Nitrogen Utilization and Loss of the Tea Plantation System on Sloped Farmland: A Short-Term Response to Substitution with Organic Fertilizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.1.1. Climatic Conditions
2.1.2. Soil Condition
2.2. Experimental Design
2.2.1. Experiment
2.2.2. Plots
2.2.3. Management
2.3. Sampling, Testing and Calculations
2.3.1. Yield of Tea
2.3.2. Runoff
2.3.3. Soil
2.3.4. 15N Abundance Testing
2.3.5. Calculation of Chemical Fertilizer N Distribution
2.3.6. Calculation of Soil Net N Mineralization Rates and Nitrification Potentials
2.4. Statistical Analysis
3. Results
3.1. Yield of Tea
3.2. N Loss from Runoff
3.3. Distribution of Fertilizer N
3.4. Soil N Transformations
4. Discussion
4.1. Effect on Yield and N Utilization of Tea
4.2. Effect on N Loss via Runoff
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J. Research on Coupling Characteristics between Soil Erosion and Topographic Fractal Ferture of Taihu Lake Basin. Master’s Thesis, Beijing Forestry University, Beijing, China, 2009. [Google Scholar]
- Tao, Y.Y.; Yu, M.H.; Ma, L.; Zha, J.F.; Qin, H.; Li, H.Y. Current situation and countermeasures of Biluochun tea industry in Suzhou City. J. Tea 2022, 48, 182–186. [Google Scholar]
- Huang, Z.J.; Wang, F.X.; Li, B.; Pang, Y.L.; Du, Z.Y. Appropriate nitrogen form and application rate can improve yield and quality of autumn tea with drip irrigation. Agronomy 2023, 13, 1303. [Google Scholar] [CrossRef]
- Wang, Z.T.; Geng, Y.B.; Liang, T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Sci. Total Environ. 2020, 713, 136439. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Liu, Y.L.; Zheng, N.; Li, Y.; Ma, Q.X.; Xiao, H.; Zhou, X.; Xu, X.P.; Jiang, T.M.; He, P. Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis. Sci. Rep. 2020, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Sedaghathoor, S.; Torkashvand, A.M.; Hashemabadi, D.; Kaviani, B. Yield and quality response of tea plant to fertilizers. Afr. J. Agric. Res. 2009, 4, 568–570. [Google Scholar]
- Ma, L.F.; Yang, X.D.; Shi, Y.Z.; Yi, X.Y.; Ji, L.F.; Cheng, Y.; Ni, K.; Ruan, J.N. Response of tea yield; quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment. Appl. Soil Ecol. 2021, 166, 103976. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Sun, L.X.; Gu, J.R.; Dong, M.H.; Liu, T.F. Effects of fertilization on yield and quality of Biluochun tea cultivated in different tea-fruit intercropping plantations. Chin. Agric. Sci. Bull. 2018, 34, 59–64. [Google Scholar]
- Ni, K.; Liao, W.Y.; Yi, X.Y.; Niu, S.Y.; Ma, L.F.; Shi, Y.Z.; Zhang, Q.F.; Liu, M.Y.; Ruan, J.Y. Fertilization status and reduction potential in tea gardens of China. J. Plant Nutr. Fertil. 2019, 25, 421–432. [Google Scholar]
- Wu, Y.Z.; Li, Y.; Fu, X.Q.; Liu, X.L.; Shen, J.L.; Wang, Y.; Wu, J.S. Three-dimensional spatial variability in soil microorganisms of nitrification and denitrification at a row-transect scale in a tea field. Soil Biol. Biochem. 2016, 103, 452–463. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Alves, B.; Aulakh, M.; Bekunda, M.; Cai, Z.; Drinkwater, L.; Mugendi, D.; van Kessel, C.; Oenema, O. Agriculture and the Nitrogen Cycle-Assessing the Impact of Fertilizer Use on Food Production and Environment; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Yang, X.D.; Ni, K.; Shi, Y.Z.; Yi, X.Y.; Zhang, Q.F.; Fang, L.; Ma, L.F.; Ruan, J.Y. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Yan, P.; Shen, C.; Fan, L.C.; Li, X.; Zhang, L.P.; Zhang, L.; Han, W.Y. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agric. Ecosyst. Environ. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Rothenberg, D.O.; Abbas, F.; Mei, X.; Yan, C.Y.; Zeng, Z.; Mo, X.L.; Chen, S.H.; Zhang, L.Y.; Huang, Y.H. Metabarcoding of organic tea (Camellia sinensis L.) chronosequence plots elucidates soil acidification-induced shifts in microbial community structure and putative function. Appl. Soil Ecol. 2022, 178, 104580. [Google Scholar] [CrossRef]
