Polygenic Genetic Analysis of Principal Genes for Yield Traits in Land Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Field Trials
2.3. Trait Determination
2.4. Statistical Analysis of Data
3. Results
3.1. Phenotypic Data Analysis of Yield Traits in 6 Generations Population
3.2. Selection of Genetic Models
3.3. Estimation of Genetic Parameters for Optimal Genetic Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Zhou, X.F.; Liu, W.H.; Kong, X.H.; Wang, X.W.; Zhao, F.X.; Wu, K.; Ning, X.Z.; Yu, Y. Diversity analysis of 42 early maturing land cotton yield and quality traits. Jiangsu Agric. Sci. 2022, 50, 73–78. [Google Scholar]
- Deng, Y.F.; Xiao, S.P.; Ke, X.S.; Liu, X.W.; Yang, S.Q.; Wang, T. Analysis of major yield, quality and agronomic traits of new early maturing cotton lines in the Yangtze River Basin. J. Jiangxi Agric. Univ. 2019, 41, 861–872. [Google Scholar]
- Su, J.; Wang, C.; Ma, Q.; Zhang, A.; Shi, C.; Liu, J.; Zhang, X.; Yang, D.; Ma, X. An RTM-GWAS procedure reveals the QTL alleles and candidate genes for three yield-related traits in upland cotton. BMC Plant Biol. 2020, 20, 416. [Google Scholar] [CrossRef] [PubMed]
- Thamrin, S.; Junaedi, J.; Darwisah, H.B. Production of cotton plants using drip irrigation in two different planting years. Agriculture 2018, 30, 117–124. [Google Scholar] [CrossRef]
- Bajwa, K.S.; Ali, M.U.; Rao, A.Q.; Kiani, S.; Ahmad, F.; Bakhsh, A.; Noor, S.; Abbas, Z.; Ail, S.; Ail, G.M. From genes to fields: Environmental compatibility of herbicide tolerant transgenic cotton. Ind. Crops Prod. 2024, 209, 117903. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, F.; Li, Y.; Fan, J.; Xu, X.; Liu, X. Optimal drip irrigation leaching amount and times enhance seed cotton yield and its stability by improving soil chemical environment and source-sink relationship. Field Crops Res. 2024, 317, 109531. [Google Scholar] [CrossRef]
- Baird, J.; Schwenke, G.; Macdonald, B.; Nachimuthu, G.; McPherson, A.; Mercer, C. Efficiency over excess: Maximising cotton lint yields with optimum irrigation and nitrogen fertiliser application. Field Crops Res. 2024, 315, 109484. [Google Scholar] [CrossRef]
- Hemalatha, G.; Nagabhushanam, U.; Veeranna, G.; Ch, R. Impact of Different Plant Densities and Fertilizer Levels on Yield Attributes, Yield and Fibre Quality Characters of Bt Cotton in HDPS. J. Exp. Agric. Int. 2024, 46, 290–297. [Google Scholar]
- Nidagundi, J.M.; Gurumurthy, S.; Kuchanur, P.H.; Lokesh, G.Y.; Lakshmikanth, M.; Meena, M.K. Original Research Article Unravelling the Genetic Divergence and Trait Association for Yield and Its Component Traits among Germplasm Lines in Cotton (Gossypium hirsutum L.). J. Exp. Agric. Int. 2024, 46, 731–738. [Google Scholar]
- Scarpin, G.J.; Dileo, P.N.; Winkler, H.M.; Cereijo, A.E.; Lorenzini, F.G.; Muchut, R.J.; Roeschlin, R.A.; Mattalia, P.; Acuna, C.; Paytas, M. Genetic progress in seed and fiber quality traits of cotton in Argentina. Field Crops Res. 2024, 302, 109106. [Google Scholar] [CrossRef]
- Jindal, S.; Pathak, D.; Dutt, T.; Rathore, P. Genetic analysis and molecular validation of gene conferring petal spot phenotype in interspecific crosses of cotton. Heliyon 2024, 10, 31538. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Q.; Wang, Q.L.; Dong, N.; Fu, Y.Z.; Zhang, J.B.; Liang, X.D. Genetic studies on the main plant traits of the land cotton variety Pak Cotton 1. J. Cotton Sci. 2010, 22, 415–421. [Google Scholar]
- Fan, Z.; Gao, Y.; Liu, R.; Wang, X.; Guo, Y.; Zhang, Q. The major gene and polygene effects of ornamental traits in bearded iris (Iris germanica) using joint segregation analysis. Sci. Hortic. 2020, 260, 108882. [Google Scholar] [CrossRef]
- Gai, J.Y. A study of segregation analysis methods for the inheritance system of quantitative traits in plants. Genetics 2005, 01, 130–136. [Google Scholar]
