The Transcriptome of Dahlia pinnata Provides Comprehensive Insight into the Formation Mechanism of Polychromatic Petals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, PA Content Detection, and Unigene Assembly
2.2. Gene Annotation, Expression Analysis, and Differential Expression Analysis
2.3. Identification of ABP Structure Genes and Regulation Genes
2.4. Identification, Phylogenetic Analysis, and Motif Analysis of DpSPLs
2.5. Validation of Expression Level of Key Genes Using qRT-PCR
3. Results
3.1. The Unigene Assembly, Function Annotation, and Expression Analysis
3.2. The Depression of ABP Pathway
3.3. Identification of MBWs and Repressors of ABP
3.4. Identification of SPL Depressor Targeted by miR156
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Walliser, B.; Lucaciu, C.R.; Molitor, C.; Marinovic, S.; Nitarska, D.A.; Aktaş, D.; Rattei, T.; Kampatsikas, I.; Stich, K.; Haselmair-Gosch, C.; et al. Dahlia variabilis cultivar ‘Seattle’ as a model plant for anthochlor biosynthesis. Plant Physiol. Biochem. 2021, 159, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Hosokawa, M.; Kojima, M.; Kitamura, Y.; Hoshino, A.; Tatsuzawa, F.; Doi, M.; Yazawa, S. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. Planta 2011, 234, 945–958. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.G.D.H. Polyploidy and Evolution in Wild and CultivatedDahliaSpecies. Ann. Bot. 1998, 81, 647–656. [Google Scholar]
- Lehnert, E.M.; Walbot, V. Sequencing and de novo assembly of a Dahlia hybrid cultivar transcriptome. Front. Plant Sci. 2014, 5, 340. [Google Scholar] [CrossRef]
- Almeyda, C.V.; Raikhy, G.; Pappu, H.R. Characterization and comparative analysis of promoters from three plant pararetroviruses associated with Dahlia (Dahlia variabilis). Virus Genes 2015, 51, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, A.; Ohno, S.; Hosokawa, M.; Tatsuzawa, F.; Doi, M. Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars. Planta 2013, 237, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Hosokawa, M.; Hoshino, A.; Kitamura, Y.; Morita, Y.; Park, K.I.; Nakashima, A.; Deguchi, A.; Tatsuzawa, F.; Doi, M.; et al. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J. Exp. Bot. 2011, 62, 5105–5116. [Google Scholar] [CrossRef]
- Ohno, S.; Hori, W.; Hosokawa, M.; Tatsuzawa, F.; Doi, M. Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) ‘Yuino’. Planta 2018, 247, 413–428. [Google Scholar] [CrossRef]
- Onozaki, T.; Mato, M.; Shibata, M.; Ikeda, H. Differences in flower color and pigment composition among white carnation (Dianthus caryophyllus L.) cultivars1. Sci. Hortic. 1999, 82, 103–111. [Google Scholar] [CrossRef]
- Mato, M.; Onozaki, T.; Ozeki, Y.; Higeta, D.; Itoh, Y.; Yoshimoto, Y.; Ikeda, H.; Yoshida, H.; Shibata, M. Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci. Hortic. 2000, 84, 333–347. [Google Scholar] [CrossRef]
- Schlangen, K.; Miosic, S.; Halbwirth, H. Allelic variants from Dahlia variabilis encode flavonoid 3′-hydroxylases with functional differences in chalcone 3-hydroxylase activity. Arch. Biochem. Biophys. 2010, 494, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.M.; Albert, N.W.; Schwinn, K.E. From landing lights to mimicry: The molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct. Plant Biol. 2012, 39, 619–638. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.W.; Davies, K.M.; Schwinn, K.E. Gene regulation networks generate diverse pigmentation patterns in plants. Plant Signal Behav. 2014, 9, e29526. [Google Scholar] [CrossRef]