- Ruan, L.; Wei, K.; Wang, L.Y.; Cheng, H.; Wu, L.Y.; Li, H.L. Characteristics of free amino acids (the quality chemical components of tea) under spatial heterogeneity of different nitrogen forms in tea (Camellia sinensis) Plants. Molecules 2019, 24, 415. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Wu, L.Q.; Wang, D.H.; Fu, J.Y.; Shen, C.; Li, X.; Zhang, L.P.; Zhang, L.; Fan, L.C.; Han, W.Y. Soil acidification in Chinese tea plantations. Sci. Total Environ. 2020, 715, 136963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Yin, T.Y.; Zhou, S.Q.; Hu, J. Current status of soil acidification in tea plantation in China’s tea planting provinces. Guishou Sci. 2022, 40, 81–85. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China; National Bureau of Statistics; Ministry of Agriculture and Rural Affairs of the People’s Republic of China. The Second National Pollution Source Census Bulletin. Environ. Protect. 2020, 48, 8–10. [Google Scholar]
- Tang, S.; Fu, H.R.; Pan, W.K.; Zhou, J.J.; Xu, M.; Han, K.F.; Chen, K.J.; Ma, Q.X.; Wu, L.H. Improving tea (Camellia sinensis) quality, economic income, and environmental benefits by optimizing agronomic nitrogen efficiency: A synergistic strategy. Eur. J. Agron. 2023, 142, 126673. [Google Scholar] [CrossRef]
- Yu, Y.L.; Wang, Y.Z.; Yang, B.; Yang, L.Z.; Duan, J.J.; Han, X.M.; Xue, L.H. Effects of fertilizer application strategy adjustments on nitrogen and phosphorus loss from typical crop systems in Taihu Lake region. Environ. Sci. 2023, 44, 3902–3912. [Google Scholar]
- Gu, B.J.; Ju, X.T.; Chang, J.; Ge, Y.; Vitousek, P.M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. USA 2015, 112, 8792–8797. [Google Scholar] [CrossRef]
- Yu, Y.L.; Hu, Y.; Gu, B.J.; Reis, S.; Yang, L.Z. Reforming smallholder farms to mitigate agricultural pollution. Environ. Sci. Pollut. Res. 2022, 29, 13869–13880. [Google Scholar] [CrossRef]
- Ren, C.C.; Zhou, X.Y.; Wang, C.; Guo, Y.L.; Diao, Y.; Shen, S.S.; Reis, S.; Li, W.Y.; Xu, J.M.; Gu, B.J. Ageing threatens sustainability of smallholder farming in China. Nature 2023, 616, 96–103. [Google Scholar] [CrossRef]
- Lin, S.F.; Pi, Y.J.; Long, D.Y.; Duan, J.J.; Zhu, X.T.; Wang, X.L.; He, J.; Zhu, Y.H. Impact of organic and chemical nitrogen fertilizers on the crop yield and fertilizer use efficiency of soybean-maize intercropping systems. Agriculture 2022, 12, 1428. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.Z.; Ma, L.; Chadwick, D.; Chen, X.P. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis. Environ. Pollut. 2021, 269, 116143. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wang, Y.Y.; Gao, X.S.; Liu, J.; Wang, Z.F.; Gao, M. Nitrous oxide emission and the related denitrifier community: A short-term response to organic manure substituting chemical fertilizer. Ecotox. Environ. Saf. 2020, 192, 110291. [Google Scholar] [CrossRef]
- Xu, X.T.; Bi, R.Y.; Song, M.X.; Dong, Y.B.; Jiao, Y.; Wang, B.X.; Xiong, Z.Q. Organic substitutions enhanced soil carbon stabilization and reduced carbon footprint in a vegetable farm. Soil Till. Res. 2024, 236, 105955. [Google Scholar] [CrossRef]