- Pang, X.; Guo, Q.W.; Zhang, T.; Liu, H.Q.; Liu, J.; Yu, J.H.; Song, Q.P.; Wan, H.J. Analysis of hybrid genetic model of main gene+multigene for plant height in chilli. Chin. Veg. 2023, 11, 80–86. [Google Scholar]
- Zhang, T.; Ma, Z.B.; Zhang, R.; Wang, L.T.; Wang, Y.F.; Huang, L.J.; Guo, N.N.; Li, W.; Wei, B.Q. Genetic analysis of mixed primary + polygenic genes for powdery mildew resistance in chilli. Northwest J. Agric. 2024, 33, 1122–1130. [Google Scholar]
- Wei, B.; Wang, L.; Bosland, P.W.; Zhang, G.; Zhang, R. A joint segregation analysis of the inheritance of fertility restoration for cytoplasmic male sterility in pepper. J. Am. Soc. Hortic. Sci. 2020, 145, 3–11. [Google Scholar] [CrossRef]
- Vogel, G.; Giles, G.; Robbins, K.R.; Gore, M.A.; Smart, C.D. Quantitative genetic analysis of interactions in the pepper–Phytophthora capsici pathosystem. Mol. Plant-Microbe Interact. 2022, 35, 1018–1033. [Google Scholar] [CrossRef]
- Irfan, M.; Sun, J.X.; Liu, Y.; Li, X.; Yang, S. Genetic analysis of chlorophyll content in maize by mixed major and polygene models. Genetika 2014, 46, 1037–1046. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Irfan, M.; Zhang, C.; Sun, Q.; Wu, S.; Lin, F. Genetic analysis of carbon metabolism-related traits in maize using mixed major and polygene models. Aust. J. Crop Sci. 2013, 7, 1205–1211. [Google Scholar]
- Zhang, R.F.; Feng, Y.C.; Yin, Q.S.; Zhao, W.; Yang, L. Genetic Model and Effect Analysis of Main Gene and Multi gene of Corn Dwarf Mutant DN132610. Chin. Agric. Bull. 2023, 39, 114–118. [Google Scholar]
- Gao, J.; Cai, W.; Xiao, Y.; Yu, F.; Zheng, Y.; Bi, X. Variation and inheritance of the degree of style branching in hybrids of Iris dichotoma × I. domestica. Sci. Hortic. 2021, 288, 110303. [Google Scholar] [CrossRef]
- Yao, D.; Zhao, Q.Z.; Li, T.T.; Wang, J.X.; Wang, L.X.; Liu, Y.X.; Hao, W.Y.; Liu, H.J. Genetic analysis and quantitative trait locus mapping using the major gene plus polygene model for soybean [Glycine max (L.) Merr.] main quality trait. Legume Res. Int. J. 2023, 46, 18–24. [Google Scholar] [CrossRef]
- Korir, P.C.; Wang, J.; Zhao, T.; Gai, J. Genetic analysis of tolerance to aluminum toxin at seedling stage in soybean based on major gene plus polygene mixed inheritance model. Front. Agric. China 2010, 4, 265–271. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, D.; Ma, J.; Fu, Y.P.; Qu, J.; Wang, P.W. Genetic analysis of the major gene plus polygene model in soybean resistance to Leguminivora glycinivorella. Genet. Mol. Res. 2014, 13, 4983–4989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Lan, X.L.; Ten, Z.Y.; Lu, P.L.; Lin, G.Q.; Hu, R.F. Primary + polygenic genetic analysis of soluble sugar content in fresh soybean kernels. Soybean Sci. 2022, 41, 520–525. [Google Scholar]
- Yan, F.; Zhou, X.; Hui, M.; Chen, L.; Zhang, M. Genetic analysis of leaf trichome density using mixed major gene plus polygene inheritance model in Brassica rapa ssp. chinensis. N. Z. J. Crop Hortic. Sci. 2024, 52, 52–63. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, S.; Fan, H.; Yang, M.; Li, W.; Guan, R. A sulfotransferase gene BnSOT-like1 has a minor genetic effect on seed glucosinolate content in Brassica napus. Crop J. 2020, 8, 855–865. [Google Scholar] [CrossRef]
- Zhang, S.F.; Ma, C.Z.; Zhu, J.C.; Wang, J.P.; Wen, Y.C.; Fu, T.D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet. Sin. 2006, 33, 171–180. [Google Scholar] [CrossRef]
- Zheng, W.J.; Liu, Z.; Zhao, J.; Chen, W. Genetic analysis of stripe disease resistance in Rice restorer line C224 using major gene plus polygene mixed effect model. Rice Sci. 2012, 19, 202–206. [Google Scholar] [CrossRef]
- Ma, Q.; Li, J.L.; Xu, S.Z.; Chen, H.; Liu, W.H.; Ning, X.Z.; Lin, H. Analysis of a mixed main gene+multigene genetic model for fruiting branch pinch traits in land cotton. Biotechnol. Bull. 2022, 38, 148–158. [Google Scholar]
