, M.F.; Oliveira, A.G.B.A.M.; Nascimento, L.F.C.; Gomes, A.V.; Monteiro, S.N. Effect of Alkaline Treatment and Graphene Oxide Coating on Thermal and Chemical Properties of Hemp (Cannabis sativa L.) Fibers. J. Nat. Fibers 2022, 19, 12168–12181. [Google Scholar] [CrossRef]
- Teirumnieka, E.; Patel, N.; Laktuka, K.; Dolge, K.; Veidenbergs, I.; Blumberga, D. Sustainability Dilemma of Hemp Utilization for Energy Production. Energy Nexus 2023, 11, 100213. [Google Scholar] [CrossRef]
- Raihan, A.; Bijoy, T.R. A Review of the Industrial Use and Global Sustainability of Cannabis sativa. Glob. Sustain. Res. 2023, 2, 1–29. [Google Scholar] [CrossRef]
- Stramkale, V.; Ievinsh, G.; Vikmane, M.; Ķirse, A.; Kroica, I. Effect of Vermicompost Doses on Canabis Sativa Photosynthesis-Related Parameters, Growth and Yield. Vide. Tehnol. Resur.-Environ. Technol. Resour. 2021, 1, 237–243. [Google Scholar] [CrossRef]
- Zydelis, R.; Herbst, M.; Weihermüller, L.; Ruzgas, R. Yield Potential and Factor Influencing Yield Gap in Industrial Hemp Cultivation under Nemoral Climate Conditions. Eur. J. Agron. 2022, 139, 126576. [Google Scholar] [CrossRef]
- Blandinières, H.; Amaducci, S. Adapting the Cultivation of Industrial Hemp (Cannabis sativa L.) to Marginal Lands: A Review. GCB Bioenergy 2022, 14, 1004–1022. [Google Scholar] [CrossRef]
- Roman, M.; Li, M.; Yuan, J.; Rehman, M.; Liu, L. Dynamics of Industrial Hemp Vegetative Growth and Metabolite Accumulation in Response to Light Intensity. S. Afr. J. Bot. 2024, 169, 82–94. [Google Scholar] [CrossRef]
- Lisson, S.N.; Mendham, N.J.; Carberry, P.S. Development of a Hemp (Cannabis sativa L.) Simulation Model 2. The Flowering Response of Two Hemp Cultivars to Photoperiod. Aust. J. Exp. Agric. 2000, 40, 413–417. [Google Scholar] [CrossRef]
- Stramkale, V.; Morozova, I.; Cernova, L.; Stramkalis, A. Industrial Hemp Varieties Productivity Potential in the Latvian Climatic Conditions. Vide. Tehnol. Resur.-Environ. Technol. Resour. 2023, 1, 214–219. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Yin, X.; Calzolari, D.; Musio, S.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Magagnini, G.; Amaducci, S. A Comprehensive Study of Planting Density and Nitrogen Fertilization Effect on Dual-Purpose Hemp (Cannabis sativa L.) Cultivation. Ind. Crops Prod. 2017, 107, 427–438. [Google Scholar] [CrossRef]
- ISO 21404; Solid Biofuels—Determination of Ash Melting Behaviour. ISO: Geneva, Swizerland, 2020.
- ISO 18125; Solid Biofuels—Determination of Calorific Value. ISO: Geneva, Swizerland, 2017.
