Comparative Study of the Convertibility of Pretreated Miscanthus Straw Using Enzyme Preparations Produced by Different Recombinant Strains of Penicillium verruculosum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples of Cellulose-Containing Substrate
2.2. Substrates
2.3. Cultivation of Recombinant Strains and Enzyme Preparations
2.4. Enzyme Activity Assays
2.5. Enzymatic Hydrolysis
2.6. Pretreatment
2.7. Chromatographic Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Giannoulis, K.D.; Karyotis, T.; Sakellariou-Makrantonaki, M.; Bastiaans, L.; Struik, P.C.; Danalatos, N.G. Switchgrass biomass partitioning and growth characteristics under different management practices. NJAS Wagening. J. Life Sci. 2016, 78, 61–67. [Google Scholar] [CrossRef]
- Sitkey, V.; Gaduš, J.; Kliský, L.; Dudák, A. Biogas Production From Amaranth Biomass. Acta Reg. Environ. 2014, 10, 59–62. [Google Scholar] [CrossRef]
- Bilandžija, N.; Voća, N.; Leto, J.; Jurišić, V.; Grubor, M.; Matin, A.; Geršić, A.; Krička, T. Yield and biomass composition of miscanthus X giganteus in the mountain area of Croatia. Trans. Famena 2018, 42, 51–60. [Google Scholar] [CrossRef]
- Bilandžija, N.; Fabijanić, G.; Sito, S.; Grubor, M.; Krononc, Z.; Čopec, K.; Kovačev, I. Harvest systems of miscanthus x giganteus biomass: A review. J. Cent. Eur. Agric. 2020, 21, 159–167. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Alaejos, J.; Tapias, R.; López, F.; Romero, D.; Ruiz, F.; Fernández, M. Biomass Production and Quality of Twelve Fast-Growing Tree Taxa in Short Rotation under Mediterranean Climate. Forests 2023, 14, 1156. [Google Scholar] [CrossRef]
- Lara, M.V.; Andreo, C.S. C4 Plants Adaptation to High Levels of CO2 and to Drought Environments. In Abiotic Stress in Plants—Mechanisms and Adaptations; Shanker, A., Venkateswarlu, B., Eds.; IntechOpen: Rijeka, Croatia, 2011; p. 18. [Google Scholar]
- Naidu, S.L.; Moose, S.P.; AL-Shoaibi, A.K.; Raines, C.A.; Long, S.P. Cold Tolerance of C4 photosynthesis in Miscanthus × giganteus: Adaptation in Amounts and Sequence of C4 Photosynthetic Enzymes. Plant Physiol. 2003, 132, 1688–1697. [Google Scholar] [CrossRef]
- Pittermann, J.; Sage, R.F. Photosynthetic performance at low temperature of Bouteloua gracilis Lag., a high-altitude C4 grass from the Rocky Mountains, USA. Plant. Cell Environ. 2000, 23, 811–823. [Google Scholar] [CrossRef]
- Friesen, P.C.; Peixoto, M.M.; Busch, F.A.; Johnson, D.C.; Sage, R.F. Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates. J. Exp. Bot. 2014, 65, 3749–3758. [Google Scholar] [CrossRef]
- Nishiwaki, A.; Mizuguti, A.; Kuwabara, S.; Toma, Y.; Ishigaki, G.; Miyashita, T.; Yamada, T.; Matuura, H.; Yamaguchi, S.; Rayburn, A.L.; et al. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am. J. Bot. 2011, 98, 154–159. [Google Scholar] [CrossRef]