- Zhang, X.; Li, C.Q.; Wang, X.Y.; Chen, G.P.; Zhang, J.B.; Zhou, R.Y. Genetic analysis of cryotolerance in cotton during the overwintering period using mixed model of major gene and polygene. J. Integr. Agric. 2012, 11, 537–544. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zhang, W.W.; Jian, G.L.; Qi, F.J.; Si, N. Analysis of primary gene+multigene genetic characterisation of yellow wilt resistance in Cotton Plant No.2. J. Cotton 2016, 28, 513–518. [Google Scholar]
- Cao, J.; Li, T.Y. Exploration into the Successful Experience of Promoting Xinlu No. 37. China Cotton 2017, 44, 40–42. [Google Scholar]
- Li, Y.J.; Liu, Y.J.; Sun, J.; Zhang, X.Y. Early maturing cotton variety—Xinluzhong 51. China Cotton 2012, 39, 31. [Google Scholar]
- Gai, J.Y. Genetic studies on quantitative traits in plants--A method for segregation analysis of main gene-polygenic genetic systems. Sci. Chin. 2003, 11, 46–48. [Google Scholar]
- Wang, J.T.; Zhang, Y.W.; Du, Y.W.; Ren, W.L.; Li, H.F.; Sun, W.X.; Ge, C.; Zhang, Y.M. R package SEA v2.0 for hybrid genetic analysis of quantitative traits main gene+multigene. J. Crops 2022, 48, 1416–1424. [Google Scholar]
- Du, X.; Wang, H.; Liu, J.; Zhu, X.; Mu, J.; Feng, X.; Liu, H. Major gene with polygene inheritance analysis of shoot architecture traits in Viola cornuta. Sci. Hortic. 2022, 303, 111204. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, X.; Gao, K.; Tian, Y.; Zhang, M.; Anderson, N.O.; Dai, S. Heterosis and Mixed Genetic Analysis of Flowering Traits in Cross Breeding of Day-Neutral Chrysanthemum (Asteraceae). Agronomy 2023, 13, 2107. [Google Scholar] [CrossRef]
- Ren, X.; Li, H.; Yin, Y.; Duan, L.; Wang, Y.; Liang, X.; Wan, R.; Huang, T.; Zhang, B.; Xi, W.; et al. Genetic Analysis of Fruit Traits in Wolfberry (Lycium L.) by the Major Gene Plus Polygene Model. Agronomy 2022, 12, 1403. [Google Scholar] [CrossRef]
- Guo, A.; Li, H.; Huang, Y.; Ma, X.; Li, B.; Du, X.; Cui, Y.; Zhao, N.; Hua, J. Yield-related quantitative trait loci identification and lint percentage hereditary dissection under salt stress in upland cotton. Plant J. Cell Mol. Biol. 2024, 119, 115–136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Chen, J.; Zhu, S.; Zhu, Q.H. Increasing seed lint fibre density for promoting cotton yield: Opportunities and challenges. Mol. Plant 2024, 17, 1490–1493. [Google Scholar] [CrossRef] [PubMed]
- Abdelghany, A.M.; El-Banna, A.A.; Lamlom, S.F.; El-Sorady, G.A.; Salama, E.A.; Ren, H.; Shaibu, A.S.; Yehia, W.M. Combining ability of Egyptian cotton (Gossypium barbadense L.) reveals genetic potential for improved yield and fiber quality. J. Cotton Res. 2024, 7, 12. [Google Scholar] [CrossRef]
- Di, J.C.; Chen, X.S.; Zhao, L.; Zhang, M.Y. Analysing the genetic basis of hybrid dominance in boll weight and boll percentage in land cotton using mixed main gene+multigene genetic analysis. J. Cotton 2016, 28, 115–121. [Google Scholar]
- Gong, J.W.; Liu, A.Y.; Duan, L.; Jiang, X.; Li, J.W.; Deng, X.Y.; Ge, Q.; Gong, W.K.; Shi, Y.Z.; Shang, H.H.; et al. Primary + polygenic genetic analysis of boll weight in ‘CCM 70′ RIL population under different environments. Chin. Agron. Bull. 2019, 35, 128–137. [Google Scholar]
- Li, C.Q.; Guo, W.Z.; Zhang, T.Z. Genetic analysis of yield and yield components in landrace cotton varieties with different clothing scores. Crops J. 2009, 35, 1990–1999. [Google Scholar]
- Li, C.Q.; Wang, Q.L.; Zhang, J.B.; Fu, Y.Z. Genetic analysis of the main genes and polygenes for yield traits in high-yielding land cotton Baicotton 1. Henan Agric. Sci. 2010, 08, 43–48. [Google Scholar]
