The Influence of Sugar Beet Cultivation Technologies on the Intensity and Species Biodiversity of Weeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Experimental Plot
2.2. Description of the Field Trial
2.3. Evaluation of Weed Infestation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mittler, S.; Petersen, J.; Koch, H.J. Economic thresholds of weed control insugar beets. J. Plant Dis. Protect. 2002, 18, 499–509. [Google Scholar]
- Märländer, B.; Hoffmann, C.; Koch, H.J.; Ladewig, E.; Merkes, R.; Petersen, J.; Stock-fisch, N. Environmental situation and yield performance of the sugar beetcrop in Germany: Heading for sustainable development. J. Agron. Crop Sci. 2003, 189, 201–226. [Google Scholar] [CrossRef]
- Délye, C.; Jasieniuk, M.; Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013, 29, 649–658. [Google Scholar] [CrossRef]
- Edwards, C.A. Changes in agricultural practice and their impact on soil organisms. In Agriculture and the Environment; Proceedings of the Institute of Terrestrial Ecology: Symposium No. 13.; Jenkins, D., Ed.; ITE Publ.: Cambridge, UK, 1984; pp. 56–65. Available online: https://nora.nerc.ac.uk/id/eprint/5980/1/13.pdf (accessed on 20 October 2023).
- Edwards, C.A.; Bohlen, P.J. The effects of toxic chemicals on the earthworms. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 1992; Volume 125, pp. 23–99. ISBN 0-387-97762-7. [Google Scholar]
- Freemark, K.; Boutin, C. Impact of agricultural herbicide use on terrestrial wildlife in temperate landscape: A review with special reference to North America. Agric. Ecosyst. Environ. 1995, 52, 67–91. [Google Scholar] [CrossRef]
- Bamford, S.S. Protozoa: Recycling and indicators of agro-ecosystem quality. In Fauna in Soil Ecosystem; Benckiser, G., Ed.; Dekker: New York, NY, USA, 1997; pp. 63–84. [Google Scholar]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef]
- Mitra, A.; Chatterjee, C.; Mandal, F.B. Synthetic chemical pesticides and their effects on birds. Res. J. Environ. Toxicol. 2011, 5, 81–96. [Google Scholar] [CrossRef]
- Guerrero, I.; Morales, M.B.; Oñate, J.J.; Geiger, F.; Berendse, F.; de Snoo, G.; Eggers, S.; Pärt, T.; Bengtsson, J.; Clement, L.W.; et al. Response of ground-nesting farmland birds to agricultural intensification across Europe: Landscape and field level management factors. Biol. Conserv. 2012, 152, 74–80. [Google Scholar] [CrossRef]
- Chiron, F.; Chargé, R.; Julliard, R.; Jiguet, F.; Muratet, A. Pesticide doses, landscape structure and their relative effects on farmland birds. Agric. Ecosyst. Environ. 2014, 185, 153–160. [Google Scholar] [CrossRef]
- Buhre, C.; Bürcky, K.; Schmitz, F.; Schulte, M.; Ladewig, E. Survey on sugar beet production technology—State and trends (1994–2010). Zuckerind 2011, 136, 670–677. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Xue, J.F.; Pu, C.; Zhang, X.Q.; Liu, S.L.; Chen, F.; Lal, R.; Zhang, H.L. Management-induced changes to soil organic car X.Qbon in China. Adv. Agron. 2015, 134, 1–50. [Google Scholar] [CrossRef]
- Garreto, F.G.; Fernandes, A.M.; Silva, J.A.; Silva, R.M.; Figueiredo, R.T.; Soratto, R.P. No-tillage and previous maize–palisadegrass intercropping reduce soil and water losses without decreasing root yield and quality of cassava. Soil Tillage Res. 2023, 227, 105621. [Google Scholar] [CrossRef]
