Typology for Decision Support Systems in Integrated Pest Management and Its Implementation as a Web Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of the DSS Typology for IPM in Europe
- (i)
- Top-down approach
- (ii)
- Initial data collection
- (iii)
- Bottom-up approach
- (iv)
- Supplementation of the data and integration of both approaches
2.2. Implementation of the Developed IPM-DSS Typology into the Web Tool “IPM Adviser”
2.2.1. Development of the IPM Adviser Web Tool
2.2.2. Graphical Design of the User Interface
2.2.3. Functions of the IPM Adviser Web Tool
2.3. Validation
- (i)
- Validation of the typology
- (ii)
- Evaluation of the IPM Adviser web tool user experience
3. Results
3.1. Typology for IPM DSSs in Europe
3.1.1. Basic Information
3.1.2. Challenge
3.1.3. Decision Problem
3.1.4. Implementation
3.1.5. Application
3.2. Validation of the IPM-DSS Typology
3.3. The Web Tool: IPM Adviser
- (i)
- Search
- (ii)
- Results
- (iii)
- Analysis
- (iv)
- Other
3.3.1. Typical Use of IPM Adviser Web Tool
3.3.2. Evaluation of the IPM Adviser User Experience
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Schematic Representation of Version 1.0 of the Developed IPM-DSS Typology
References
- European Parliament. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Off. J. Eur. Union 2009, 309, 71–86. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and the Council On Member State National Actions Plans and on Progress in the Implementation of Directive 2009/128/EC on Sustainable use of Pesticides Brussels, COM (2017) 587 Final; EU Commission: Brussels, Belgium, 2017. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and the Council On the Experience gained by Member States on the Implementation of National Targets Established in Their National Action Plans and on Progress in the Implementation of Directive 2009/128/EC on the Sustainable Use of Pesticides, COM (2020) 204 Final; EU Commission: Brussels, Belgium, 2020; p. 19. [Google Scholar]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on the Sustainable Use of Plant Protection Products and Amending Regulation (EU) 2021/2115, COM (2022) 305 Final; EU Commission: Brussels, Belgium, 2022. [Google Scholar]
- European Commission. The European Green Deal, COM(2019) 640 final. In Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; EU Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Farm to fork strategy: For a fair, healthy and environmentally friendly food system, COM(2020) 381 final. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; EU Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. EU Biodiversity Strategy for 2030 Bringing nature back into our lives, COM(2020) 380 final. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; EU Commission: Brussels, Belgium, 2020. [Google Scholar]
- Halleux, V. Proposal for a Regulation on the Sustainable Use of Plant Protection Products—Q1 2022. Legis. Train 2023. Available online: https://www.europarl.europa.eu/legislative-train/carriage/sustainable-use-of-pesticides-%E2%80%93-revision-of-the-eu-rules/report?sid=7601 (accessed on 14 February 2023).
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- European Commission. Shaping Europe’s digital future, COM(2020) 67 final. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; EU Commission: Brussels, Belgium, 2020. [Google Scholar]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable crop and weed management in the era of the EU Green Deal: A survival guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Beckman, J.; Ivanic, M.; Jelliffe, J.L.; Baquedano, F.G.; Scott, S.G. Economic and Food Security Impacts of Agricultural Input Reduction under the European Union Green Deal’s Farm to Fork and Biodiversity Strategies; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2020; p. 52. [Google Scholar]
- Dara, S.K. The New Integrated Pest Management Paradigm for the Modern Age. J. Integr. Pest Manag. 2019, 10, 12. [Google Scholar] [CrossRef]
- Power, D. Decision Support Systems: Concepts and Resources for Managers; Greenwood: Westport, CT, USA, 2002. [Google Scholar]
- Johnen, A.; Meier, H. A weather-based decision support system for managing oilseed rape pests. In Proceedings of the Brighton Crop Protection Conference Pests and Diseases, Brighton, UK, 13–16 November 2000; pp. 793–800. [Google Scholar]
- Caffi, T.; Rossi, V.; Bugiani, R. Evaluation of a warning system for controlling primary infections of grapevine downy mildew. Plant Dis. 2010, 94, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Jones, V.P.; Brunner, J.F.; Grove, G.G.; Petit, B.; Tangren, G.V.; Jones, W.E. A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Manag. Sci. Former. Pestic. Sci. 2010, 66, 587–595. [Google Scholar] [CrossRef]