- Zhe, X.I.A.; Zhang, X.; Liu, Y.Y.; Jia, Z.F.; Zhao, H.H.; Li, C.Q.; Wang, Q.L. Major gene identification and quantitative trait locus mapping for yield-related traits in upland cotton (Gossypium hirsutum L.). J. Integr. Agric. 2014, 13, 299–309. [Google Scholar]
- Wang, C.E.; Gai, J.Y.; Bo, S.X.; Yu, D.Y.; Chen, S.Y. Genetic analysis and QTL localisation of soybean tofu and soymilk yield. Chin. Agric. Sci. 2008, 5, 1274–1282. [Google Scholar]
Growth Period | Time | Days/d |
---|---|---|
Sowing-Emergence | 8 April 2023–27 April 2023 | 19 |
Seedling-Flowering | 28 April 2023–25 June 2023 | 58 |
Flowering-Boll Formation | 26 June 2023–10 August 2023 | 45 |
Boll Opening Stage | 11 August 2023–14 September 2023 | 34 |
Fertilisation Frequency | Fertilisation Date | Urea (kg/hm2) | High Phosphate Fertiliser (kg/hm2) | High Potash Fertiliser (kg/hm2) | Water (m3/hm2) |
---|---|---|---|---|---|
1 | 8 June | 45 | 0 | 0 | 25 |
2 | 18 June | 60 | 37.5 | 0 | 25 |
3 | 27 June | 45 | 56.25 | 0 | 25 |
4 | 5 July | 75 | 75 | 0 | 25 |
5 | 11 July | 60 | 56.25 | 0 | 20 |
6 | 20 July | 60 | 28.125 | 46.875 | 25 |
7 | 27 July | 60 | 0 | 65.625 | 20 |
8 | 3 August | 60 | 0 | 75 | 20 |
9 | 9 August | 60 | 0 | 56.25 | 20 |
10 | 15 August | 60 | 0 | 37.5 | 25 |
11 | 21 August | 0 | 0 | 0 | 20 |
Traits | Measurement Methods |
---|---|
Single Boll Weight | Each boll on a plant was weighed using an electronic balance. |
Boll Number per Plant | The number of bolls on each plant was counted. |
Lint Yield Per Plant | Seed cotton per plant from each plant was ginned in a lint roller gin to separate lint and seed; lint was then weighed on an electronic balance. |
Seed Cotton Per Plant | The entire seed cotton per plant yield from each plant was harvested and weighed using an electronic balance. |
Lint Percentage | Calculated as the lint yield as a percentage of seed cotton per plant. |
Seed Index | A sample of 100 seeds was randomly selected, and their total weight was measured using an electronic balance. |
Traits | Generation | Mean | SD | CV (%) | K–S (p Value) |
---|---|---|---|---|---|
Single Boll Weight (g) | P1 | 5.267 | 0.467 | 8.871 | 0.200 |
P2 | 6.036 | 0.701 | 11.616 | 0.200 | |
F1 | 6.119 | 0.784 | 12.808 | 0.200 | |
F2 | 6.454 | 0.563 | 8.721 | 0.200 | |
B1 | 6.104 | 0.734 | 12.020 | 0.200 | |
B2 | 6.498 | 0.817 | 12.570 | 0.200 | |
Boll Number Per Plant (PCS) | P1 | 8.200 | 3.136 | 38.242 | 0.200 |
P2 | 6.320 | 2.734 | 43.265 | 0.090 | |
F1 | 5.960 | 2.282 | 38.285 | 0.171 | |
F2 | 6.280 | 3.385 | 53.905 | 0.069 | |
B1 | 4.920 | 2.326 | 47.275 | 0.200 | |
B2 | 6.640 | 2.481 | 37.368 | 0.088 | |
Lint Yield Per Plant (g) | P1 | 21.840 | 7.280 | 33.335 | 0.054 |
P2 | 17.512 | 8.530 | 48.709 | 0.200 | |
F1 | 16.928 | 7.142 | 42.189 | 0.200 | |
F2 | 19.539 | 9.885 | 50.588 | 0.200 | |
B1 | 13.711 | 8.024 | 58.524 | 0.200 | |
B2 | 20.173 | 8.502 | 42.145 | 0.200 | |
Seed Cotton Per Plant (g) | P1 | 46.952 | 16.026 | 34.132 | 0.200 |
P2 | 39.291 | 19.342 | 49.229 | 0.200 | |
F1 | 36.853 | 15.772 | 42.797 | 0.200 | |
F2 | 41.823 | 20.766 | 49.651 | 0.123 | |
B1 | 29.019 | 16.740 | 57.686 | 0.200 | |
B2 | 44.648 | 19.018 | 42.595 | 0.200 | |
Lint Percentage (%) | P1 | 0.466 | 0.016 | 3.476 | 0.200 |
P2 | 0.439 | 0.008 | 1.842 | 0.052 | |
F1 | 0.461 | 0.014 | 3.072 | 0.112 | |
F2 | 0.471 | 0.018 | 3.881 | 0.200 | |
B1 | 0.471 | 0.030 | 6.283 | 0.200 | |
B2 | 0.452 | 0.028 | 6.115 | 0.200 | |
Seed Index (g) | P1 | 8.361 | 0.910 | 10.879 | 0.200 |
P2 | 9.657 | 1.054 | 10.912 | 0.200 | |
F1 | 9.471 | 0.832 | 8.783 | 0.200 | |
F2 | 10.615 | 0.956 | 9.005 | 0.200 | |
B1 | 9.585 | 1.206 | 12.580 | 0.200 | |
B2 | 10.407 | 1.103 | 10.597 | 0.200 |
Model | Single Boll Weight | Boll Number Per Plant | Lint Yield Per Plant | |||
MLV | AIC | MLV | AIC | MLV | AIC | |
1MG-AD | −597.774 | 1203.549 | −1200.562 | 2409.125 | −1790.115 | 3588.229 |
1MG-A | −601.245 | 1208.491 | −1204.020 | 2414.041 | −1791.820 | 3589.640 |
