Co-Ensiling Whole-Plant Cassava with Corn Stalk for Excellent Silage Production: Fermentation Characteristics, Bacterial Community, Function Profile, and Microbial Ecological Network Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Preparation
2.2. Chemical Composition and Fermentation Index
2.3. Microbial Communities and Functional Profile
2.4. Statistical Analysis
3. Results
3.1. Raw Material
3.2. Fermentation Quality
3.3. Bacterial Communities
3.3.1. Diversity, Compositions, Structure, and Predicted Functions
3.3.2. Co-Occurrence Network, Network Modules, and Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, J.; Jing, H.; Zhang, W.; Gao, S.; Duan, Z.; Wang, H.; Zhong, J.; Pan, Q.; Zhao, K.; Bai, W.; et al. The concept of “Grass-based Livestock Husbandry” and its practice in Hulun Buir, Inner Mongolia. Chin. Sci. Bull. 2018, 63, 1619–1631. [Google Scholar] [CrossRef]
- Tang, S.X.; He, Y.; Zhang, P.H.; Jiao, J.Z.; Han, X.F.; Yan, Q.X.; Tan, Z.L.; Wang, H.R.; Wu, D.Q.; Yu, L.H.; et al. Nutrient digestion, rumen fermentation and performance as ramie (Boehmeria nivea) is increased in the diets of goats. Anim. Feed. Sci. Technol. 2019, 247, 15–22. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Shi, W.; Sun, J.; Xia, T.; Huang, F.; Liu, Y.; Li, H.; Teng, K.; Zhong, J. Dynamic Changes in Fermentation Quality and Structure and Function of the Microbiome during Mixed Silage of Sesbania cannabina and Sweet Sorghum Grown on Saline-Alkaline Land. Microbiol. Spectr. 2022, 10, e0248322. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zi, X.; Zhou, H.; Lv, R.; Tang, J.; Cai, Y. Effect of lactic acid bacteria, molasses, and their combination on the fermentation quality and bacterial community of cassava foliage silage. Anim. Sci. J. 2021, 92, e13635. [Google Scholar] [CrossRef]
- Malik, A.I.; Kongsil, P.; Nguyễn, V.A.; Ou, W.; Srean, P.; Sheela, M.N.; Becerra López-Lavalle, L.A.; Utsumi, Y.; Lu, C.; Kittipadakul, P.; et al. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed. Sci. 2020, 70, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Yang, S.; Zhang, J.; Feng, Y.; Geng, Z. Impacts of utilization patterns of cellulosic C5 sugar from cassava straw on bioethanol production through life cycle assessment. Bioresour. Technol. 2021, 323, 124586. [Google Scholar] [CrossRef] [PubMed]
- Isamah, G.K.; Asagba, S.O.; Ekakitie, A.O. Lipid peroxidation, activities of superoxide dismutase and catalase during post-harvest deterioration of cassava (Manihot esculenta Crantz) root tubers. Int. Biodeterior. Biodegrad. 2003, 52, 129–133. [Google Scholar] [CrossRef]
- Kayode, B.I.; Kayode, R.M.O.; Salami, K.O.; Obilana, A.O.; George, T.T.; Dudu, O.E.; Adebo, O.A.; Njobeh, P.B.; Diarra, S.S.; Oyeyinka, S.A. Morphology and physicochemical properties of starch isolated from frozen cassava root. LWT 2021, 147, 111546. [Google Scholar] [CrossRef]
- Bogale, S.; Haile, A.; Berhanu, B.; Beshir, H.M. Cassava production practices in Ethiopia and its use as Ingredient for injera making. Future Foods 2022, 6, 100204. [Google Scholar] [CrossRef]
- Ono, L.T.; Silva, J.J.; Soto, T.S.; Doná, S.; Iamanaka, B.T.; Fungaro, M.H.P.; Taniwaki, M.H. Fungal communities in Brazilian cassava tubers and food products. Int. J. Food Microbiol. 2023, 384, 109909. [Google Scholar] [CrossRef]