- Chung, J.-H.; Kim, D.-S. Miscanthus as a potential bioenergy crop in East Asia. J. Crop Sci. Biotechnol. 2012, 15, 65–77. [Google Scholar] [CrossRef]
- Rowell, R.M.; Pettersen, R.; Han, J.S.; Rowell, J.S.; Tshabalala, M.A. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439853818. [Google Scholar]
- Rahman, M.M.; Tsukamoto, J.; Rahman, M.M.; Yoneyama, A.; Mostafa, K.M. Lignin and its effects on litter decomposition in forest ecosystems. Chem. Ecol. 2013, 29, 540–553. [Google Scholar] [CrossRef]
- Luo, H.; Klein, I.M.; Jiang, Y.; Zhu, H.; Liu, B.; Kenttämaa, H.I.; Abu-Omar, M.M. Total Utilization of Miscanthus Biomass, Lignin and Carbohydrates, Using Earth Abundant Nickel Catalyst. ACS Sustain. Chem. Eng. 2016, 4, 2316–2322. [Google Scholar] [CrossRef]
- Juneja, A.; Kumar, D.; Williams, J.D.; Wysocki, D.J.; Murthy, G.S. Potential for ethanol production from conservation reserve program lands in Oregon. J. Renew. Sustain. Energy 2011, 3, 63102. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Demirel, F.; Germec, M.; Coban, H.B.; Turhan, I. Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose 2018, 25, 6377–6393. [Google Scholar] [CrossRef]
- Loow, Y.-L.; Wu, T.Y.; Md. Jahim, J.; Mohammad, A.W.; Teoh, W.H. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 2016, 23, 1491–1520. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, K.; Liu, D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 2009, 82, 815–827. [Google Scholar] [CrossRef]
- Mou, H.; Wu, S. Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose 2017, 24, 85–94. [Google Scholar] [CrossRef]
- Deng, H.-Q.; Lin, X.-H.; Fan, J.-T.; Fu, P.-Z.; Guan, J.-J.; Lei, H.-L.; Liu, L.-H.; Lai, L.-H.; Hou, X.-D.; Lou, W.-Y. Glycolic acid-based deep eutectic solvents boosting co-production of xylo-oligomers and fermentable sugars from corncob and the related kinetic mechanism. Biotechnol. Biofuels Bioprod. 2023, 16, 126. [Google Scholar] [CrossRef]
- Dias, R.M.; Sosa, F.H.B.; da Costa, M.C. Dissolution of lignocellulosic biopolymers in ethanolamine-based protic ionic liquids. Polym. Bull. 2020, 77, 3637–3656. [Google Scholar] [CrossRef]
- Asada, C.; Sasaki, C.; Uto, Y.; Sakafuji, J.; Nakamura, Y. Effect of steam explosion pretreatment with ultra-high temperature and pressure on effective utilization of softwood biomass. Biochem. Eng. J. 2012, 60, 25–29. [Google Scholar] [CrossRef]
- Pielhop, T.; Larrazábal, G.O.; Rudolf von Rohr, P. Autohydrolysis pretreatment of softwood—Enhancement by phenolic additives and the effects of other compounds. Green Chem. 2016, 18, 5239–5247. [Google Scholar] [CrossRef]
- Yoo, H.Y.; Yang, X.; Kim, D.S.; Lee, S.K.; Lotrakul, P.; Prasongsuk, S.; Punnapayak, H.; Kim, S.W. Evaluation of the overall process on bioethanol production from miscanthus hydrolysates obtained by dilute acid pretreatment. Biotechnol. Bioprocess Eng. 2016, 21, 733–742. [Google Scholar] [CrossRef]