- Caffi, T.; Legler, S.E.; Rossi, V.; Bugiani, R. Evaluation of a warning system for early season control of grapevine powdery mildew. Plant Dis. 2012, 96, 104–110. [Google Scholar] [CrossRef]
- Rossi, V.; Salinari, F.; Poni, S.; Caffi, T.; Bettati, T. Addressing the implementation problem in agricultural decision support systems: The example of vite. net®. Comput. Electron. Agric. 2014, 100, 88–99. [Google Scholar] [CrossRef]
- Damos, P. Modular structure of web-based decision support systems for integrated pest management. A review. Agron. Sustain. Dev. 2015, 35, 1347–1372. [Google Scholar] [CrossRef]
- Kanatas, P.; Travlos, I.S.; Gazoulis, I.; Tataridas, A.; Tsekoura, A.; Antonopoulos, N. Benefits and limitations of decision support systems (DSS) with a special emphasis on weeds. Agronomy 2020, 10, 548. [Google Scholar] [CrossRef]
- Lázaro, E.; Makowski, D.; Vicent, A. Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Commun. Earth Environ. 2021, 2, 224. [Google Scholar] [CrossRef]
- Demirel, M.; Kumral, N.A. Artificial intelligence in integrated pest management. In Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture; IGI Global: Hershey, PA, USA, 2021; pp. 289–313. [Google Scholar]
- Maraveas, C. Incorporating Artificial Intelligence Technology in Smart Greenhouses: Current State of the Art. Appl. Sci. 2023, 13, 14. [Google Scholar] [CrossRef]
- Tripathi, K. Decision support system is a tool for making better decisions in the organization. Indian J. Comput. Sci. Eng. (IJCSE) 2011, 2, 112–117. [Google Scholar]
- Power, D.J. Decision Support Systems Glossary, DSSResources.COM. Available online: http://dssresources.com/glossary/ (accessed on 22 March 2023).
- Rossi, V.; Sperandio, G.; Caffi, T.; Simonetto, A.; Gilioli, G. Critical Success Factors for the Adoption of Decision Tools in IPM. Agronomy 2019, 9, 710. [Google Scholar] [CrossRef]
- Di Guardo, A.; Capri, E.; Calliera, M.; Finizio, A. MIMERA: An online tool for the sustainable pesticide use at field scale. Sci. Total Environ. 2022, 846, 157285. [Google Scholar] [CrossRef] [PubMed]
- Parker, C. Technology acceptance and the uptake of agricultural DSS. In Proceedings of the EFITA/WCCA Joint Congress in IT in Agriculture, Vila Real, Portugal, 25–28 July 2005. [Google Scholar]
- Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision support tools for agriculture: Towards effective design and delivery. Agric. Syst. 2016, 149, 165–174. [Google Scholar] [CrossRef]
- Marinko, J.; Ivanovska, A.; Marzidovšek, M.; Ramsden, M.; Debeljak, M. Incentives and barriers to adoption of decision support systems in integrated pest management among farmers and farm advisors in Europe. Int. J. Pest Manag. 2023, 1–18. [Google Scholar] [CrossRef]
- Jørgensen Nistrup, L.; Noe, E.; Nielsen, G.C.; Jensen, J.E.; Ørum, J.E.; Pinnschmidt, H.O. Problems with disseminating information on disease control in wheat and barley to farmers. Sustain. Dis. Manag. A Eur. Context 2008, 121, 303–312. [Google Scholar] [CrossRef]
- Bazán-Vera, W.; Bermeo-Almeida, O.; Samaniego-Cobo, T.; Alarcon-Salvatierra, A.; Rodríguez-Méndez, A.; Bazán-Vera, V. The Current State and Effects of Agromatic: A Systematic Literature Review. In Proceedings of the Technologies and Innovation: Third International Conference, CITI 2017, Guayaquil, Ecuador, 24–27 October 2017; pp. 269–281. [Google Scholar]
- Singh, N.; Gupta, N. ICT based decision support systems for Integrated Pest Management (IPM) in India: A review. Agric. Rev. 2016, 37, 309–316. [Google Scholar] [CrossRef]
- Wallhead, M.; Zhu, H. Decision support systems for plant disease and insect management in commercial nurseries in the Midwest: A perspective review. J. Environ. Hortic. 2017, 35, 84–92. [Google Scholar] [CrossRef]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Taechatanasat, P.; Armstrong, L. Decision support system data for farmer decision making. In Proceedings of the Asian Federation for Information Technology in Agriculture “ICT’s for Future Economic and Sustainable Agricultural Systems”. Australian Society of Information and Communication Technologies in Agriculture, Perth, WA, Australia, 29 September–2 October 2014; pp. 472–491. [Google Scholar]
- Tonle, F.B.; Niassy, S.; Ndadji, M.M.; Tchendji, M.T.; Nzeukou, A.; Mudereri, B.T.; Senagi, K.; Tonnang, H.E. A road map for developing novel decision support system (DSS) for disseminating integrated pest management (IPM) technologies. Comput. Electron. Agric. 2024, 217, 108526. [Google Scholar] [CrossRef]
- Hansen, J.G. EuroBlight: DSS Overview. Available online: https://agro.au.dk/forskning/internationale-platforme/euroblight/control-strategies/dss-overview (accessed on 20 March 2023).