- Anyanwu, C.N.; Ibeto, C.N.; Ezeoha, S.L.; Ogbuagu, N.J. Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew. Energ. 2015, 81, 745–752. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Tang, J.; Zhou, H.; Cai, Y. Silage fermentation, chemical composition and ruminal degradation of king grass, cassava foliage and their mixture. Grassl. Sci. 2019, 65, 210–215. [Google Scholar] [CrossRef]
- Zhu, W.; Lestander, T.A.; Örberg, H.; Wei, M.; Hedman, B.; Ren, J.; Xie, G.; Xiong, S. Cassava stems: A new resource to increase food and fuel production. GCB Bioenergy 2015, 7, 72–83. [Google Scholar] [CrossRef]
- Ojo, I.; Apiamu, A.; Egbune, E.O.; Tonukari, N.J. Biochemical Characterization of Solid-State Fermented Cassava Stem (Manihot esculenta Crantz-MEC) and Its Application in Poultry Feed Formulation. Appl. Biochem. Biotechnol. 2022, 194, 2620–2631. [Google Scholar] [CrossRef]
- Fanelli, N.S.; Torres-Mendoza, L.J.; Abelilla, J.J.; Stein, H.H. Chemical composition of cassava-based feed ingredients from South-East Asia. Anim. Biosci. 2023, 36, 908–919. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim. Nutr. 2015, 1, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.K.; Jiang, H.; Ni, H.; Liu, Y.; Huang, P.; Fang, J.; Kong, X. Diets Partially Replaced With Cassava Residue Modulate Antioxidant Capacity, Lipid Metabolism, and Gut Barrier Function of Huanjiang Mini-Pigs. Front. Vet. Sci. 2022, 9, 902328. [Google Scholar] [CrossRef]
- Bai, J.; Ding, Z.; Su, R.; Wang, M.; Cheng, M.; Xie, D.; Guo, X. Storage Temperature Is More Effective Than Lactic Acid Bacteria Inoculations in Manipulating Fermentation and Bacterial Community Diversity, Co-Occurrence and Functionality of the Whole-Plant Corn Silage. Microbiol. Spectr. 2022, 10, e0010122. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, H.; Gao, Z.; Xu, J.; Liu, B.; Guo, M.; Yang, X.; Niu, J.; Zhu, X.; Ma, S.; et al. Whole-plant corn silage improves rumen fermentation and growth performance of beef cattle by altering rumen microbiota. Appl. Microbiol. Biotechnol. 2022, 106, 4187–4198. [Google Scholar] [CrossRef]
- Bai, J.; Franco, M.; Ding, Z.; Hao, L.; Ke, W.; Wang, M.; Xie, D.; Li, Z.; Zhang, Y.; Ai, L.; et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 2022, 13, 7. [Google Scholar] [CrossRef]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; McAllister, T.A.; Drouin, P.; Nussio, L.G.; Huhtanen, P.; Tremblay, G.F.; Bélanger, G.; Cai, Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy. Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef]
- Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. The sustainable mitigation of ruminal methane and carbon dioxide emissions by co-ensiling corn stalk with Neolamarckia cadamba leaves for cleaner livestock production. J. Clean. Prod. 2021, 311, 127680. [Google Scholar] [CrossRef]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y.; et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Chang. 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Wen, T.; Xie, P.; Yang, S.; Niu, G.; Liu, X.; Ding, Z.; Xue, C.; Liu, Y.-X.; Shen, Q.; Yuan, J. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. iMeta 2022, 1, e32. [Google Scholar] [CrossRef]