1MG-EAD | −607.582 | 1221.164 | −1204.119 | 2414.239 | −1791.469 | 3588.937 |
1MG-NCD | −595.913 | 1197.826 | −1203.044 | 2412.088 | −1791.623 | 3589.246 |
2MG-ADI | −582.176 | 1184.352 | −1189.451 | 2398.902 | −1771.524 | 3563.047 |
2MG-AD | −592.609 | 1197.218 | −1199.871 | 2411.742 | −1790.085 | 3592.171 |
2MG-A | −641.390 | 1290.779 | −1224.724 | 2457.447 | −1815.503 | 3639.006 |
2MG-EA | −601.264 | 1208.528 | −1204.021 | 2414.043 | −1791.820 | 3589.640 |
2MG-CD | −608.036 | 1224.073 | −1204.118 | 2416.235 | −1788.091 | 3584.182 |
2MG-EAD | −608.070 | 1222.140 | −1204.117 | 2414.234 | −1791.534 | 3589.068 |
PG-ADI | −577.797 | 1175.595 | −1193.940 | 2407.881 | −1780.288 | 3580.576 |
PG-AD | −592.281 | 1198.563 | −1200.715 | 2415.430 | −1784.787 | 3583.575 |
MX1-AD-ADI | −577.798 | 1179.595 | −1194.060 | 2412.120 | −1780.288 | 3584.576 |
MX1-AD-AD | −594.672 | 1207.344 | −1200.566 | 2419.132 | −1784.467 | 3586.935 |
MX1-A-AD | −591.764 | 1199.527 | −1200.676 | 2417.353 | −1784.698 | 3585.396 |
MX1-EAD-AD | −592.208 | 1200.416 | −1200.679 | 2417.359 | −1784.758 | 3585.516 |
MX1-NCD-AD | −592.205 | 1200.410 | −1200.680 | 2417.360 | −1784.760 | 3585.520 |
MX2-ADI-ADI | −577.427 | 1190.854 | −1185.624 | 2407.247 | −1773.627 | 3583.253 |
MX2-ADI-AD | −579.659 | 1189.319 | −1187.363 | 2404.725 | −1769.767 | 3569.535 |
MX2-AD-AD | −592.207 | 1206.413 | −1200.678 | 2423.357 | −1784.758 | 3591.517 |
MX2-A-AD | −583.724 | 1185.447 | −1194.162 | 2406.324 | −1779.484 | 3576.968 |
MX2-EA-AD | −592.034 | 1200.068 | −1200.676 | 2417.353 | −1784.671 | 3585.343 |
MX2-CD-AD | −643.967 | 1305.933 | −1202.771 | 2423.541 | −1791.159 | 3600.318 |
MX2-EAD-AD | −592.204 | 1200.408 | −1200.679 | 2417.358 | −1784.756 | 3585.512 |
model | Seed cotton per plant | Lint percentage | Seed index | |||
MLV | AIC | MLV | AIC | MLV | AIC | |
1MG-AD | −2179.345 | 4366.691 | 1166.694 | −2325.389 | −818.786 | 1645.572 |
1MG-A | −2181.858 | 4369.716 | 1163.959 | −2321.917 | −819.875 | 1645.750 |
1MG-EAD | −2180.776 | 4367.553 | 1164.983 | −2323.965 | −829.827 | 1665.653 |
1MG-NCD | −2182.074 | 4370.148 | 1150.963 | −2295.927 | −811.436 | 1628.871 |
2MG-ADI | −2160.668 | 4341.336 | 1176.407 | −2332.814 | −788.083 | 1596.166 |
2MG-AD | −2178.347 | 4368.693 | 1171.733 | −2331.466 | −813.148 | 1638.296 |
2MG-A | −2203.541 | 4415.081 | 1131.330 | −2254.660 | −838.958 | 1685.915 |
2MG-EA | −2181.859 | 4369.717 | 1162.845 | −2319.689 | −819.446 | 1644.892 |
2MG-CD | −2177.002 | 4362.004 | 1165.343 | −2322.686 | −830.268 | 1668.536 |
2MG-EAD | −2181.064 | 4368.128 | 1165.116 | −2324.231 | −830.270 | 1666.539 |
PG-ADI | −2167.287 | 4354.573 | 1189.113 | −2358.226 | −783.428 | 1586.855 |
PG-AD | −2172.646 | 4359.291 | 1183.151 | −2352.302 | −812.024 | 1638.048 |
MX1-AD-ADI | −2167.287 | 4358.573 | 1194.907 | −2365.814 | −783.428 | 1590.855 |
MX1-AD-AD | −2171.068 | 4360.135 | 1176.055 | −2334.109 | −815.312 | 1648.623 |
MX1-A-AD | −2172.590 | 4361.181 | 1186.007 | −2356.014 | −811.961 | 1639.921 |
MX1-EAD-AD | −2172.606 | 4361.212 | 1188.784 | −2361.567 | −811.948 | 1639.896 |
MX1-NCD-AD | −2172.608 | 4361.216 | 1183.187 | −2350.375 | −811.963 | 1639.926 |
MX2-ADI-ADI | −2161.437 | 4358.874 | 1203.471 | −2370.942 | −780.806 | 1597.612 |
MX2-ADI-AD | −2158.440 | 4346.880 | 1205.822 | −2381.644 | −787.472 | 1604.943 |
MX2-AD-AD | −2172.606 | 4367.213 | 1183.192 | −2344.385 | −811.961 | 1645.922 |
MX2-A-AD | −2167.439 | 4352.878 | 1193.533 | −2369.066 | −794.133 | 1606.266 |
MX2-EA-AD | −2172.590 | 4361.180 | 1187.211 | −2358.422 | −811.961 | 1639.921 |
MX2-CD-AD | −2177.811 | 4373.622 | 1190.768 | −2363.537 | −1032.433 | 2082.866 |
MX2-EAD-AD | −2172.604 | 4361.208 | 1188.860 | −2361.720 | −811.953 | 1639.907 |
Traits | Single Boll Weight | Boll Number Per Plant | |||||