- Dąbkowska, K.; Alvarado-Morales, M.; Kuglarz, M.; Angelidaki, I. Miscanthus straw as substrate for biosuccinic acid production: Focusing on pretreatment and downstream processing. Bioresour. Technol. 2019, 278, 82–91. [Google Scholar] [CrossRef]
- Krieger, O.V.; Dolganyuk, V.F.; Yu Prosekov, A.; Izgaryshev, A.V.; Sukhikh, S.A. Features of processing the biomass of genus Miscanthus plants into carbohydrate-containing substrates for biotechnology. IOP Conf. Ser. Earth Environ. Sci. 2021, 699, 012056. [Google Scholar] [CrossRef]
- Ji, Z.; Zhang, X.; Ling, Z.; Zhou, X.; Ramaswamy, S.; Xu, F. Visualization of Miscanthus × giganteus cell wall deconstruction subjected to dilute acid pretreatment for enhanced enzymatic digestibility. Biotechnol. Biofuels 2015, 8, 103. [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Gismatulina, Y.A.; Budaeva, V.V. Pretreatments of Non-Woody Cellulosic Feedstocks for Bacterial Cellulose Synthesis. Polymers 2019, 11, 1645. [Google Scholar] [CrossRef]
- Soares Rodrigues, C.I.; Jackson, J.J.; Montross, M.D. A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Ind. Crops Prod. 2016, 92, 165–173. [Google Scholar] [CrossRef]
- Si, S.; Chen, Y.; Fan, C.; Hu, H.; Li, Y.; Huang, J.; Liao, H.; Hao, B.; Li, Q.; Peng, L.; et al. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour. Technol. 2015, 183, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-M.; Gao, Y.-F.; He, S.-S.; Luo, K.; Yan, Q.; Cheng, X.-Y. Improved sugar recovery from enzymatic hydrolysis of Miscanthus sinensis by surfactant-mediated alkaline pretreatment. Biomass Convers. Biorefinery 2023, 13, 4673–4680. [Google Scholar] [CrossRef]
- Haque, M.A.; Barman, D.N.; Kang, T.H.; Kim, M.K.; Kim, J.; Kim, H.; Yun, H.D. Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boiling temperature with low residence time. Biosyst. Eng. 2013, 114, 294–305. [Google Scholar] [CrossRef]
- Cha, Y.-L.; Yang, J.; Seo, S.; An, G.H.; Moon, Y.-H.; You, G.-D.; Lee, J.-E.; Ahn, J.-W.; Lee, K.-B. Alkaline twin-screw extrusion pretreatment of Miscanthus with recycled black liquor at the pilot scale. Fuel 2016, 164, 322–328. [Google Scholar] [CrossRef]
- Boakye-Boaten, N.A.; Xiu, S.; Shahbazi, A.; Fabish, J. Liquid hot water pretreatment of Miscanthus × giganteus for the sustainable production of bioethanol. BioResources 2015, 10, 5890–5905. [Google Scholar] [CrossRef]
- Morozova, V.V.; Gusakov, A.V.; Andrianov, R.M.; Pravilnikov, A.G.; Osipov, D.O.; Sinitsyn, A.P. Cellulases of Penicillium verruculosum. Biotechnol. J. 2010, 5, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Denisenko, Y.A.; Gusakov, A.V.; Rozhkova, A.M.; Zorov, I.N.; Bashirova, A.V.; Matys, V.Y.; Nemashkalov, V.A.; Sinitsyn, A.P. Protein engineering of GH10 family xylanases for gaining a resistance to cereal proteinaceous inhibitors. Biocatal. Agric. Biotechnol. 2019, 17, 690–695. [Google Scholar] [CrossRef]