- Xu, D.; Wang, N.; Rinne, M.; Ke, W.; Weinberg, Z.G.; Da, M.; Bai, J.; Zhang, Y.; Li, F.; Guo, X. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb. Biotechnol. 2021, 14, 561–576. [Google Scholar] [CrossRef]
- Dong, Z.; Li, J.; Wang, S.; Dong, D.; Shao, T. Diurnal Variation of Epiphytic Microbiota: An Unignorable Factor Affecting the Anaerobic Fermentation Characteristics of Sorghum-Sudangrass Hybrid Silage. Microbiol. Spectr. 2023, 11, e0340422. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Franco, M.; Cai, Y.; Yu, Z. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Anim. Feed. Sci. Technol. 2020, 270, 114702. [Google Scholar] [CrossRef]
- Zeng, T.; Li, X.; Guan, H.; Yang, W.; Liu, W.; Liu, J.; Du, Z.; Li, X.; Xiao, Q.; Wang, X.; et al. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour. Technol. 2020, 313, 123655. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lv, R.; Zhou, H.; Zi, X. Dynamics and correlations of chlorophyll and phytol content with silage bacterial of different growth heights Pennisetum sinese. Front. Plant Sci. 2022, 13, 996970. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, M.; Zhang, J.; Shi, S.; Cai, Y. Characteristics of isolated lactic acid bacteria and their effectiveness to improve stylo (Stylosanthes guianensis Sw.) silage quality at various temperatures. Anim. Sci. J. 2012, 83, 128–135. [Google Scholar] [CrossRef]
- Masaki, S. Silage-no-Hinshitsu-Hyouka (V-SCORE); Nihon-Sochichikusan-Shushi-Kyokai; CiNii: Tokyo, Japan, 2001; pp. 93–94. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Zhang, Q.; Zi, X.; Lv, R.; Tang, J.; Zhou, H. Impacts of Citric Acid and Malic Acid on Fermentation Quality and Bacterial Community of Cassava Foliage Silage. Front. Microbiol. 2020, 11, 595622. [Google Scholar] [CrossRef]
- Du, Z.; Sun, L.; Lin, Y.; Chen, C.; Yang, F.; Cai, Y. Use of Napier grass and rice straw hay as exogenous additive improves microbial community and fermentation quality of paper mulberry silage. Anim. Feed. Sci. Technol. 2022, 285, 115219. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Wang, X.; Xiong, Y.; Liu, Z.; Lin, Y.; Ni, K.; Yang, F. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. Bioresour. Technol. 2022, 360, 127429. [Google Scholar] [CrossRef] [PubMed]
- Thébault, E.; Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 2010, 329, 853–856. [Google Scholar] [CrossRef]
- Toju, H.; Yamamichi, M.; Guimarães, P.R., Jr.; Olesen, J.M.; Mougi, A.; Yoshida, T.; Thompson, J.N. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 2017, 1, 24. [Google Scholar] [CrossRef]
Group | Corn Stalk (CS) | Whole-Plant Cassava (CF) |
---|---|---|
CS | 100% | 0% |
CS10CF | 90% | 10% |
CS20CF | 80% | 20% |
CS30CF | 70% | 30% |
CS40CF | 60% | 40% |
CS50CF | 50% | 50% |
CF | 0% | 100% |
Items | Abbreviation | Whole-Plant Cassava | Corn Stalk |
---|---|---|---|
Dry matter (g/kg FM) | DM | 242.5 | 305.1 |
Crude protein (g/kg DM) | CP | 158.6 | 96.4 |
Acid detergent fiber (g/kg DM) | ADF | 116.8 | 226.3 |
Neutral detergent fiber (g/kg DM) | NDF | 158.9 | 407.5 |
Water-soluble carbohydrates (g/kg DM) | WSC | 177.2 | 128.4 |