- Xie, S.W.; Yang, F.; Feng, H.X.; Yu, Z.Z.; Liu, C.S.; Wei, C.Y.; Liang, T. Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Sci. Total Environ. 2021, 762, 143059. [Google Scholar] [CrossRef]
- Zhen, H.Y.; Qiao, Y.H.; Ju, X.H.; Hashemi, F.; Knudsen, M.T. Organic conversion tea farms can have comparable economic benefits and less environmental impacts than conventional ones-A case study in China. Sci. Total Environ. 2023, 877, 162698. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.A.; Yang, J.P.; Yang, Z.C.; Zou, J.L. Effects of rainfall and fertilizer types on nitrogen and phosphorus concentrations in surface runoff from subtropical tea fields in Zhejiang, China. Nutr. Cycl. Agroecosyst. 2012, 93, 297–307. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Cai, C.; Zhang, H. How to control nitrogen and phosphorus loss during runoff process?—A case study at Fushi Reservoir in Anji County (China). Ecol. Indic. 2023, 155, 111007. [Google Scholar] [CrossRef]
- Goerges, T.; Dittert, K. Improved diffusion technique for 15N: 14N analysis of ammonium and nitrate from aqueous samples by stable isotope spectrometry. Commun. Soil Sci. Plan. 1998, 29, 361–368. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agrochemical Analysis Methods; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Liu, W.B.; Cui, S.Y.; Wu, L.T.; Qi, W.L.; Chen, J.H.; Ye, Z.Q.; Ma, J.W.; Liu, D. Effects of bio-organic fertilizer on soil fertility, yield, and quality of tea. J. Soil Sci. Plant Nutr. 2023, 23, 5109–5121. [Google Scholar] [CrossRef]
- Ye, J.H.; Wang, Y.H.; Kang, J.Q.; Chen, Y.L.; Hong, L.; Li, M.Z.; Jia, Y.; Wang, Y.C.; Jia, X.L.; Wu, Z.Y. Effects of long-term use of organic fertilizer with different dosages on soil improvement, nitrogen transformation, tea yield and quality in acidified tea plantations. Plants 2023, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, Z.J.; Wang, Y.C.; Li, J.Y.; Wang, G.G.; Zhang, W.; Wang, H.B.; He, H.B. Soil acidification associated with changes in inorganic forms of N reduces the yield of tea (Camellia sinensis). Arch. Agron. Soil Sci. 2023, 69, 1660–1673. [Google Scholar] [CrossRef]
- Hirono, Y.; Sano, T.; Eguchi, S. Changes in the nitrogen footprint of green tea consumption in Japan from 1965 to 2016. Environ. Sci. Pollut. Res. 2021, 28, 44936–44948. [Google Scholar] [CrossRef]
- Miller, K.S.; Geisseler, D. Temperature sensitivity of nitrogen mineralization in agricultural soils. Biol. Fertil. Soils 2018, 54, 853–860. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.H.; Wang, Y.L.; Lei, N.; Xia, X.; Yu, Q.T. Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in Inner Mongolia, China. J. Arid Land 2014, 6, 571–580. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y. Effects of bioorganic fertilizer and high carbon base fertilizer on some soil quality indexes in forage fields. Pak. J. Agric. Sci. 2022, 59, 519–528. [Google Scholar]
- Shen, S.Z.; Wan, C.; Ma, X.J.; Hu, Y.K.; Wang, F.; Zhang, K.Q. Nitrogen mineralization characteristics of organic fertilizer in livestock and poultry under the condition of flood-drought rotation. J. Agric. Environ. Sci. 2021, 40, 2513–2520. [Google Scholar]
- Ji, L.F.; Wu, Z.D.; You, Z.M.; Yi, X.Y.; Ni, K.; Guo, S.W.; Ruan, J.Y. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agric. Ecosyst. Environ. 2018, 268, 124–132. [Google Scholar] [CrossRef]
- State Environmental Protection Administration. GB3838; Environmental Quality Standards for Surface Water. Standardization Administration of China: Beijing, China, 2022.