- Ohno, S.; Deguchi, A.; Hosokawa, M.; Tatsuzawa, F.; Doi, M. A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars. Planta 2013, 238, 331–343. [Google Scholar] [CrossRef]
- LaFountain, A.M.; Yuan, Y.W. Repressors of anthocyanin biosynthesis. New Phytol. 2021, 231, 933–949. [Google Scholar] [CrossRef]
- Lloyd, A.; Brockman, A.; Aguirre, L.; Campbell, A.; Bean, A.; Cantero, A.; Gonzalez, A. Advances in the MYB-bHLH-WD Repeat (MBW) Pigment Regulatory Model: Addition of a WRKY Factor and Co-option of an Anthocyanin MYB for Betalain Regulation. Plant Cell Physiol. 2017, 58, 1431–1441. [Google Scholar] [CrossRef]
- Zhu, H.F.; Fitzsimmons, K.; Khandelwal, A.; Kranz, R.G. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Mol. Plant 2009, 2, 790–802. [Google Scholar] [CrossRef]
- Gou, J.Y.; Felippes, F.F.; Liu, C.J.; Weigel, D.; Wang, J.W. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 2011, 23, 1512–1522. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Hu, Q.; Dai, X.; Tian, H.; Zheng, K.; Wang, X.; Mao, T.; Chen, J.G.; Wang, S. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. Plant J. 2015, 83, 300–311. [Google Scholar] [CrossRef]
- Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.R. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 2009, 21, 3567–3584. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Ma, J.; Sun, Y.; Yao, Y. A method for the further assembly of targeted unigenes in a transcriptome after assembly by Trinity. Front. Plant Sci. 2015, 6, 843. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, C.G.; Swain, T. The flavonoid glycosides of Dahlia variabilis. III. Glycosides from white varieties. Arch. Biochem. Biophys. 1958, 73, 220–223. [Google Scholar] [CrossRef]
Species | R2R3 MYB | bHLH | WD40 | |||
---|---|---|---|---|---|---|
SG6 | SG5 | R | IN | TTG1-Clade | MP1-Clade | |
Arabidopsis thaliana # | PAPs | TT2 B | GL3 EGL3 | TT8 | TTG1 | AN11A |
Petunia hybrida # | AN2 | \ | JAF13 | AN1 | AN11 | \ |
Zea mays # | \ | C1 | R | IN1 | IN1 | MP1 |
Dahlia pinnata (GeneBank Ac.) | MYB1 (AB601003) | TT2-like | DEL (AB601006) | IVS (BAJ33520) | WDR1 (AB601007) | WDR2 (AB601008) |
Homologous unigenes | DN189_c1_g1 | DN185_c0_g2 | DN7019_c1_g1 | DN402_c0_g1 | DN14226_c0_g1 | DN7103_c0_g2 |
DN434_c0_g1 | DN22158_c0_g2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Ran, L.; Zhou, R.; Wang, Z. The Transcriptome of Dahlia pinnata Provides Comprehensive Insight into the Formation Mechanism of Polychromatic Petals. Agronomy 2024, 14, 2748. https://doi.org/10.3390/agronomy14112748
Zou J, Ran L, Zhou R, Wang Z. The Transcriptome of Dahlia pinnata Provides Comprehensive Insight into the Formation Mechanism of Polychromatic Petals. Agronomy. 2024; 14(11):2748. https://doi.org/10.3390/agronomy14112748
Chicago/Turabian StyleZou, Jiuchun, Liping Ran, Rui Zhou, and Zhongwei Wang. 2024. "The Transcriptome of Dahlia pinnata Provides Comprehensive Insight into the Formation Mechanism of Polychromatic Petals" Agronomy 14, no. 11: 2748. https://doi.org/10.3390/agronomy14112748
APA StyleZou, J., Ran, L., Zhou, R., & Wang, Z. (2024). The Transcriptome of Dahlia pinnata Provides Comprehensive Insight into the Formation Mechanism of Polychromatic Petals. Agronomy, 14(11), 2748. https://doi.org/10.3390/agronomy14112748