Generation | Model | 2MG-ADI | PG-ADI | MX1-AD-ADI | 2MG-ADI | MX2-ADI-AD | MX2-A-AD |
P1 | U12 | 3.036 (0.081) | 0.048 (0.826) | 0.048 (0.826) | 0.512 (0.474) | 0.014 (0.906) | 0.035 (0.851) |
U22 | 2.056 (0.152) | 0.016 (0.900) | 0.016 (0.900) | 0.370 (0.543) | 0.002 (0.966) | 0.065 (0.799) | |
U32 | 1.027 (0.311) | 0.121 (0.728) | 0.121 (0.728) | 0.114 (0.736) | 0.082 (0.774) | 0.086 (0.769) | |
nW2 | 0.388 (0.081) | 0.067 (0.773) | 0.067 (0.773) | 0.086 (0.670) | 0.040 (0.931) | 0.043 (0.917) | |
Dn | 0.237 (0.102) | 0.121 (0.818) | 0.121 (0.819) | 0.147 (0.601) | 0.100 (0.941) | 0.103 (0.931) | |
F1 | U12 | 0.007 (0.934) | 0.036 (0.849) | 0.036 (0.849) | 0.449 (0.503) | 0.296 (0.586) | 0.009 (0.923) |
U22 | 0.003 (0.957) | 0.115 (0.735) | 0.115 (0.735) | 0.293 (0.588) | 0.406 (0.524) | 0.001 (0.977) | |
U32 | 0.291 (0.590) | 0.380 (0.538) | 0.380 (0.538) | 0.184 (0.668) | 0.195 (0.659) | 0.242 (0.623) | |
nW2 | 0.090 (0.648) | 0.103 (0.583) | 0.103 (0.583) | 0.127 (0.471) | 0.114 (0.526) | 0.085 (0.675) | |
Dn | 0.149 (0.584) | 0.141 (0.652) | 0.141 (0.652) | 0.210 (0.190) | 0.165 (0.454) | 0.165 (0.453) | |
P2 | U12 | 0.002 (0.962) | 0.007 (0.932) | 0.007 (0.932) | 0.010 (0.920) | 0.127 (0.721) | 0.038 (0.846) |
U22 | 0.002 (0.964) | 0.007 (0.934) | 0.007 (0.934) | 0.002 (0.970) | 0.151 (0.698) | 0.057 (0.812) | |
U32 | 0.000 (0.998) | 0.000 (1.000) | 0.000 (1.000) | 0.056 (0.813) | 0.030 (0.864) | 0.041 (0.840) | |
nW2 | 0.035 (0.957) | 0.036 (0.954) | 0.036 (0.954) | 0.066 (0.780) | 0.084 (0.682) | 0.073 (0.743) | |
Dn | 0.097 (0.954) | 0.094 (0.965) | 0.094 (0.965) | 0.138 (0.674) | 0.174 (0.390) | 0.161 (0.485) | |
B1 | U12 | 0.414 (0.520) | 0.003 (0.954) | 0.003 (0.954) | 0.097 (0.755) | 0.011 (0.917) | 0.128 (0.720) |
U22 | 0.201 (0.654) | 0.018 (0.893) | 0.015 (0.903) | 0.271 (0.603) | 0.149 (0.700) | 0.338 (0.561) | |
U32 | 0.487 (0.485) | 0.101 (0.751) | 0.071 (0.790) | 0.766 (0.382) | 3.790 (0.052) | 0.880 (0.348) | |
nW2 | 0.100 (0.594) | 0.053 (0.861) | 0.052 (0.868) | 0.271 (0.170) | 0.286 (0.155) | 0.299 (0.143) | |
Dn | 0.067 (0.534) | 0.049 (0.881) | 0.049 (0.887) | 0.116 (0.042) * | 0.109 (0.065) | 0.121 (0.030) * | |
B2 | U12 | 0.573 (0.449) | 0.001 (0.982) | 0.001 (0.982) | 0.050 (0.823) | 0.001 (0.971) | 0.007 (0.936) |
U22 | 0.449 (0.503) | 0.031 (0.860) | 0.027 (0.869) | 0.198 (0.656) | 0.008 (0.930) | 0.013 (0.908) | |
U32 | 0.063 (0.802) | 0.631 (0.427) | 0.557 (0.456) | 0.836 (0.361) | 0.044 (0.834) | 0.598 (0.439) | |
nW2 | 0.100 (0.598) | 0.053 (0.861) | 0.050 (0.874) | 0.227 (0.225) | 0.214 (0.244) | 0.225 (0.227) | |
Dn | 0.071 (0.445) | 0.048 (0.886) | 0.048 (0.894) | 0.101 (0.100) | 0.097 (0.128) | 0.098 (0.118) | |
F2 | U12 | 0.821 (0.365) | 0.027 (0.869) | 0.027 (0.869) | 0.873 (0.350) | 1.037 (0.309) | 3.316 (0.069) |
U22 | 1.495 (0.222) | 0.004 (0.952) | 0.006 (0.940) | 0.972 (0.324) | 0.809 (0.369) | 3.775 (0.052) | |
U32 | 1.908 (0.167) | 0.157 (0.692) | 0.117 (0.733) | 0.105 (0.746) | 0.121 (0.728) | 0.518 (0.472) | |
nW2 | 0.158 (0.367) | 0.049 (0.882) | 0.048 (0.888) | 0.299 (0.143) | 0.323 (0.123) | 0.607 (0.022) * | |
Dn | 0.089 (0.244) | 0.051 (0.886) | 0.050 (0.888) | 0.119 (0.048) * | 0.127 (0.027) * | 0.005 (0.005) ** | |
Traits | Lint yield per plant | Seed cotton per plant | |||||
Generation | model | 2MG-ADI | MX2-ADI-AD | MX2-A-AD | 2MG-ADI | MX2-ADI-AD | MX2-A-AD |
P1 | U12 | 1.124 (0.289) | 0.274 (0.601) | 0.142 (0.707) | 0.759 (0.384) | 0.232 (0.630) | 0.049 (0.824) |
U22 | 0.573 (0.449) | 0.075 (0.784) | 0.020 (0.888) | 0.329 (0.566) | 0.053 (0.819) | 0.000 (0.997) | |
U32 | 1.163 (0.281) | 0.861 (0.354) | 0.797 (0.372) | 1.165 (0.280) | 0.901 (0.343) | 0.762 (0.383) | |
nW2 | 0.203 (0.265) | 0.121 (0.496) | 0.108 (0.558) | 0.178 (0.315) | 0.122 (0.492) | 0.100 (0.599) | |