- Koper, T.E.; Stark, J.M.; Habteselassie, M.Y.; Norton, J.M. Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost. FEMS Microbiol. Ecol. 2010, 74, 316–322. [Google Scholar] [CrossRef]
- Diana, G.; Beni, C.; Marconi, S. Organic and mineral fertilization: Effects on physical characteristics and boron dynamic in an agricultural soil. Commun. Soil Sci. Plan. 2008, 39, 1332–1351. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhou, M.; Liao, W.F.; Liu, J.Y.; Luo, C.G.; Lu, C.Y.; Chen, Z.W.; Zhu, H.W. Fertilizer-holding performance of graphene on soil colloids based on double electric layer theory. Materials 2023, 16, 2578. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xiao, W.F.; Huang, Z.L.; Zeng, L.X. Interflow pattern govern nitrogen loss from tea orchard slopes in response to rainfall pattern in Three Gorges Reservoir Area. Agric. Water Manag. 2022, 269, 107684. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, S.H.; Mo, M.H.; Tu, A.G.; Wu, J.Y. Characteristics of surface runoff and interflow output on red-soil slope under different rainfall patterns of natural rainfall conditions. Water Resour. Power 2017, 35, 18–21. [Google Scholar]
- Bulluck, L.R.; Brosius, M.; Evanylo, G.K.; Ristaino, J.B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 2002, 19, 147–160. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.L.; Tang, X.Y.; Guan, Z.; Reid, B.J.; Rajapaksha, A.U.; Ok, Y.S.; Sun, H. Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China. Environ. Sci. Pollut. Res. 2016, 23, 995–1006. [Google Scholar] [CrossRef]
Soil | |
---|---|
Total N (g·kg−1) | 2.0 |
Total P (g·kg−1) | 2.8 |
Ammonium-N (mg·kg−1) | 5.3 |
Nitrate-N (mg·kg−1) | 6.4 |
Available phosphorus (mg·kg−1) | 48.7 |
Available potassium (mg·kg−1) | 159.4 |
pH (H2O) | 4.8 |
Soil organic matter (g·kg−1) | 21.0 |
Water holding capacity (%) | 46.1 |
Fertilizer and Treatments | N Application Rate (Calculated as N), Fertilizer Type and Biochar Addition (kg·hm−2) | ||||
---|---|---|---|---|---|
Treatments | Abb. | Basal Fertilizer | Additional Fertilizer | Total | Biochar |
Nitrogen control | CK | 0 | 0 | 0 | 0 |
100% organic fertilizer | ON | 90 organic fertilizer | 60 organic fertilizer | 150 organic fertilizer | 0 |
Pure chemical fertilizer | CN | 90 chemical fertilizer | 60 chemical fertilizer | 150 chemical fertilizer | 0 |
50% organic + 50% chemical fertilizer | OCN | 75 organic + 15 chemical fertilizer | 60 chemical fertilizer | 75 organic + 75 chemical fertilizer | 0 |
Chemical fertilizer + biochar | CN + BC | 90 chemical fertilizer | 60 chemical fertilizer | 150 chemical fertilizer | 6000 |
CK | ON | CN | OCN | CN + BC | |
---|---|---|---|---|---|
Amount of N loss from runoff pathway (kg·hm−2) | 0.16 | 0.27 | 0.57 | 0.45 | 0.31 |
Percentage of mineral N in runoff loss (%) | 60.33 | 54.88 | 89.65 | 80.19 | 82.30 |
Proportion of N lost in runoff pathways (%) | 0.22 | 0.48 | 0.38 | 0.26 | |
Amount of fertilizer N loss from runoff pathways (kg·hm−2) | 0.31 | 0.17 | 0.14 | ||
Percentage of chemical fertilizer-sourced N in runoff loss (%) | 54.82 | 38.47 | 45.36 | ||
Proportion of fertilizer N lost in runoff pathway (%) | 0.26 | 0.29 | 0.12 |
CK | ON | CN | OCN | CN + BC | |
---|---|---|---|---|---|
Rate of net N mineralization (mg·kg−1d−1) | 0.30 c * | 0.56 b | 0.40 c | 0.78 a | 0.82 a |
Nitrification potential (mg·kg−1 d−1) | 0.27 b | 0.18 c | 0.30 b | 0.27 b | 0.46 a |
R2 | 0.62 | 0.87 | 0.76 | 0.65 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhang, Y.; Yang, B.; Qian, C.; Wang, Y.; Chen, T.; Han, X.; Yang, L.; Xue, L. Nitrogen Utilization and Loss of the Tea Plantation System on Sloped Farmland: A Short-Term Response to Substitution with Organic Fertilizer. Agronomy 2024, 14, 392. https://doi.org/10.3390/agronomy14020392
Yu Y, Zhang Y, Yang B, Qian C, Wang Y, Chen T, Han X, Yang L, Xue L. Nitrogen Utilization and Loss of the Tea Plantation System on Sloped Farmland: A Short-Term Response to Substitution with Organic Fertilizer. Agronomy. 2024; 14(2):392. https://doi.org/10.3390/agronomy14020392
Chicago/Turabian StyleYu, Yingliang, Yafei Zhang, Bei Yang, Cong Qian, Yizhi Wang, Taifeng Chen, Xuemei Han, Linzhang Yang, and Lihong Xue. 2024. "Nitrogen Utilization and Loss of the Tea Plantation System on Sloped Farmland: A Short-Term Response to Substitution with Organic Fertilizer" Agronomy 14, no. 2: 392. https://doi.org/10.3390/agronomy14020392
APA StyleYu, Y., Zhang, Y., Yang, B., Qian, C., Wang, Y., Chen, T., Han, X., Yang, L., & Xue, L. (2024). Nitrogen Utilization and Loss of the Tea Plantation System on Sloped Farmland: A Short-Term Response to Substitution with Organic Fertilizer. Agronomy, 14(2), 392. https://doi.org/10.3390/agronomy14020392