- Koch, H.J.; Dieckmann, J.; Büchse, A.; Märländer, B. Yield decrease in sugar beet caused by reduced tillage and direct drilling. Eur. J. Agron. 2009, 30, 101–109. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Findlater, K.M.; Kandlikar, M.; Satterfield, T. Misunderstanding conservation agriculture: Challenges in promoting, monitoring and evaluating sustainable farming. Environ. Sci. Policy 2019, 100, 47–54. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [PubMed]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Sun, Z.; Wang, H.; Qu, S.; Lei, N.; He, J.; Dong, Q. Tillage effects on soil properties and crop yield after land reclamation. Sci. Rep. 2021, 11, 4611. [Google Scholar] [CrossRef] [PubMed]
- Brar, N.S.; Dhillon, B.S.; Saini, K.S.; Sharma, P.K. Agronomy of sugar beet cultivation—A review. Agric. Rev. 2015, 36, 184–197. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Till. Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Regitnig, P.; Avison, B. Zone tillage for beet production in Alberta: A report on four years of research. In Proceedings of the 35th Biennial Meeting of the American Society of Sugar Beet Technologists, American Society of Sugar Beet Technologists, Denver, CO, USA, 25–28 February 2009; pp. 140–144. [Google Scholar]
- Stevens, W.B.; Evans, R.G.; Iversen, W.M.; Jabro, J.D.; Sainju, U.; Allen, B.L. Strip tillage and high-Efficiency irrigation applied to a Sugarbeet–Barley rotation. Agronomy J. 2015, 107, 1250–1258. [Google Scholar] [CrossRef]
- Górski, D.; Gaj, R.; Ulatowska, A.; Miziniak, W. Effect of Strip-Till and Variety on Yield and Quality of Sugar Beet against Conventional Tillage. Agriculture 2022, 12, 166. [Google Scholar] [CrossRef]
- Arvidsson, J.; Håkansson, I. Response of Different Crops to Soil Compaction-Short-Term Effects in Swedish Field Experiments. Soil Tillage Res. 2014, 138, 56–63. [Google Scholar] [CrossRef]
- Marinello, F.; Pezzuolo, A.; Cillis, D.; Chiumenti, A.; Sartori, L. Traffic Effects on Soil Compaction and Sugar Beet (Beta vulgaris L.) Taproot Quality Parameters. Spanish J. Agric. Res. 2017, 15, 1–8. [Google Scholar] [CrossRef]
- Ladoni, M.; Kravchenko, A.N.; Robertson, G.P. Topography mediates the influence of cover crops on soil nitrate levels in row crop agricultural systems. PLoS ONE 2015, 10, e0143358. [Google Scholar] [CrossRef] [PubMed]
- Melakeberhan, H.; Wang, W.; Kravchenko, A.; Thelen, K. Effects of agronomic practices on the timeline of Heterodera glycines establishment in a new location. Nematology 2015, 17, 705–713. [Google Scholar] [CrossRef]
- Beehler, J.; Fry, J.; Negassa, W.; Kravchenko, A. Impact of cover crop on soil carbon accrual in topographically diverse terrain. J. Soil Water Conserv. 2017, 72, 272–279. [Google Scholar] [CrossRef]
- Grabau, Z.J.; Maung, Z.T.Z.; Noyes, D.C.; Baas, D.G.; Werling, B.P.; Brainard, D.C.; Melakeberhan, H. Effects of cover crops on Pratylenchus penetrans and the nematode community in carrot production. J. Nematol. 2017, 49, 114–123. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia, A.G.Y.; Gaudin, A.C.M.; et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Shahzad, M.; Hussain, M.; Jabran, K.; Farooq, M.; Farooq, S.; Gašparovič, K.; Barboricova, M.; Aljuaid, B.S.; El-Shehawi, A.M.; Zuan, A.T.K. The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.). Agronomy 2021, 11, 2088. [Google Scholar] [CrossRef]
- Minhas, W.A.; Mumtaz, N.; Ur-Rehman, H.; Farooq, S.; Farooq, M.; Ali, H.M.; Hussain, M. Weed infestation and productivity of wheat crop sown in various cropping systems under conventional and conservation tillage. Front. Plant Sci. 2023, 14, 1176738. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C.A. Nitrogen Management 535 Strategies to Reduce Nitrate Leaching in Tile-Drained Midwestern Soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Mansion-Vaquié, A.; Wezel, A.; Ferrer, A. Wheat genotypic diversity and intercropping to control cereal aphids. Agric. Ecosyst. Environ. 2019, 285, 106604. [Google Scholar] [CrossRef]