Dn | 0.234 (0.110) | 0.199 (0.243) | 0.189 (0.298) | 0.187 (0.306) | 0.162 (0.483) | 0.144 (0.630) | |
F1 | U12 | 0.141 (0.708) | 0.023 (0.880) | 0.460 (0.498) | 0.177 (0.674) | 0.012 (0.914) | 0.226 (0.634) |
U22 | 0.077 (0.782) | 0.051 (0.822) | 0.501 (0.479) | 0.100 (0.752) | 0.036 (0.850) | 0.279 (0.597) | |
U32 | 0.118 (0.731) | 0.099 (0.754) | 0.042 (0.838) | 0.134 (0.715) | 0.114 (0.736) | 0.073 (0.787) | |
nW2 | 0.034 (0.959) | 0.028 (0.983) | 0.076 (0.727) | 0.042 (0.924) | 0.031 (0.973) | 0.056 (0.841) | |
Dn | 0.094 (0.966) | 0.113 (0.871) | 0.155 (0.533) | 0.107 (0.910) | 0.118 (0.836) | 0.147 (0.598) | |
P2 | U12 | 0.011 (0.916) | 0.040 (0.842) | 0.137 (0.712) | 0.001 (0.973) | 0.011 (0.917) | 0.178 (0.673) |
U22 | 0.006 (0.938) | 0.028 (0.867) | 0.133 (0.715) | 0.000 (0.999) | 0.004 (0.950) | 0.174 (0.677) | |
U32 | 0.009 (0.924) | 0.010 (0.920) | 0.001 (0.978) | 0.019 (0.890) | 0.022 (0.881) | 0.001 (0.972) | |
nW2 | 0.049 (0.886) | 0.050 (0.876) | 0.067 (0.777) | 0.036 (0.954) | 0.035 (0.956) | 0.062 (0.805) | |
Dn | 0.119 (0.834) | 0.126 (0.776) | 0.131 (0.736) | 0.081 (0.992) | 0.087 (0.983) | 0.111 (0.883) | |
B1 | U12 | 0.012 (0.911) | 0.005 (0.946) | 0.012 (0.914) | 0.098 (0.754) | 0.001 (0.970) | 0.002 (0.968) |
U22 | 0.002 (0.964) | 0.003 (0.959) | 0.008 (0.928) | 0.065 (0.798) | 0.004 (0.949) | 0.012 (0.912) | |
U32 | 0.375 (0.540) | 0.003 (0.954) | 0.003 (0.954) | 0.037 (0.848) | 0.161 (0.688) | 0.084 (0.773) | |
nW2 | 0.046 (0.900) | 0.027 (0.984) | 0.031 (0.974) | 0.066 (0.783) | 0.039 (0.939) | 0.046 (0.898) | |
Dn | 0.042 (0.963) | 0.040 (0.979) | 0.045 (0.931) | 0.061 (0.658) | 0.040 (0.975) | 0.047 (0.905) | |
B2 | U12 | 0.060 (0.806) | 0.178 (0.673) | 0.009 (0.923) | 0.041 (0.840) | 0.211 (0.646) | 0.070 (0.792) |
U22 | 0.026 (0.872) | 0.120 (0.729) | 0.000 (0.983) | 0.012 (0.915) | 0.187 (0.665) | 0.006 (0.937) | |
U32 | 0.095 (0.758) | 0.062 (0.804) | 0.210 (0.647) | 0.124 (0.725) | 0.002 (0.963) | 0.498 (0.480) | |
nW2 | 0.058 (0.829) | 0.065 (0.788) | 0.083 (0.686) | 0.048 (0.888) | 0.058 (0.829) | 0.068 (0.770) | |
Dn | 0.052 (0.829) | 0.049 (0.867) | 0.060 (0.660) | 0.047 (0.897) | 0.049 (0.876) | 0.065 (0.565) | |
F2 | U12 | 0.302 (0.583) | 0.219 (0.640) | 2.095 (0.148) | 0.423 (0.516) | 0.418 (0.518) | 2.726 (0.099) |
U22 | 0.472 (0.492) | 0.297 (0.586) | 2.180 (0.140) | 0.777 (0.378) | 0.564 (0.453) | 2.846 (0.092) | |
U32 | 0.385 (0.535) | 0.133 (0.716) | 0.090 (0.764) | 1.013 (0.314) | 0.250 (0.617) | 0.125 (0.724) | |
nW2 | 0.133 (0.451) | 0.120 (0.503) | 0.357 (0.099) | 0.154 (0.379) | 0.139 (0.429) | 0.432 (0.062) | |
Dn | 0.071 (0.521) | 0.070 (0.536) | 0.136 (0.136) | 0.073 (0.484) | 0.074 (0.461) | 0.107 (0.107) | |
Traits | Lint percentage | Seed index | |||||
Generation | model | MX2-ADI-ADI | MX2-ADI-AD | MX2-A-AD | 2MG-ADI | PG-ADI | MX1-AD-ADI |
P1 | U12 | 0.050 (0.822) | 0.154 (0.695) | 0.021 (0.884) | 0.897 (0.344) | 0.001 (0.978) | 0.001 (0.978) |
U22 | 0.039 (0.843) | 0.139 (0.710) | 0.014 (0.906) | 0.517 (0.472) | 0.045 (0.832) | 0.045 (0.832) | |
U32 | 0.006 (0.939) | 0.001 (0.975) | 0.009 (0.925) | 0.627 (0.428) | 0.548 (0.459) | 0.548 (0.459) | |
nW2 | 0.049 (0.882) | 0.063 (0.800) | 0.045 (0.909) | 0.142 (0.419) | 0.063 (0.799) | 0.063 (0.799) | |
Dn | 0.120 (0.827) | 0.133 (0.719) | 0.113 (0.871) | 0.172 (0.402) | 0.133 (0.716) | 0.133 (0.716) | |
F1 | U12 | 0.053 (0.818) | 0.359 (0.549) | 0.377 (0.539) | 2.732 (0.098) | 0.020 (0.889) | 0.020 (0.889) |
U22 | 0.047 (0.828) | 0.297 (0.586) | 0.309 (0.579) | 2.331 (0.127) | 0.034 (0.854) | 0.034 (0.854) | |
U32 | 0.000 (0.983) | 0.020 (0.889) | 0.024 (0.877) | 0.087 (0.768) | 0.038 (0.845) | 0.038 (0.845) | |
nW2 | 0.069 (0.766) | 0.079 (0.707) | 0.108 (0.555) | 0.262 (0.181) | 0.030 (0.977) | 0.030 (0.977) | |
Dn | 0.157 (0.516) | 0.128 (0.761) | 0.183 (0.329) | 0.167 (0.438) | 0.085 (0.987) | 0.085 (0.987) | |
