Changes in Biochemical and Bioactive Compounds in Two Red Grape Cultivars during Ripening and Cold Storage
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Source and Sampling
2.2. SSC, TA, and pH Measurements
2.3. Weight Loss (WL)
2.4. Berry Firmness
2.5. Vitamin C Assay
2.6. Anthocyanin Content
2.7. Total Phenol (TP) Assay
2.8. Total Flavonoid (TF) Assay
2.9. Antioxidant Capacity (AC) Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Biochemical Quality Attributes
3.2. WL and Firmness
3.3. Vitamin C
3.4. Anthocyanin Content
3.5. Total Phenols
3.6. Total Flavonoid
3.7. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, S.; Li, J.; Baldwin, E.A.; Plotto, A.; Rosskopf, E.; Hong, J.C.; Bai, J. Electronic tongue discrimination of four tomato cultivars harvested at six maturities and exposed to blanching and refrigeration treatments. Postharvest Biol. Technol. 2018, 136, 42–49. [Google Scholar] [CrossRef]
- Hamie, N.; Nacouzi, D.; Choker, M.; Salameh, M.; Darwiche, L.; El Kayal, W. Maturity assessment of different table grape cultivars grown at six different altitudes in Lebanon. Plants 2023, 12, 3237. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N. Abscisic acid application timing and concentration affect firmness, pigmentation, and color of “Flame Seedless” grapes. HortScience 2006, 41, 1440–1445. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Zapata, P.J. Methyl jasmonate effects on table grape ripening, vine yield, berry quality and bioactive compounds depend on applied concentration. Sci. Hortic. 2019, 247, 380–389. [Google Scholar] [CrossRef]
- Ryu, S.; Han, J.H.; Cho, J.G.; Jeong, J.H.; Lee, S.K.; Lee, H.J. High temperature at veraison inhibits anthocyanin biosynthesis in berry skins during ripening in ‘Kyoho’ grapevines. Plant Physiol. Biochem. 2020, 157, 219–228. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Kuhn, N.; Guan, L.; Dai, Z.W.; Wu, B.H.; Lauvergeat, V.; Gomès, E.; Li, S.H.; Godoy, F.; Arce-Johnson, P.; Delrot, S. Berry ripening: Recently heard through the grapevine. J. Exp. Bot. 2014, 65, 4543–4559. [Google Scholar] [CrossRef]
- Nassarawa, S.S.; Bao, N.; Zhang, X.; Ru, Q.; Luo, Z. Evaluation of light irradiation on anthocyanins and energy metabolism of grape (Vitis vinifera L.) during storage. Food Chem. 2024, 431, 137141. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Meenu, M.; Xu, B. Recent development in bioactive compounds and health benefits of kumquat fruits. Food Rev. Int. 2023, 39, 4312–4332. [Google Scholar] [CrossRef]
- Mustafa, Y.F. Harmful free radicals in aging: A narrative review of their detrimental effects on health. Indian J. Clin. Biochem. 2023, 1–14. [Google Scholar] [CrossRef]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef] [PubMed]
- Haselgrove, L.; Botting, D.; Van Heeswijck, R.; Hoj, P.B.; Dry, P.R.; Ford, C.; Iland, P.G. Canopy microclimate and berry composition: The effect of bunch exposure on the phenolic composition of Vitis vinifera L. cv Shiraz grape berries. Aust. J. Grape Wine Res. 2000, 6, 141–149. [Google Scholar] [CrossRef]
- Valverde, J.M.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M.; Valero, D. Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (MAP) and eugenol, menthol, or thymol. J. Agric. Food Chem. 2005, 53, 7458–7464. [Google Scholar] [CrossRef]
- Roussos, P.A.; Sefferou, V.; Denaxa, N.K.; Tsantili, E.; Stathis, V. Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load. Sci. Hortic. 2011, 129, 472–478. [Google Scholar] [CrossRef]
- Arzani, K.; Koushesh-Saba, M. Enhancement of Sultana grape (Vitis vinifera L.) maturity by pre-veraison ethanol and methanol spray. Indian J. Agric. Sci. 2005, 75, 670–672. [Google Scholar]