- Luo, C.; Ma, L.; Zhu, J.; Guo, Z.; Dong, K.; Dong, Y. Effects of Nitrogen and Intercropping on the Occurrence of Wheat Powdery Mildew and Stripe Rust and the Relationship with Crop Yield. Front. Plant Sci. 2021, 12, 637393. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Thomine, E.; Rusch, A.; Lavoir, A.V.; Wang, S.; Desneux, N. Crop diversification to promote arthropod pest management: A review. Agric. Commun. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Latati, M.; Rebouh, N.Y.; Aouiche, A.; Laouar, M. Modeling the functional role of the microorganisms in the daily exchanges of carbon and nitrogen in intercropping system under mediterranean conditions. Agron. Res. 2019, 17, 559–573. [Google Scholar] [CrossRef]
- Khanal, U.; Stott, K.J.; Armstrong, R.; Nuttall, J.G.; Henry, F.; Christy, B.P.; Mitchell, M.; Riffkin, P.A.; Wallace, A.J.; McCaskill, M.; et al. Intercropping—Evaluating the Advantages to Broadacre Systems. Agriculture 2021, 11, 453. [Google Scholar] [CrossRef]
- Moitzi, G.; Wagentristl, H.; Kaul, H.P.; Bernas, J.; Neugschwandtner, R.W. Energy Efficiency of Oat: Pea Intercrops Affected by Sowing Ratio and Nitrogen Fertilization. Agronomy 2023, 13, 42. [Google Scholar] [CrossRef]
- Cortés-Mora, F.A.; Piva, G.; Jamont, M.; Fustec, J. Niche separation and nitrogen transfer in Brassica-legume intercrops. Ratar. I Povrt. 2010, 47, 581–586. [Google Scholar]
- Hababi, A.; Javanmard, A.; Mosavi, S.B.; Rezaei, M.; Sabaghina, N. Effect of green manure on some soil physicochemical 573 characteristics. Int. J. Agron. Plant Prod. 2013, 4, 3089–3095. [Google Scholar]
- Streit, B.; Rieger, S.; Stamp, P.; Richner, W. Weed populations in winter wheat as affected by crop sequence, intensity of tillage and time of herbicide application in a cool and humid climate. Weed Res. 2002, 43, 20–32. [Google Scholar] [CrossRef]
- Ozpinar, S. Effects of tillage systems on weed population and economics for winter wheat production under the Mediterranean dryland conditions. Soil Tillage Res. 2006, 87, 1–8. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, proceeding crops, and N fertilization. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Jug, I.; Jug, D.; Sabo, M.; Stipesevc, B.; Stosic, M. Winter wheat yield and yield components as affected by soil tillage systems. Turk. J. Agric. For. 2011, 35, 1–7. [Google Scholar] [CrossRef]
- Chovancová, S.; Neudert, L.; Winkler, J. The effect of three soil tillage treatments on weed infestation in forage maize. Acta Agrobot. 2019, 72, 1756. [Google Scholar] [CrossRef]
- Brozović, B.; Jug, I.; Đurđević, B.; Ravlić, M.; Vukadinović, V.; Rojnica, I.; Jug, D. Initial Weed and Maize Response to Conservation Tillage and Liming in Different Agroecological Conditions. Agronomy 2023, 13, 1116. [Google Scholar] [CrossRef]
- Yin, X.; Al-Kaisi, M.M. Periodic responses of soybeans and economic returns to long-term no-till management. Agron. J. 2004, 96, 723–733. [Google Scholar] [CrossRef]
- Wozniak, A.; Soroka, M.; Stepniowska, A.; Makarski, B. Chemical composition of pea (Pisum sativum L.) seeds depending on tillage systems. J. Elem. 2006, 19, 1143–1152. [Google Scholar] [CrossRef]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Swedrzynska, D.; Sawinska, J.; Piechota, T. The effect of long-term tillage systems on some soil properties and yield of pea. Acta Sci. Pol. Agric. 2016, 15, 37–50. Available online: https://api.semanticscholar.org/ (accessed on 20 October 2023).