- Bailey, K.D. Typologies and Taxonomies: An Introduction to Classification Techniques; Sage: Thousand Oaks, CA, USA, 1994; Volume 102. [Google Scholar]
- Mandara, J. The typological approach in child and family psychology: A review of theory, methods, and research. Clin. Child Fam. Psychol. Rev. 2003, 6, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.B. Typologies, taxonomies, and the benefits of policy classification. Policy Stud. J. 2002, 30, 379–395. [Google Scholar] [CrossRef]
- Stapley, E.; O’Keeffe, S.; Midgley, N. Developing typologies in qualitative research: The use of ideal-type analysis. Int. J. Qual. Methods 2022, 21, 16094069221100633. [Google Scholar] [CrossRef]
- Debeljak, M.; Džeroski, S.; Kuzmanovski, V.; Marks Perreau, J.; Trajanov, A.; Réal, B. Decision support modelling for environmentally safe application of pesticides used in agriculture. In Proceedings of the 13th International Symposium on Operational Research in Slovenia, Bled, Slovenia, 23–25 September 2015; pp. 17–22. [Google Scholar]
- Kuzmanovski, V. Integrating Decision Support and Data Mining for Risk Evaluation and Management: A Methodological Framework and a Case Study in Agriculture. Ph.D. Thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia, 2016. [Google Scholar]
- Bampa, F.; O’Sullivan, L.; Madena, K.; Sandén, T.; Spiegel, H.; Henriksen, C.B.; Ghaley, B.B.; Jones, A.; Staes, J.; Sturel, S. Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manag. 2019, 35, 6–20. [Google Scholar] [CrossRef]
- Van de Broek, M.; Henriksen, C.B.; Ghaley, B.B.; Lugato, E.; Kuzmanovski, V.; Trajanov, A.; Debeljak, M.; Sandén, T.; Spiegel, H.; Decock, C. Assessing the climate regulation potential of agricultural soils using a decision support tool adapted to stakeholders’ needs and possibilities. Front. Environ. Sci. 2019, 7, 131. [Google Scholar] [CrossRef]
- Sandén, T.; Trajanov, A.; Spiegel, H.; Kuzmanovski, V.; Saby, N.P.; Picaud, C.; Henriksen, C.B.; Debeljak, M. Development of an agricultural primary productivity decision support model: A case study in France. Front. Environ. Sci. 2019, 7, 58. [Google Scholar] [CrossRef]
- Van Leeuwen, J.P.; Creamer, R.E.; Cluzeau, D.; Debeljak, M.; Gatti, F.; Henriksen, C.B.; Kuzmanovski, V.; Menta, C.; Pérès, G.; Picaud, C. Modeling of soil functions for assessing soil quality: Soil biodiversity and habitat provisioning. Front. Environ. Sci. 2019, 7, 113. [Google Scholar] [CrossRef]
- Debeljak, M.; Trajanov, A.; Kuzmanovski, V.; Schröder, J.; Sandén, T.; Spiegel, H.; Wall, D.P.; Van de Broek, M.; Rutgers, M.; Bampa, F. A field-scale decision support system for assessment and management of soil functions. Front. Environ. Sci. 2019, 7, 115. [Google Scholar] [CrossRef]
- Wall, D.P.; Delgado, A.; O’Sullivan, L.; Creamer, R.E.; Trajanov, A.; Kuzmanovski, V.; Bugge Henriksen, C.; Debeljak, M. A decision support model for assessing the water regulation and purification potential of agricultural soils across Europe. Front. Sustain. Food Syst. 2020, 4, 115. [Google Scholar] [CrossRef]
- van der Zanden, E.H.; Levers, C.; Verburg, P.H.; Kuemmerle, T. Representing composition, spatial structure and management intensity of European agricultural landscapes: A new typology. Landsc. Urban Plan. 2016, 150, 36–49. [Google Scholar] [CrossRef]
- Newman, S.; Lynch, T.; Plummer, A. Success and failure of decision support systems: Learning as we go. J. Anim. Sci. 2000, 77, 1–12. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T.; Salinari, F. Helping farmers face the increasing complexity of decision-making for crop protection. Phytopathol. Mediterr. 2012, 51, 457–479. [Google Scholar]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Ara, I.; Turner, L.; Harrison, M.T.; Monjardino, M.; DeVoil, P.; Rodriguez, D. Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review. Agric. Water Manag. 2021, 257, 107161. [Google Scholar] [CrossRef]