- AOAC. Vitamin C (ascorbic acid) in vitamin preparations and juices: 2, 6 titrimetric method final action. Assoc. Off. Anal. Chem. Off. Method 2000, 4, 21. [Google Scholar]
- Koushesh saba, M.; Arzani, K.; Barzegar, M. Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. J. Agric. Food Chem. 2012, 60, 8947–8953. [Google Scholar] [CrossRef]
- Zoccatelli, G.; Zenoni, S.; Savoi, S.; Dal Santo, S.; Tononi, P.; Zandonà, V.; Tornielli, G.B. Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Aust. J. Grape Wine Res. 2013, 19, 171–179. [Google Scholar] [CrossRef]
- Khalila, U.; Rajwana, I.A.; Razzaq, K.; Farooq, U.; Saleem, B.A.; Brecht, J.K. Quality attributes and biochemical changes in white and colored table grapes as influenced by harvest maturity and ambient postharvest storage. S. Afr. J. Bot. 2023, 154, 273–281. [Google Scholar] [CrossRef]
- Crisosto, C.; Smilanick, J.; Dokoozlian, N. Table grapes suffer water loss, stem browning during cooling delays. Calif. Agric. 2001, 55, 39–42. [Google Scholar] [CrossRef]
- Ghafir, S.A.; Gadalla, S.O.; Murajei, B.N.; E1-Nady, M.F. Physiological and anatomical comparison between four different apple cultivars under cold-storage conditions. Afr. J. Plant Sci. 2009, 3, 133–138. [Google Scholar]
- Keller, M. The Science of Grapevines, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Marzouk, H.A.; Kassem, H.A. Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci. Hortic. 2011, 130, 425–430. [Google Scholar] [CrossRef]
- Lo’ay, A.A.; El-khateeb, A.Y. Evaluation the effect of rootstocks on postharvest berries quality of “Flame Seedless” grapes. Sci. Hortic. 2017, 220, 299–302. [Google Scholar] [CrossRef]
- Lo’ay, A.A.; EL-Boray, M.S. Improving fruit cluster quality attributes of ‘Flame Seedless’ grapes using preharvest application of ascorbic and salicylic acid. Sci. Hortic. 2018, 233, 339–348. [Google Scholar] [CrossRef]
- de Ancos, B.; Gonzalez, E.M.; Cano, M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Romero, I.; Sanchez-Ballesta, M.T.; Escribano, M.I.; Merodio, C. Individual antho-cyanins and their contribution to total antioxidant capacity in resbonse to low temperature and high CO2 in stored cardinal table grapes. Postharvest Biol. Technol. 2008, 49, 1–9. [Google Scholar] [CrossRef]
- He, Z.; Shun, J.; Abbasiliasi, S.; Ming, O.; Joon, Y.; Ariff, A.B. Phytochemicals, nutritionals and antioxidant properties of miracle fruit Synsepalum dulcificum. Ind. Crops Prod. 2016, 86, 87–94. [Google Scholar] [CrossRef]
- Xi, F.; Guo, L.; Yu, Y.; Wang, Y.; Li, Q.; Zhao, H.; Zhang, G.; Guo, D. Comparison of reactive oxygen species metabolism during grape berry development between ‘Kyoho’ and its early ripening bud mutant ‘Fengzao’. Plant Physiol. Biochem. 2017, 118, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Lin, H.S. Antioxidant activity in fruit and leaves of Blackberry, raspberry and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Mullen, W.; McGinn, J.; Lean, M.E.J.; MacLean, M.R.; Gardner, P.; Duthie, G.G. Ellagitannins, flavonoids, and other Antioxidant, phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J. Agric. Food Chem. 2002, 50, 5191–5196. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Effect of maturity and vine water statuson grape skin and wine flavonoids. Am. J. Enol. Vitic. 2002, 53, 268–274. [Google Scholar] [CrossRef]
- Fan, L.; Lin, L.; Zhang, Y.; Li, S.; Tang, Z. Component characteristics and reactive oxygen species scavenging activity of anthocyanins from fruits of Lonicera caerulea L. Food Chem. 2023, 403, 134391. [Google Scholar] [CrossRef] [PubMed]