- Steffien, D.; Aubel, I.; Bertau, M. Enzymatic hydrolysis of pre-treated lignocellulose with Penicillium verruculosum cellulases. J. Mol. Catal. B Enzym. 2014, 103, 29–35. [Google Scholar] [CrossRef]
- Osipov, D.O.; Dotsenko, G.S.; Sinitsyna, O.A.; Kondratieva, E.G.; Zorov, I.N.; Shashkov, I.A.; Satrutdinov, A.D.; Sinitsyn, A.P. Comparative Study of the Convertibility of Agricultural Residues and Other Cellulose-Containing Materials in Hydrolysis with Penicillium verruculosum Cellulase Complex. Agronomy 2020, 10, 1712. [Google Scholar] [CrossRef]
- Dotsenko, A.S.; Rozhkova, A.M.; Gusakov, A.V. Properties and N-glycosylation of recombinant endoglucanase II from Penicillium verruculosum. Mosc. Univ. Chem. Bull. 2015, 70, 283–286. [Google Scholar] [CrossRef]
- Xia, M.; Shen, Z.; Xiao, S.; Peng, B.; Gu, M.; Dong, W.; Zhang, Y. Synergistic effects and kinetic evidence of a transition metal-tin modified Beta zeolite on conversion of Miscanthus to lactic acid. Appl. Catal. A Gen. 2019, 583, 117126. [Google Scholar] [CrossRef]
- Sinitsyna, O.A.; Bukhtoyarov, F.E.; Gusakov, A.V.; Okunev, O.N.; Bekkarevitch, A.O.; Vinetsky, Y.P.; Sinitsyn, A.P. Isolation and Properties of Major Components of Penicillium canescens Extracellular Enzyme Complex. Biochemistry 2003, 68, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
- Gusakov, A.; Sinitsyn, A.; Salanovich, T.; Bukhtojarov, F.; Markov, A.; Ustinov, B.; Zeijl, C.; Punt, P.; Burlingame, R. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzym. Microb. Technol. 2005, 36, 57–69. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef]
- Sinitsyn, A.P.; Chernoglazov, V.M.; Gusakov, A.V. Methods for Study and Properties of Cellulolytic Enzymes; VINITI: Moscow, Russia, 1993. [Google Scholar]
- Van Heiningen, A. Converting a Kraft pulp mill into an integrated forest biorefinery. Pulp Pap. Can. 2006, 107, 38–43. [Google Scholar]
- Solov’eva, I.V.; Okunev, O.N.; Vel’kov, V.V.; Koshelev, A.V.; Bubnova, T.V.; Kondrat’eva, E.G.; Skomarovskii, A.A.; Sinitsyn, A.P. The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Mikrobiologiia 2005, 74, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, S.; Wang, Y.; Li, J.; He, C.; Yao, L. A kinetic study of Trichoderma reesei Cel7B catalyzed cellulose hydrolysis. Enzym. Microb. Technol. 2016, 87–88, 9–16. [Google Scholar] [CrossRef]
- Zhang, K.-D.; Li, W.; Wang, Y.-F.; Zheng, Y.-L.; Tan, F.-C.; Ma, X.-Q.; Yao, L.-S.; Bayer, E.A.; Wang, L.-S.; Li, F.-L. Processive Degradation of Crystalline Cellulose by a Multimodular Endoglucanase via a Wirewalking Mode. Biomacromolecules 2018, 19, 1686–1696. [Google Scholar] [CrossRef]