P2 | U12 | 0.014 (0.907) | 1.635 (0.201) | 0.187 (0.665) | 1.023 (0.312) | 0.034 (0.854) | 0.034 (0.854) |
U22 | 0.013 (0.909) | 1.217 (0.270) | 0.420 (0.517) | 0.730 (0.393) | 0.118 (0.731) | 0.118 (0.731) | |
U32 | 0.834 (0.361) | 0.292 (0.589) | 0.840 (0.360) | 0.248 (0.619) | 0.438 (0.508) | 0.438 (0.508) | |
nW2 | 0.127 (0.473) | 0.298 (0.144) | 0.143 (0.414) | 0.128 (0.469) | 0.066 (0.781) | 0.066 (0.781) | |
Dn | 0.173 (0.397) | 0.263 (0.052) | 0.207 (0.205) | 0.165 (0.453) | 0.130 (0.747) | 0.130 (0.747) | |
B1 | U12 | 0.197 (0.657) | 0.004 (0.948) | 0.273 (0.601) | 0.004 (0.953) | 0.018 (0.893) | 0.019 (0.892) |
U22 | 0.242 (0.623) | 0.001 (0.980) | 0.198 (0.656) | 0.031 (0.861) | 0.036 (0.850) | 0.031 (0.860) | |
U32 | 0.061 (0.805) | 0.125 (0.724) | 0.059 (0.808) | 0.864 (0.353) | 0.056 (0.814) | 0.033 (0.856) | |
nW2 | 0.086 (0.672) | 0.032 (0.971) | 0.196 (0.276) | 0.052 (0.863) | 0.026 (0.987) | 0.026 (0.988) | |
Dn | 0.057 (0.742) | 0.037 (0.991) | 0.077 (0.362) | 0.043 (0.951) | 0.038 (0.987) | 0.037 (0.989) | |
B2 | U12 | 0.000 (0.990) | 0.082 (0.775) | 0.475 (0.491) | 0.704 (0.401) | 0.222 (0.638) | 0.224 (0.636) |
U22 | 0.027 (0.870) | 0.203 (0.653) | 0.415 (0.520) | 0.120 (0.729) | 0.462 (0.497) | 0.450 (0.503) | |
U32 | 0.493 (0.482) | 0.483 (0.487) | 0.009 (0.925) | 3.482 (0.062) | 0.805 (0.370) | 0.719 (0.397) | |
nW2 | 0.083 (0.688) | 0.078 (0.716) | 0.330 (0.117) | 0.209 (0.253) | 0.106 (0.564) | 0.104 (0.575) | |
Dn | 0.059 (0.679) | 0.050 (0.861) | 0.111 (0.053) | 0.089 (0.195) | 0.055 (0.775) | 0.055 (0.772) | |
F2 | U12 | 0.001 (0.983) | 0.007 (0.931) | 0.210 (0.647) | 0.001 (0.971) | 0.029 (0.865) | 0.029 (0.864) |
U22 | 0.049 (0.825) | 0.011 (0.915) | 0.086 (0.769) | 0.005 (0.942) | 0.088 (0.766) | 0.081 (0.776) | |
U32 | 0.639 (0.424) | 0.008 (0.928) | 0.358 (0.550) | 0.185 (0.667) | 0.283 (0.595) | 0.227 (0.634) | |
nW2 | 0.046 (0.903) | 0.022 (0.994) | 0.077 (0.721) | 0.054 (0.851) | 0.065 (0.789) | 0.064 (0.795) | |
Dn | 0.048 (0.917) | 0.033 (0.998) | 0.618 (0.618) | 0.053 (0.846) | 0.059 (0.749) | 0.058 (0.766) |
Traits | Single Boll Weight | Boll Number per Plant | Lint Yield per Plant | Seed Cotton per Plant | Lint Percentage | Seed Index | |
---|---|---|---|---|---|---|---|
Model | PG-ADI | MX2-ADI-AD | 2MG-ADI | 2MG-ADI | MX2-ADI-AD | PG-ADI | |
1storder genetic parameter | m | 5.27 | 5.71 | 17.44 | 37.90 | 0.46 | 8.36 |
da | — | 1.35 | 1.58 | 2.80 | 0.00 | — | |
db | — | 1.35 | 1.58 | 2.80 | 0.00 | — | |
ha | — | −0.24 | 5.97 | 13.15 | 0.03 | — | |
hb | — | −0.45 | −3.05 | −6.39 | 0.03 | — | |
i | — | 1.64 | 2.71 | 5.88 | −0.01 | — | |
jab | — | −1.06 | −1.20 | −2.49 | 0.00 | — | |
jba | — | −1.27 | −10.23 | −22.03 | 0.00 | — | |
I | — | 0.14 | −4.26 | −9.79 | −0.02 | — | |
2ndorder genetic parameter | σ2mg | — | 1.76 | 15.44 | 44.81 | 0.00 | — |
h2mg(%) | — | 25.19 | 23.47 | 15.38 | 63.25 | — | |
σ2pg | 0.18 | 0.00 | — | — | 0.00 | 0.71 | |
h2pg(%) | 29.58 | 0.00 | — | — | 0.08 | 45.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Guo, W.; He, L.; Cao, X. Polygenic Genetic Analysis of Principal Genes for Yield Traits in Land Cotton. Agronomy 2024, 14, 2749. https://doi.org/10.3390/agronomy14112749
Ma X, Guo W, He L, Cao X. Polygenic Genetic Analysis of Principal Genes for Yield Traits in Land Cotton. Agronomy. 2024; 14(11):2749. https://doi.org/10.3390/agronomy14112749
Chicago/Turabian StyleMa, Xiaoman, Weifeng Guo, Liangrong He, and Xinchuan Cao. 2024. "Polygenic Genetic Analysis of Principal Genes for Yield Traits in Land Cotton" Agronomy 14, no. 11: 2749. https://doi.org/10.3390/agronomy14112749
APA StyleMa, X., Guo, W., He, L., & Cao, X. (2024). Polygenic Genetic Analysis of Principal Genes for Yield Traits in Land Cotton. Agronomy, 14(11), 2749. https://doi.org/10.3390/agronomy14112749