- Pagnani, G.; Pellegrini, M.; Galieni, A.; D’Egidio, S.; Matteucci, F.; Ricci, A.; Stagnari, F.; Sergi, M.; Lo Sterzo, C.; Pisante, M.; et al. Plant Growth-Promoting Rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ Cultivation: An Alternative Fertilization Strategy to Improve Plant Growth and Quality Characteristics. Ind. Crops Prod. 2018, 123, 75–83. [Google Scholar] [CrossRef]
- Pavlovic, R.; Panseri, S.; Giupponi, L.; Leoni, V.; Citti, C.; Cattaneo, C.; Cavaletto, M.; Giorgi, A. Phytochemical and Ecological Analysis of Two Varieties of Hemp (Cannabis sativa L.) Grown in a Mountain Environment of Italian Alps. Front. Plant Sci. 2019, 10, 1265. [Google Scholar] [CrossRef]
- Baltina, I.; Zamuska, Z.; Stramkale, V.; Strazds, G. Physical Properties of Latvian Hemp Fibres. Vide. Tehnol. Resur.-Environ. Technol. Resour. 2011, 2, 237–243. [Google Scholar] [CrossRef]
- Teleszko, M.; Zając, A.; Rusak, T. Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. var. Sativa) as Prospective Plant Sources for Food Production. Molecules 2022, 27, 1448. [Google Scholar] [CrossRef]
- Sausserde, R.; Adamovics, A. Industrial Hemp for Biomass Production. J. Agric. Eng. 2013, 44, 10–13. [Google Scholar] [CrossRef]
- Tsaliki, E.; Kalivas, A.; Jankauskiene, Z.; Irakli, M.; Cook, C.; Grigoriadis, I.; Panoras, I.; Vasilakoglou, I.; Dhima, K. Fibre and Seed Productivity of Industrial Hemp (Cannabis sativa L.) Varieties under Mediterranean Conditions. Agronomy 2021, 11, 171. [Google Scholar] [CrossRef]
- Jankauskiene, Z.; Gruzdeviene, E. Beniko and Bialobrezskie—Industrial Hemp Varieties in Lithuania. Vide. Tehnol. Resur.-Environ. Technol. Resour. 2009, 1, 176–182. [Google Scholar] [CrossRef]
- Gitsopoulos, T.; Tsaliki, E.; Korres, N.E.; Georgoulas, I.; Panoras, I.; Botsoglou, D.; Vazanelli, E.; Fifis, K.; Zisis, K. Response of Industrial Hemp (Cannabis sativa L.) to Herbicides and Weed Control. Int. J. Plant Biol. 2024, 15, 281–292. [Google Scholar] [CrossRef]
- Assirelli, A.; Santangelo, E.; Stagno, F.; Roccuzzo, G.; Musio, S.; Amaducci, S. Hemp Sowing Seed Production: Assessment of New Approaches in North-Italy. Sustainability 2022, 14, 17020. [Google Scholar] [CrossRef]
- Jasinskas, A.; Streikus, D.; Vonžodas, T. Fibrous Hemp (Felina 32, USO 31, Finola) and Fibrous Nettle Processing and Usage of Pressed Biofuel for Energy Purposes. Renew. Energy 2020, 149, 11–21. [Google Scholar] [CrossRef]
- Frankowski, J.; Wawro, A.; Batog, J.; Burczyk, H. New Polish Oilseed Hemp Cultivar Henola–Cultivation, Properties and Utilization for Bioethanol Production. J. Nat. Fibers 2022, 19, 7283–7295. [Google Scholar] [CrossRef]
- Poisa, L.; Adamovi, A.; Jankauskiene, Z.; Gruzdeviene, E. Industrial Hemp (Cannabis sativa L.) As a Biomass Crop. Innov. Technol. Transf. 2009, 5–8. Available online: https://ramiran.uvlf.sk/ramiran2010/docs/Ramiran2010_0155_final.pdf (accessed on 17 November 2024).