- Pechlivani, E.M.; Gkogkos, G.; Giakoumoglou, N.; Hadjigeorgiou, I.; Tzovaras, D. Towards Sustainable Farming: A Robust Decision Support System’s Architecture for Agriculture 4.0. In Proceedings of the 2023 24th International Conference on Digital Signal Processing (DSP), Rhodes, Greece, 11–13 June 2023; pp. 1–5. [Google Scholar]
- Gent, D.H.; De Wolf, E.; Pethybridge, S.J. Perceptions of risk, risk aversion, and barriers to adoption of decision support systems and integrated pest management: An introduction. Phytopathology 2011, 101, 640–643. [Google Scholar] [CrossRef]
- Rose, D.C.; Parker, C.; Fodery, J.; Park, C.; Sutherland, W.J.; Dicks, L.V. Involving stakeholders in agricultural decision support systems: Improving user-centred design. Int. J. Agric. Manag. 2018, 6, 80–89. [Google Scholar] [CrossRef]
- Jørgensen Nistrup, L. IPM Decisions, Deliverable 4.9: Catalogue of DSS Collated with Details on Inputs, Outputs and Functionality. 2020; p. 55. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cfc978cf&appId=PPGMS (accessed on 12 December 2023).
- Debeljak, M.; Marinko, J.; Dergan, T.; Trajanov, A. IPM Decisions, Deliverable 5.1: A Catalogue with Structural and Performance Feature Profiles for all Included DSS. 2021; p. 22. Available online: https://www.ipmdecisions.net/documents/d5-1-a-catalogue-with-structural-and-performance-feature-profiles-for-all-included-dss/ (accessed on 12 December 2023).
- Bush, E.; Linden, M.V.D. Full-Stack JavaScript Development: Develop, Test and Deploy with MongoDB, Express, Angular and Node on AWS; Red Hat Press: Raleigh, NC, USA, 2016. [Google Scholar]
- Angular. Available online: https://angular.io/ (accessed on 10 January 2023).
- NodeJS. Available online: https://nodejs.org/en (accessed on 10 January 2023).
- Sequelize. Available online: https://sequelize.org/ (accessed on 10 January 2023).
- PostgreSQL. Available online: https://www.postgresql.org/ (accessed on 10 January 2023).
- IPM Decisions Platform: A “One-Stop Shop” for Decision Support in Integrated Pest Management. Available online: https://www.platform.ipmdecisions.net/ (accessed on 14 March 2023).
- Brooke, J. SUS—A quick and dirty usability scale. In Usability Evaluation in Industry; Taylor & Francis: London, UK, 1996; pp. 189–194. [Google Scholar]
- Tullis, T.; Stetson, J. A Comparison of Questionnaires for Assessing Website Usability. In Proceedings of the Usability Professionals’ Association Conference, UPA 2004: 13th Annual UPA Conference, Minneapolis, MN, USA, 7–11 June 2004; pp. 1–12. [Google Scholar]
- Blažica, B.; Lewis, J. A Slovene Translation of the System Usability Scale: The SUS-SI. Int. J. Hum. Comput. Interact. 2015, 31, 112–117. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Brooke, J. SUS: A retrospective. J. Usability Stud. 2013, 8, 29–40. [Google Scholar]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef]
- Frisvold, G.B. How low can you go? Estimating impacts of reduced pesticide use. Pest Manag. Sci. 2019, 75, 1223–1233. [Google Scholar] [CrossRef]
- Pélosi, C.; Toutous, L.; Chiron, F.; Dubs, F.; Hedde, M.; Muratet, A.; Ponge, J.-F.; Salmon, S.; Makowski, D. Reduction of pesticide use can increase earthworm populations in wheat crops in a European temperate region. Agric. Ecosyst. Environ. 2013, 181, 223–230. [Google Scholar] [CrossRef]
- Kostrowicki, J. Agricultural typology concept and method. Agric. Syst. 1977, 2, 33–45. [Google Scholar] [CrossRef]
- Orr, A.; Jere, P. Identifying smallholder target groups for IPM in southern Malawi. Int. J. Pest Manag. 1999, 45, 179–187. [Google Scholar] [CrossRef]