- Cohen, R.; Suzuki, M.R.; Hammel, K.E. Processive Endoglucanase Active in Crystalline Cellulose Hydrolysis by the Brown Rot Basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 2005, 71, 2412–2417. [Google Scholar] [CrossRef]
- Wu, S.; Wu, S. Processivity and the Mechanisms of Processive Endoglucanases. Appl. Biochem. Biotechnol. 2020, 190, 448–463. [Google Scholar] [CrossRef]
- Crowe, J.D.; Hao, P.; Pattathil, S.; Pan, H.; Ding, S.-Y.; Hodge, D.B.; Jensen, J.K. Xylan Is Critical for Proper Bundling and Alignment of Cellulose Microfibrils in Plant Secondary Cell Walls. Front. Plant Sci. 2021, 12, 737690. [Google Scholar] [CrossRef]
- Wierzbicki, M.P.; Maloney, V.; Mizrachi, E.; Myburg, A.A. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. Front. Plant Sci. 2019, 10, 00176. [Google Scholar] [CrossRef] [PubMed]
- Gismatulina, Y.A. Chemical composition of different morphological parts of miscanthus harvested in 2014. Fundam. Res. 2015, 22, 4897–4900. [Google Scholar]
- Ioelovich, M. Preparation, characterization and application of amorphized cellulose—A review. Polymers 2021, 13, 4313. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.S.; Holtzapple, M.T. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 2000, 84, 5–37. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Kwak, J.H.; Wang, Y.; Franz, J.A.; White, J.M.; Holladay, J.E. Effects of Crystallinity on Dilute Acid Hydrolysis of Cellulose by Cellulose Ball-Milling Study. Energy Fuels 2006, 20, 807–811. [Google Scholar] [CrossRef]
- Sinnott, M.L. The cellobiohydrolases of Trichoderma reesei: A review of indirect and direct evidence that their function is not just glycosidic bond hydrolysis. Biochem. Soc. Trans. 1998, 26, 160–164. [Google Scholar] [CrossRef]
- Gao, X.; Zhong, H.; Yao, G.; Guo, W.; Jin, F. Hydrothermal conversion of glucose into organic acids with bentonite as a solid-base catalyst. Catal. Today 2016, 274, 49–54. [Google Scholar] [CrossRef]
Pretreatment | Conditions | Effectiveness | Reference |
---|---|---|---|
Sulfuric acid | 1.1% at 121.6 °C for 12.8 min | 86.4% glucose conversion | [27] |
1.25% in 80% glycerol at 160 °C for 10 min | 76.6% substrate convertibility | [28] | |
1% at 130 °C for 30 min | 79.07% pulp yield | [29] | |
1% at 170 °C for 30 min | 51.2% sugar yield | [30] | |
Nitric acid | 3–6% at 90–95 °C for 10–12 h | 61.4% convertibility | [31] |
Alkali | 4% sodium hydroxide at 50 °C for 168 h | 75% of converted cellulose | [32] |
2% sodium hydroxide at 50 °C for 2 h | 58.5% convertibility | [33] | |
1–1.2% sodium hydroxide at 121 °C for 10 min | 26.1% convertibility | [34] | |
1–1.2% sodium hydroxide at 120 °C for 30 min | 47.4% convertibility | [35] | |