- Gawęda, D.; Haliniarz, M.; Bronowicka-Mielniczuk, U.; Łukasz, J. Weed Infestation and Health of the Soybean Crop Depending on Cropping System and Tillage System. Agriculture 2020, 10, 208. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems. Agriculture 2022, 12, 563. [Google Scholar] [CrossRef]
- Kaplan, Z.; Danihelka, J.; Chrtek, J.; Kirschner, J.; Kubát, K.; Štech, M.; Štěpánek, J. (Eds.) Key to the Flora of the Czech Republic, 2nd ed.; Academia: Prague, Czech Republic, 2019; p. 1168. (In Czech) [Google Scholar]
- Jusík, M.; Holec, J.; Hamouz, P.; Soukup, J. Biology and Control of Weeds, 1st ed.; Kurent, s.r.o.: České Budějovice, Czech Republic, 2018; p. 359. (In Czech) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 20 October 2023).
- Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. R Package Version 1.9.0. 2020. Available online: https://CRAN.R-project.org/package=PMCMRplus (accessed on 20 October 2023).
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Christensen, S.; Søgaard, H.T.; Kudsk, P.; Nørremark, M.; Lund, I.; Nadimi, E.S.; Jørgensen, R. Site-specific weed control technologies. Weed Res. 2009, 49, 233–241. [Google Scholar] [CrossRef]
- Lopez-Granadoz, F. Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Res. 2011, 51, 1–11. [Google Scholar] [CrossRef]
- Christian, A.; Stryhn, H. Increasing weed flora in Danish beet, pea and winter barley fields. Crop Prot. 2012, 36, 11–17. [Google Scholar]
- Bojarszczuk, J.; Podleśny, J. Segetal Diversity in Selected Legume Crops Depending on Soil Tillage. Agriculture 2020, 10, 635. [Google Scholar] [CrossRef]
- Winkler, J.; Bílková, V. Zaplevelení cukrovky v provozních podmínkách. Listy Cukrov. A Reparske 2016, 132, 130–136. Available online: http://www.cukr-listy.cz/on_line/2016/PDF/130-136.pdf (accessed on 20 October 2023).
- Rebouh, N.Y.; Khugaev, C.V.; Utkina, A.O.; Isaev, K.V.; Mohamed, E.S.; Kucher, D.E. Contribution of Eco-Friendly Agricultural Practices in Improving and Stabilizing Wheat Crop Yield: A Review. Agronomy 2023, 13, 2400. [Google Scholar] [CrossRef]
- Ramsdale, B.K.; Kegode, G.O.; Messersmith, C.G.; Nalewaja, J.D.; Nord, C.A. Long-term effects of spring wheat–soybean cropping systems on weed populations. Field Crops Res. 2006, 97, 197–208. [Google Scholar] [CrossRef]
- Saulic, M.; Oveisi, M.; Djalovic, I.; Bozic, D.; Pishyar, A.; Savić, A.; Prasad, P.V.; Vrbničanin, S. How Do Long Term Crop Rotations Influence Weed Populations: Exploring the Impacts of More than 50 Years of Crop Management in Serbia. Agronomy 2022, 12, 1772. [Google Scholar] [CrossRef]
- Winkler, J.; Rypová, I.; Dvořák, J. Vliv hnojení cukrovky chlévským hnojem na zaplevelení. Listy Cukrov. A Reparske 2017, 133, 130–136. Available online: http://www.cukr-listy.cz/on_line/2017/PDF/130-136.pdf (accessed on 20 October 2023).