Starch (g/kg DM) | 215.9 | 104.6 | |
Lactic acid bacteria (Log cfu/g FM) | LAB | 5.76 | 5.88 |
Mold (Log cfu/g FM) | 2.43 | 4.52 | |
Enterobacter (Log cfu/g FM) | 2.68 | 4.73 |
Items | Treatments | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CS | CS10CF | CS20CF | CS30CF | CS40CF | CS50CF | CF | T | L | ||
pH | 4.95 a | 4.56 b | 4.23 c | 3.97 d | 4.18 c | 4.23 c | 4.27 c | 0.12 | <0.001 | >0.05 |
Lactic acid (g/kg DM) | 42.10 d | 51.19 b | 53.77 b | 62.39 a | 54.00 b | 48.25 c | 46.93 c | 2.43 | <0.001 | >0.05 |
Acetic acid (g/kg DM) | 25.73 a | 17.92 b | 14.87 b | 9.29 c | 13.96 b | 16.64 b | 19.28 a | 1.92 | <0.001 | >0.05 |
Propionic acid (g/kg DM) | 4.31 | 3.98 | 3.14 | 2.25 | 3.24 | 4.07 | 4.16 | 0.28 | >0.05 | >0.05 |
Butyric acid (g/kg DM) | 1.08 a | 0.69 a | 0.44 b | N | 0.31 b | 0.55 b | 0.88 a | 0.11 | N | N |
NH3–N (g/kg TN) | 80.52 a | 73.84 b | 66.56 b | 51.81 c | 62.34 b | 69.45 b | 85.78 a | 4.29 | <0.001 | >0.05 |
V-Score | 75.26 c | 79.71 b | 83.17 b | 92.30 a | 85.05 b | 81.71 b | 75.80 c | 2.21 | <0.001 | >0.05 |
Items | Treatments | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CS | CS10CF | CS20CF | CS30CF | CS40CF | CS50CF | CF | T | L | ||
DM (g/kg FM) | 282.5 a | 276.2 b | 269.9 b | 263.5 bc | 257.2 c | 250.9 c | 219.3 d | 7.89 | <0.001 | <0.001 |
CP (g/kg DM) | 83.4 d | 89.3 cd | 95.2 cd | 101.1 c | 107.0 b | 113.0 b | 142.5 a | 7.38 | <0.001 | <0.001 |
ADF (g/kg DM) | 198.6 a | 188.2 b | 177.7 c | 167.3 d | 156.8 de | 146.4 e | 94.1 f | 13.05 | <0.001 | <0.001 |
NDF (g/kg DM) | 379.7 a | 355.0 b | 330.2 c | 305.5 cd | 280.8 d | 256.1 e | 132.4 f | 30.88 | <0.001 | <0.001 |
WSC (g/kg DM) | 56.1 c | 59.7 c | 63.3 bc | 66.9 bc | 70.5 b | 74.1 b | 92.0 a | 4.48 | <0.001 | <0.001 |
Starch (g/kg DM) | 70.7 d | 79.2 dc | 87.6 c | 96.1 bc | 104.6 b | 113.1 a | 155.4 | 10.58 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zi, X.; Sun, R.; Ou, W.; Chen, S.; Hou, G.; Zhou, H. Co-Ensiling Whole-Plant Cassava with Corn Stalk for Excellent Silage Production: Fermentation Characteristics, Bacterial Community, Function Profile, and Microbial Ecological Network Features. Agronomy 2024, 14, 501. https://doi.org/10.3390/agronomy14030501
Li M, Zi X, Sun R, Ou W, Chen S, Hou G, Zhou H. Co-Ensiling Whole-Plant Cassava with Corn Stalk for Excellent Silage Production: Fermentation Characteristics, Bacterial Community, Function Profile, and Microbial Ecological Network Features. Agronomy. 2024; 14(3):501. https://doi.org/10.3390/agronomy14030501
Chicago/Turabian StyleLi, Mao, Xuejuan Zi, Rong Sun, Wenjun Ou, Songbi Chen, Guanyu Hou, and Hanlin Zhou. 2024. "Co-Ensiling Whole-Plant Cassava with Corn Stalk for Excellent Silage Production: Fermentation Characteristics, Bacterial Community, Function Profile, and Microbial Ecological Network Features" Agronomy 14, no. 3: 501. https://doi.org/10.3390/agronomy14030501
APA StyleLi, M., Zi, X., Sun, R., Ou, W., Chen, S., Hou, G., & Zhou, H. (2024). Co-Ensiling Whole-Plant Cassava with Corn Stalk for Excellent Silage Production: Fermentation Characteristics, Bacterial Community, Function Profile, and Microbial Ecological Network Features. Agronomy, 14(3), 501. https://doi.org/10.3390/agronomy14030501