Black liquor | 0.6 M NaOH | 64% convertibility | [36] |
Hot water | 200 °C for 15 min | 35% convertibility | [37] |
Enzyme Preparations | Protein, mg/g | Activities toward Various Substrates, U per 1 mg of Protein | |||
---|---|---|---|---|---|
Avicel, U/mg | CMC, U/mg | pNPG, U/mg | Xylan, U/mg | ||
B151 | 950 ± 20 | 0.86 ± 0.04 | 13 ± 1.1 | 1.8 ± 0.1 | 19.8 ± 0.8 |
C | 71 ± 3 | 0.76 ± 0.02 | 48 ± 2.9 | 0.73 ± 0.02 | 9.2 ± 0.3 |
CX | 92 ± 5 | 0.53 ± 0.03 | 19 ± 1.2 | 0.58 ± 0.01 | 35 ± 1.5 |
X | 90 ± 6 | 0.66 ± 0.02 | 5.2 ± 0.3 | 0.76 ± 0.03 | 66 ± 3.7 |
F10 | 660 ± 12 | 0.40 ± 0.03 | 3.4 ± 0.2 | 61 ± 3.7 | 3.3 ± 0.2 |
NaOH, % | Temperature, °C | Time, min | Best EP | Glucose, g/L | Xylose, g/L | RS, g/L | Convertibility, % |
---|---|---|---|---|---|---|---|
0.5 | 100 | 40 | CX | 31 ± 1.8 | 10.4 ± 0.3 | 47 ± 3.4 | 42 |
1.25 | 15 | C | 51 ± 3.7 | 14.2 ± 0.6 | 60 ± 2.7 | 54 | |
1.25 | 60 | C | 54 ± 2.8 | 14.0 ± 0.7 | 70 ± 3.1 | 63 | |
2 | 40 | C | 56 ± 2.5 | 12.4 ± 0.4 | 73 ± 5.9 | 66 | |
0.5 | 140 | 15 | C | 36 ± 1.2 | 11.1 ± 0.3 | 63 ± 3.4 | 57 |
0.5 | 60 | C | 47 ± 2.8 | 9.5 ± 0.2 | 57 ± 3.2 | 52 | |
1.25 | 40 | X | 35 ± 2.9 | 9.8 ± 0.2 | 58 ± 4.1 | 53 | |
2 | 15 | C | 60 ± 3.3 | 13.3 ± 0.4 | 73 ± 6.4 | 65 | |
2 | 60 | C | 51 ± 3.5 | 12.7 ± 0.5 | 60 ± 4.5 | 54 | |
0.5 | 180 | 40 | C | 47 ± 2.9 | 11.4 ± 0.5 | 56 ± 4.2 | 51 |
1.25 | 15 | C | 43 ± 2.3 | 11.9 ± 0.3 | 58 ± 3.9 | 52 | |
1.25 | 60 | C | 47 ± 2.5 | 11.5 ± 0.6 | 56 ± 4.0 | 51 | |
2 | 40 | C | 46 ± 2.9 | 12.2 ± 0.4 | 54 ± 2.3 | 48 |
H2SO4, % | Temperature, °C | Time, min | Best EP | Glucose, g/L | Xylose, g/L | RS, g/L | Convertibility, % |
---|---|---|---|---|---|---|---|
0.5 | 100 | 40 | C | 19 ± 1.6 | 4.7 ± 0.3 | 25 ± 2.0 | 22 |
1 | 15 | C | 20 ± 1.1 | 3.9 ± 0.7 | 27 ± 1.1 | 24 | |
1 | 60 | C | 25 ± 1.8 | 6.0 ± 0.4 | 34 ± 1.1 | 30 | |
1.5 | 40 | B151 | 23 ± 1.7 | 4.5 ± 0.3 | 32 ± 1.6 | 29 | |
0.5 | 135 | 15 | C | 36 ± 1.5 | 6.2 ± 0.5 | 41 ± 1.8 | 37 |
0.5 | 60 | C | 24 ± 1.0 | 5.2 ± 0.3 | 30.1 ± 0.8 | 27 | |
1 | 40 | C | 30.1 ± 0.9 | 5.3 ± 0.6 | 36 ± 2.0 | 32 | |
1.5 | 15 | C | 32 ± 1.2 | 5.3 ± 0.5 | 35 ± 1.3 | 31 | |
1.5 | 60 | X | 31 ± 1.3 | 6.6 ± 0.6 | 37 ± 1.2 | 34 | |
0.5 | 170 | 40 | C | 38 ± 1.8 | 1.3 ± 0.1 | 38 ± 2.3 | 34 |
1 | 15 | C | 30 ± 1.6 | 1.7 ± 0.1 | 31 ± 1.6 | 28 | |
1 | 60 | C | 22.7 ± 0.9 | 0.31 ± 0.04 | 23 ± 1.0 | 21 | |
1.5 | 40 | C | 20.6 ± 0.8 | 0.14 ± 0.01 | 20.8 ± 0.5 | 19 |
HNO3, % | Temperature, °C | Time, min | Best EP | Glucose, g/L | Xylose, g/L | RS, g/L | Convertibility, % |
---|---|---|---|---|---|---|---|
0.5 | 100 | 40 | C | 21 ± 1.4 | 5.5 ± 0.2 | 33 ± 1.9 | 30 |
1 | 15 | C | 30 ± 1.6 | 7.3 ± 0.4 | 44 ± 2.5 | 40 | |
1 | 60 | B151 | 24 ± 1.1 | 6.4 ± 0.2 | 44 ± 2.4 | 40 | |
1.5 | 40 | B151/C | 27 ± 1.1/26 ± 1.4 | 6.3 ± 0.2/8.3 ± 0.3 | 40 ± 1.6/40 ± 1.7 | 36/36 | |