- Marwitz, A.; Ladewig, E.; Märländer, B. Response of soil biological activity to common herbicide strategies in sugar beet cultivation. Eur. J. Agron. 2014, 54, 97–106. [Google Scholar] [CrossRef]
- Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Matyka, M.; Staniak, M. Comparison of the Effect of Perennial Energy Crops and Agricultural Crops on Weed Flora Diversity. Agronomy 2019, 9, 695. [Google Scholar] [CrossRef]
- Winkler, J.; Dvořák, J.; Hosa, J.; Martínez Barroso, P.; Vaverková, M.D. Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land 2023, 12, 121. [Google Scholar] [CrossRef]
- Alam, M.K.; Islam, M.M.; Salahin, N.; Hasanuzzaman, M. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions. Sci. World J. 2014, 2014, 437283. [Google Scholar] [CrossRef]
- Hausherr Lüder, R.M.; Qin, R.; Richner, W.; Stamp, P.; Streit, B.; Noulas, C. Effect of Tillage Systems on Spatial Variation in Soil Chemical Properties and Winter Wheat (Triticum aestivum L.) Performance in Small Fields. Agronomy 2019, 9, 182. [Google Scholar] [CrossRef]
- Cordeau, S.; Baudron, A.; Adeux, G. Is Tillage a Suitable Option for Weed Management in Conservation Agriculture? Agronomy 2020, 10, 1746. [Google Scholar] [CrossRef]
- Geddes, C.M.; Gulden, R.H. Wheat and Cereal Rye Inter-Row Living Mulches Interfere with Early Season Weeds in Soybean. Plants 2021, 10, 2276. [Google Scholar] [CrossRef]
- Chetan, F.; Chetan, C.; Rusu, T.; Moraru, P.I.; Ignea, M.; Simon, A. Influence of fertilization and soil tillage system on waterconservation in soil, production and economic efficiency in the winter wheat crop. Sci. Pap. Ser. A 2017, 60, 42–48. [Google Scholar]
- De Cárcer, P.S.; Sinaj, S.; Santonja, M.; Fossati, D.; Jeangros, B. Long-term effects of crop succession, soil tillage and climate on wheat yield and soil properties. Soil Tillage Res. 2019, 190, 209–219. [Google Scholar] [CrossRef]
- Dekemati, I.; Simon, B.; Vinogradov, S.; Birkás, M. The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Tillage Res. 2019, 194, 104334. [Google Scholar] [CrossRef]
- Biberdzic, M.; Barac, S.; Lalevic, D.; Djikic, A.; Prodanovic, D.; Rajicic, V. Influence of soil tillage system on soil compaction and winter wheat yield. Chil. J. Agric. Res. 2020, 80, 80–89. [Google Scholar] [CrossRef]
- Orzech, K.; Wanic, M.; Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 2021, 11, 666. [Google Scholar] [CrossRef]
- Koch, H.J. Relations between soil structural properties and sugar beet yield on a Luvisol. Pflanzenbauwiss 2009, 13, 49–59. [Google Scholar]
- Ehlers, W.; Goss, M. Experimental Agriculture; CABI Publishing: Wallingford, UK, 2004; Volume 40, p. 395. [Google Scholar] [CrossRef]
- Stibbe, C.; Märländer, B. Field emergence dynamics significance to intraspecific competition and growth efficiency in sugar beet (Beta vulgaris L.). Eur. J. Agron. 2002, 17, 161–171. [Google Scholar] [CrossRef]
- Malnou, C.S.; Jaggard, K.W.; Sparkes, D.L. A canopy approach to nitrogen fertilizer recommendations for the sugar beet crop. Eur. J. Agron. 2006, 25, 254–263. [Google Scholar] [CrossRef]
- Dzienia, S.; Zimny, L.; Weber, R. Najnowsze kierunki w uprawie roli i technice siewu [The newest trends in soil tillage and techniques of sowing]. Fragm. Agron. 2006, 2, 227–241. (In Polish) [Google Scholar]
- O’Connell, S.; Grossman, J.M.; Hoyt, G.D.; Shi, W.; Bowen, S.; Marticorena, D.C.; Fager, K.L.; Creamer, N.G. A survey of cover crop practices and perceptions of sustainable farmers in North Carolina and the surrounding region. Renew. Agric. Food Syst. 2015, 30, 550–562. [Google Scholar] [CrossRef]
- Naderi, R.; Bijani, F.; Weyl, P.S.R.; Mueller-Schaerer, H. Intercropping sweet corn with summer savory to increase weed suppression and yield. Weed Technol. 2022, 36, 544–547. [Google Scholar] [CrossRef]