- Tavernier, E.M.; Tolomeo, V. Farm typology and sustainable agriculture: Does size matter? J. Sustain. Agric. 2004, 24, 33–46. [Google Scholar] [CrossRef]
- López, C.J.Á.; Valiño, J.A.R.; Pérez, M.M. Typology, classification and characterization of farms for agricultural production planning. Span. J. Agric. Res. 2008, 6, 125–136. [Google Scholar] [CrossRef]
- Tittonell, P.; Muriuki, A.; Shepherd, K.D.; Mugendi, D.; Kaizzi, K.; Okeyo, J.; Verchot, L.; Coe, R.; Vanlauwe, B. The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa—A typology of smallholder farms. Agric. Syst. 2010, 103, 83–97. [Google Scholar] [CrossRef]
- Ayerdi Gotor, A.; Marraccini, E.; Leclercq, C.; Scheurer, O. Precision farming uses typology in arable crop-oriented farms in northern France. Precis. Agric. 2020, 21, 131–146. [Google Scholar] [CrossRef]
- Guarín, A.; Rivera, M.; Pinto-Correia, T.; Guiomar, N.; Šūmane, S.; Moreno-Pérez, O.M. A new typology of small farms in Europe. Glob. Food Secur. 2020, 26, 100389. [Google Scholar] [CrossRef]
- Sradnick, A.; Feller, C. A typological concept to predict the nitrogen release from organic fertilizers in farming systems. Agronomy 2020, 10, 1448. [Google Scholar] [CrossRef]
- Zangue, Y.D.; Melot, R.; Martin, P. Diversity of farmland management practices (FMP) and their nexus to environment: A review. J. Environ. Manag. 2022, 302, 114059. [Google Scholar] [CrossRef]
Region | Country | No. of Currently Included DSS |
---|---|---|
Northern Europe | Denmark ⯀, Estonia, Finland ⯀, Latvia, Lithuania ⯀, Norway ⯀, Sweden ⯀. | 37 |
Central Europe | Austria, Belgium, Czech Republic, Germany ⯀, Hungary, Ireland, Luxembourg, Netherlands ⯀, Poland, Romania, Slovakia, Slovenia ⯀, Switzerland, United Kingdom ⯀. | 35 |
Southern Europe | Albania, Bosnia and Herzegovina, Bulgaria, Croatia, France ⯀, Greece ⯀, Italy ⯀, Kosovo, Malta, Montenegro, North Macedonia, Portugal, Serbia, Spain. | 7 |
IPM DSS Typology Dimension | No. of Attributes Included in Each Dimension | Average Fulfilment |
---|---|---|
(2) Challenge | 3 | 97% ± 2.9% |
(3) Decision problem | 25 | 93% ± 5.1% |
(4) Implementation | 15 | 93% ± 10.7% |
(5) Application | 7 | 94% ± 8.8% |
Total | 50 | 93% ± 7.2% |
Region of DSS Origin | Country of DSS Origin | No. of Considered DSSs |
---|---|---|
Northern Europe | Norway | 20 |
Denmark | 10 | |
Finland | 6 | |
Sweden | 1 | |
Central Europe | United Kingdom | 21 |
Netherlands | 11 | |
Germany | 2 | |
Belgium | 1 | |
Southern Europe | France | 7 |
Total | 9 | 79 |
Application of DSS | No. of Assessed DSSs * |
---|---|
Diseases | 45 |
Insects | 23 |
Weeds | 6 |
n/a | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinko, J.; Blažica, B.; Jørgensen, L.N.; Matzen, N.; Ramsden, M.; Debeljak, M. Typology for Decision Support Systems in Integrated Pest Management and Its Implementation as a Web Application. Agronomy 2024, 14, 485. https://doi.org/10.3390/agronomy14030485
Marinko J, Blažica B, Jørgensen LN, Matzen N, Ramsden M, Debeljak M. Typology for Decision Support Systems in Integrated Pest Management and Its Implementation as a Web Application. Agronomy. 2024; 14(3):485. https://doi.org/10.3390/agronomy14030485
Chicago/Turabian StyleMarinko, Jurij, Bojan Blažica, Lise Nistrup Jørgensen, Niels Matzen, Mark Ramsden, and Marko Debeljak. 2024. "Typology for Decision Support Systems in Integrated Pest Management and Its Implementation as a Web Application" Agronomy 14, no. 3: 485. https://doi.org/10.3390/agronomy14030485
APA StyleMarinko, J., Blažica, B., Jørgensen, L. N., Matzen, N., Ramsden, M., & Debeljak, M. (2024). Typology for Decision Support Systems in Integrated Pest Management and Its Implementation as a Web Application. Agronomy, 14(3), 485. https://doi.org/10.3390/agronomy14030485