0.5 | 140 | 15 | C | 35 ± 1.5 | 8.0 ± 0.6 | 49 ± 1.2 | 44 |
0.5 | 60 | C/X | 35 ± 2.0 | 6.2 ± 0.5/8.3 ± 0.8 | 47 ± 1.3/47 ± 1.3 | 42 | |
1 | 40 | B151/C | 42 ± 1.7/41 ± 2.0 | 4.7 ± 0.3/4.7 ± 0.2 | 48 ± 1.4/48 ± 1.7 | 43/43 | |
1.5 | 15 | C | 47 ± 1.3 | 7.6 ± 0.3 | 56 ± 2.2 | 51 | |
1.5 | 60 | C | 36 ± 1.1 | 2.4 ± 0.1 | 38 ± 1.7 | 35 | |
0.5 | 180 | 40 | C | 51 ± 2.4 | 1.3 ± 0.1 | 52 ± 2.0 | 47 |
1 | 15 | C | 48 ± 1.8 | 2.0 ± 0.1 | 51 ± 2.1 | 46 | |
1 | 60 | C | 10.8 ± 0.6 | 0.33 ± 0.01 | 11.7 ± 0.8 | 11 | |
1.5 | 40 | C | 39 ± 1.5 | 0.72 ± 0.06 | 42 ± 1.5 | 37 |
Time, min | Best EP | Glucose, g/L | Xylose, g/L | RS, g/L | Convertibility, % |
---|---|---|---|---|---|
15 | C | 31 ± 1.4 | 2.8 ± 0.1 | 34.5 ± 0.8 | 31 |
30 | C | 42 ± 1.3 | 3.1 ± 0.2 | 48 ± 1.5 | 43 |
Temperature, °C | Time, min | Best EP | Glucose, g/L | Xylose, g/L | RS, g/L | Convertibility, % |
---|---|---|---|---|---|---|
85 | 40 | C | 12 ± 1.1 | 1.7 ± 0.1 | 17 ± 1.6 | 15 |
100 | 15 | C | 11 ± 1.0 | 1.7 ± 0.1 | 15 ± 1.3 | 14 |
100 | 60 | C | 15 ± 2.8 | 2.9 ± 0.2 | 21 ± 1.1 | 19 |
140 | 5 | C/X | 13.0 ± 0.5/13.7 ± 0.2 | 2.9 ± 0.1/1.5 ± 0.1 | 18 ± 1.6/18 ± 1.7 | 16/16 |
140 | 40 | C | 18 ± 1.4 | 4.9 ± 0.2 | 26 ± 1.3 | 23 |
140 | 70 | C | 20 ± 1.8 | 6.6 ± 0.3 | 32 ± 1.8 | 29 |
180 | 15 | C | 41 ± 2.9 | 7.0 ± 0.3 | 50 ± 2.9 | 45 |
180 | 60 | C | 41 ± 2.1 | 2.0 ± 0.1 | 49 ± 2.2 | 44 |
200 | 40 | C | 45 ± 2.6 | 0.93 ± 0.05 | 51 ± 2.7 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipov, D.O.; Dotsenko, A.S.; Semenova, M.V.; Rozhkova, A.M.; Sinitsyn, A.P. Comparative Study of the Convertibility of Pretreated Miscanthus Straw Using Enzyme Preparations Produced by Different Recombinant Strains of Penicillium verruculosum. Agronomy 2024, 14, 499. https://doi.org/10.3390/agronomy14030499
Osipov DO, Dotsenko AS, Semenova MV, Rozhkova AM, Sinitsyn AP. Comparative Study of the Convertibility of Pretreated Miscanthus Straw Using Enzyme Preparations Produced by Different Recombinant Strains of Penicillium verruculosum. Agronomy. 2024; 14(3):499. https://doi.org/10.3390/agronomy14030499
Chicago/Turabian StyleOsipov, Dmitrii O., Anna S. Dotsenko, Margarita V. Semenova, Alexandra M. Rozhkova, and Arkady P. Sinitsyn. 2024. "Comparative Study of the Convertibility of Pretreated Miscanthus Straw Using Enzyme Preparations Produced by Different Recombinant Strains of Penicillium verruculosum" Agronomy 14, no. 3: 499. https://doi.org/10.3390/agronomy14030499
APA StyleOsipov, D. O., Dotsenko, A. S., Semenova, M. V., Rozhkova, A. M., & Sinitsyn, A. P. (2024). Comparative Study of the Convertibility of Pretreated Miscanthus Straw Using Enzyme Preparations Produced by Different Recombinant Strains of Penicillium verruculosum. Agronomy, 14(3), 499. https://doi.org/10.3390/agronomy14030499