- Gu, C.; van der Werf, W.; Bastiaans, L. A predictive model for weed biomass in annual intercropping. Field Crops Res. 2022, 277, 108388. [Google Scholar] [CrossRef]
- Baraibar, B.; Hunter, M.C.; Schipanski, M.E.; Hamilton, A.; Mortensen, D.A. Weed Suppression in Cover Crop Monocultures and Mixtures. Weed Sci. 2018, 66, 121–133. [Google Scholar] [CrossRef]
- Singer, J.; Nusser, S.; Alf, C. Are Cover Crops Being Used in the U.S. Corn Belt? J. Soil Water Conserv. 2007, 62, 353–358. [Google Scholar]
- Brainard, D.C.; Bellinder, R.R.; Kumar, V. Grass–Legume Mixtures and Soil Fertility Affect Cover Crop Performance and Weed Seed Production. Weed Technol. 2011, 25, 473–479. [Google Scholar] [CrossRef]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef]
- Vogeler, I.; Hansen, E.M.; Thomsen, I.K. The effect of catch crops in spring barley on nitrate leaching and their fertilizer replacement value. Agric. Ecosyst. Environ. 2023, 343, 108282. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Batlla, D.; Benech-Arnold, R.L. The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci. Res. 2006, 16, 47–59. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles. Seed Sci. Res. 2000, 10, 409–413. [Google Scholar] [CrossRef]
- Mahaut, L.; Cheptou, P.O.; Fried, G.; Munoz, F.; Storkey, J.; Vasseur, F.; Violle, C.; Bretagnolle, F. Weeds: Against the Rules? Trends Plant Sci. 2020, 25, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
Month | I. | II. | III. | IV. | V. | VI. | VII. | VIII. | IX. | X. | XI. | XII. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Precipitation (mm) | 25 | 27 | 33 | 44 | 63 | 79 | 74 | 69 | 37 | 39 | 44 | 30 |
Temperatures (°C) | −2.6 | −1.2 | 3.9 | 9.0 | 14.6 | 16.6 | 18.7 | 18.3 | 14.4 | 9.3 | 2.8 | −0.3 |
Year | Date of Application | Herbicide (Active Ingredient; Dose) |
---|---|---|
2013–2016 | At the stage of two real sugar beet leaves | Mix Double EC (desmedifam, fenmedifam; 1.25 L/ha) |
At the stage of four real sugar beet leaves | Mix Double EC (desmedifam, fenmedifam; 1.5 L/ha) | |
2017–2018 | At the stage of two real sugar beet leaves | Pyramin Turbo (chloridazon; 1.6 L/ha) |
At the stage of four real sugar beet leaves | Pyramin Turbo (chloridazon; 1.6 L/ha) | |
2019–2020 | At the stage of two real sugar beet leaves | Conviso ONE (foramsulfuron, thiencarbazone-methyl; 0.5 L/ha) |
At 10–15 days after the first application | Conviso ONE (foramsulfuron, thiencarbazone-methyl; 0.5 L/ha) |
Year | Date of Evaluation |
---|---|
2013 | 30 April–1 May |
2014 | 2 May–4 May |
2015 | 3 May–5 May |
2016 | 7 May–9 May |
2017 | 13 May–15 May |
2018 | 12 May–13 May |
2019 | 27 April–30 April |
2020 | 18 May–20 May |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlánová, B.; Hledík, P.; Hudec, S.; Martínez Barroso, P.; Vaverková, M.D.; Jiroušek, M.; Winkler, J. The Influence of Sugar Beet Cultivation Technologies on the Intensity and Species Biodiversity of Weeds. Agronomy 2024, 14, 390. https://doi.org/10.3390/agronomy14020390
Kotlánová B, Hledík P, Hudec S, Martínez Barroso P, Vaverková MD, Jiroušek M, Winkler J. The Influence of Sugar Beet Cultivation Technologies on the Intensity and Species Biodiversity of Weeds. Agronomy. 2024; 14(2):390. https://doi.org/10.3390/agronomy14020390
Chicago/Turabian StyleKotlánová, Barbora, Pavel Hledík, Stanislav Hudec, Petra Martínez Barroso, Magdalena Daria Vaverková, Martin Jiroušek, and Jan Winkler. 2024. "The Influence of Sugar Beet Cultivation Technologies on the Intensity and Species Biodiversity of Weeds" Agronomy 14, no. 2: 390. https://doi.org/10.3390/agronomy14020390
APA StyleKotlánová, B., Hledík, P., Hudec, S., Martínez Barroso, P., Vaverková, M. D., Jiroušek, M., & Winkler, J. (2024). The Influence of Sugar Beet Cultivation Technologies on the Intensity and Species Biodiversity of Weeds. Agronomy, 14(2), 390. https://doi.org/10.3390/agronomy14020390