- Vogl, C.R.; Mölleken, H.; Lissek-Wolf, G.; Surböck, A.; Kobert, J. Hemp (Cannabis sativa L.) as a Resource for Green Cosmetics: Yield of Seed and Fatty Acid Compositions of 20 Varieties under the Growing Conditions of Organic Farming in Austria. J. Ind. Hemp 2004, 9, 51–68. [Google Scholar] [CrossRef]
- Abdollahi, M.; Sefidkon, F.; Calagari, M.; Mousavi, A.; Mahomoodally, M.F. Impact of Four Hemp (Cannabis sativa L.) Varieties and Stage of Plant Growth on Yield and Composition of Essential Oils. Ind. Crops Prod. 2020, 155, 112793. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D.; Natolino, A. Potential Oil Yield, Fatty Acid Composition, and Oxidation Stability of the Hempseed Oil from Four Cannabis sativa L. Cultivars. J. Diet. Suppl. 2015, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chaowana, P.; Hnoocham, W.; Chaiprapat, S.; Yimlamai, P.; Chitbanyong, K.; Wanitpinyo, K.; Chaisan, T.; Paopun, Y.; Pisutpiched, S.; Khantayanuwong, S.; et al. Utilization of Hemp Stalk as a Potential Resource for Bioenergy. Mater. Sci. Energy Technol. 2024, 7, 19–28. [Google Scholar] [CrossRef]
- Kirilovs, E.; Zotova, I.; Kukle, S.; Pugovics, K. Low Density Hemp Shive Particleboards for Latent Thermal Energy Storage Performance. J. Energy Syst. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Poisa, L.; Adamovics, A. Evaluate of Hemp (Cannabis sativa L.) Quality Parameters for Bioenergy Production. Eng. Rural Dev. 2011, 26, 358–362. [Google Scholar]
- Yazdani, M.G.; Hamizan, M.; Shukur, M.N. Investigation of the Fuel Value and the Environmental Impact of Selected Wood Samples Gathered from Brunei Darussalam. Renew. Sustain. Energy Rev. 2012, 16, 4965–4969. [Google Scholar] [CrossRef]
- Čajová Kantová, N.; Holubčík, M.; Trnka, J.; Čaja, A. Analysis of Ash Melting Temperatures of Agricultural Pellets Detected during Different Conditions. Fire 2023, 6, 88. [Google Scholar] [CrossRef]
- Jandacka, J.; Malcho, M.; Ochodek, T.; Kolonicny, J.; Holubcik, M. The Increase of Silver Grass Ash Melting Temperature Using Additives. Int. J. Renew. Energy Res. 2015, 5, 258–265. [Google Scholar] [CrossRef]
Hemp Varieties | Calorific Value, MJ kg−1 | Ash Melting Point, °C |
---|---|---|
Atdzelviesi | 16.75 ± 0.02 | 1100 ± 7 |
Purini | 16.44 ± 0.01 | 1180 ± 8 |
Finola | 17.00 ± 0.04 | 1120 ± 3 |
Estica | 16.50 ± 0.03 | 1100 ± 7 |
USO 32 | 16.38 ± 0.04 | 1000 ± 7 |
Futura 75 | 17.46 ± 0.03 | 1120 ± 7 |
Futura 83 | 17.34 ± 0.03 | 1110 ± 5 |
Austa | 16.84 ± 0.03 | 1080 ± 4 |
Bialobrzeskie | 17.25 ± 0.02 | 1050 ± 7 |
Added Mineral | Mass Fraction of Mineral, % | Ash Melting Point, °C |
---|---|---|
0 | 1050 ± 7 | |
CaCO3 | 10 | 1345 ± 6 |
CaCO3 | 5 | 1340 ± 4 |
CaCO3 | 3 | 1320 ± 5 |
CaCO3 | 1 | 1250 ± 6 |
Ca(OH)2 | 10 | 1390 ± 7 |
Ca(OH)2 | 5 | 1380 ± 4 |
Ca(OH)2 | 3 | 1385 ± 3 |
Ca(OH)2 | 1 | 1250 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stramkale, V.; Andze, L.; Cernova, L.; Teirumnieka, E.; Filipova, I.; Stramkalis, A.; Teirumnieks, E.; Andzs, M. Industrial Hemp Variety Performance in Latvia Under Baltic Sea Climate. Agronomy 2024, 14, 2750. https://doi.org/10.3390/agronomy14122750
Stramkale V, Andze L, Cernova L, Teirumnieka E, Filipova I, Stramkalis A, Teirumnieks E, Andzs M. Industrial Hemp Variety Performance in Latvia Under Baltic Sea Climate. Agronomy. 2024; 14(12):2750. https://doi.org/10.3390/agronomy14122750
Chicago/Turabian StyleStramkale, Veneranda, Laura Andze, Larisa Cernova, Erika Teirumnieka, Inese Filipova, Aldis Stramkalis, Edmunds Teirumnieks, and Martins Andzs. 2024. "Industrial Hemp Variety Performance in Latvia Under Baltic Sea Climate" Agronomy 14, no. 12: 2750. https://doi.org/10.3390/agronomy14122750
APA StyleStramkale, V., Andze, L., Cernova, L., Teirumnieka, E., Filipova, I., Stramkalis, A., Teirumnieks, E., & Andzs, M. (2024). Industrial Hemp Variety Performance in Latvia Under Baltic Sea Climate. Agronomy, 14(12), 2750. https://doi.org/10.3390/agronomy14122750