- Al-Qurashi, A.D.; Awad, M.A. Postharvest chitosan treatment affects quality, antioxidant capacity, antioxidant compounds and enzymes activities of “El Bayadi” table grapes after storage. Sci. Hortic. 2015, 197, 392–398. [Google Scholar] [CrossRef]
- Zahedipour, P.; Asghari, M.; Abdollahi, B.; Alizadeh, M.; Danesh, Y.R. A comparative study on quality attributes and physiological responses of organic and conventionally grown table grapes during cold storage. Sci. Hortic. 2019, 247, 86–95. [Google Scholar] [CrossRef]
- Jediyi, H.; Naamani, K.; Ait Elkoch, A.; Dihazi, A.; El Alaoui El Fels, A.; Arkize, W. First study on technological maturity and phenols composition during the ripeness of five Vitis vinifera L grape varieties in Morocco. Sci. Hortic. 2019, 246, 390–397. [Google Scholar] [CrossRef]
- Zuhair, R.A.; Aminah, A.; Sahilah, A.M.; Eqbal, D. Antioxidant activity and physicochemical properties changes of papaya (Carica papaya L. cv. Hongkong) during different ripening stage. Int. Food Res. J. 2013, 20, 1653–1659. [Google Scholar]
- Karadeniz, F.; Burdurlu, H.S.; Nuray, K.O.C.A.; Soyer, Y. Antioxidant activity of selected fruits and vegetables grown in Turkey. Turk. J. Agric. For. 2005, 29, 297–303. [Google Scholar]
- Livani, F.; Ghorbanli, M.; Sateeyi, A. Changes in antioxidant activity and content of phenolic compounds during the ripening process of elm-leaved blackberry fruit. Int. J. Agron. Plant Prod. 2013, 4, 88–93. [Google Scholar] [CrossRef]
- Tlili, I.; Hdider, C.; Lenucci, M.S.; Ilahy, R.; Jebari, H.; Dalessandro, G. Bioactive compounds and antioxidant activities during fruit ripening of watermelon cultivars. J. Food Compos. Anal. 2011, 24, 923–928. [Google Scholar] [CrossRef]
- Czeczot, H. Biological activities of flavonoids—A review. Pol. J. Food Nutr. Sci. 2000, 950, 3–13. [Google Scholar]
- Braidot, E.; Zancani, M.; Petrussa, E.; Peresson, C.; Bertolini, A.; Patui, S.; Vianello, A. Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signal. Behav. 2008, 3, 626–632. [Google Scholar] [CrossRef]
- Howard, L.R.; Clark, J.R.; Brownmiller, C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar] [CrossRef]
- Ding, M.; Feng, R.; Wang, S.Y.; Bowman, L.; Lu, Y.; Qian, Y.; Shi, X. Cyanidin-3- glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J. Biol. Chem. 2006, 281, 17359–17368. [Google Scholar] [CrossRef] [PubMed]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G.R. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
TP | AC | TF | Vitamin C | TA | |
---|---|---|---|---|---|
TP | 1 | ||||
AC | 0.68 ** | 1 | |||
TF | 0.66 ** | 0.44 ** | 1 | ||
Vitamin C | 0.38 * | 0.65 ** | 0.03 | 1 | |
TA | −0.05 | 0.33 * | 0.36 * | −0.76 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, S.; Koushesh Saba, M.; Sadeghi, S.; Inglese, P.; Liguori, G. Changes in Biochemical and Bioactive Compounds in Two Red Grape Cultivars during Ripening and Cold Storage. Agronomy 2024, 14, 487. https://doi.org/10.3390/agronomy14030487
Moradi S, Koushesh Saba M, Sadeghi S, Inglese P, Liguori G. Changes in Biochemical and Bioactive Compounds in Two Red Grape Cultivars during Ripening and Cold Storage. Agronomy. 2024; 14(3):487. https://doi.org/10.3390/agronomy14030487
Chicago/Turabian StyleMoradi, Samira, Mahmoud Koushesh Saba, Sharareh Sadeghi, Paolo Inglese, and Giorgia Liguori. 2024. "Changes in Biochemical and Bioactive Compounds in Two Red Grape Cultivars during Ripening and Cold Storage" Agronomy 14, no. 3: 487. https://doi.org/10.3390/agronomy14030487
APA StyleMoradi, S., Koushesh Saba, M., Sadeghi, S., Inglese, P., & Liguori, G. (2024). Changes in Biochemical and Bioactive Compounds in Two Red Grape Cultivars during Ripening and Cold Storage. Agronomy, 14(3), 487. https://doi.org/10.3390/agronomy14030487