Agriculturally Improved and Semi-Natural Permanent Grasslands Provide Complementary Ecosystem Services in Swedish Boreal Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.2. Aerial Photography Interpretation
2.3. Grassland Types Used
2.4. Ecosystem Service Indicators
- Biodiversity and cultural value indicators. To characterise the plant community at survey plot level we calculated the number of species recorded during the inventories and summed up the total number at each plot. Similarly, the number of grassland specialists (species that indicate traditional semi-natural management conditions) and red-listed species were calculated in the same way using the classifications given by Tyler et al. [38].
- Pollinator resource indicator. To estimate the value of the vegetation for nectar production at each plot, we used the indicator value for “Nectar production” from Tyler et al. [38]. This measure reflects the abundance-weighted average of the indicator value for all vascular plant species present in each plot and was calculated as suggested by Diekmann [39].
- Forage availability for livestock indicator. To estimate forage availability at plot level we calculated the percentage of the plot area without edible vegetation available to livestock and then used the inverse of this measure to reflect the proportion of the plot that was covered by forage. This measure simply reflects how much of the study plot was covered with grassland forage vegetation (i.e., palatable for livestock) and not exposed rocky ground, bare patches, bushes etc.
2.5. Analysis
3. Results
3.1. Area of Different PG Types
3.2. Indicators of Ecosystem Service Provision in Different Grassland Types
4. Discussion
4.1. Amount of PG in Sweden
4.2. PG Role for Farming, Ecosystem Services and Biodiversity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tucker, G.M.; Evans, M.I.; BirdLife International (Eds.) Habitats for Birds in Europe: A Conservation Strategy for the Wider Environment; BirdLife Conservation Series; BirdLife International: Cambridge, UK, 1997; ISBN 978-0-946888-32-0. [Google Scholar]
- Bengtsson, J.; Bullock, J.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.; Smith, H.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Schils, R.L.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; ten Berge, H.; Bertora, C. Permanent Grasslands in Europe: Land Use Change and Intensification Decrease Their Multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Eurostat Share of Main Land Types in Utilised Agricultural Area (UAA) by NUTS 2 Regions (Tai05). Available online: https://data.europa.eu/data/datasets/sbgpcskwluzkdcc5adhja?locale=en (accessed on 5 March 2024).
- Herzon, I.; O’Hara, R.B. Effects of Landscape Complexity on Farmland Birds in the Baltic States. Agric. Ecosyst. Environ. 2007, 118, 297–306. [Google Scholar] [CrossRef]
- Robinson, R.A.; Wilson, J.D.; Crick, H.Q. The Importance of Arable Habitat for Farmland Birds in Grassland Landscapes. J. Appl. Ecol. 2001, 38, 1059–1069. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland Biodiversity: Is Habitat Heterogeneity the Key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Wretenberg, J.; Lindström, Å.; Svensson, S.; Thierfelder, T.; Pärt, T. Population Trends of Farmland Birds in Sweden and England: Similar Trends but Different Patterns of Agricultural Intensification. J. Appl. Ecol. 2006, 43, 1110–1120. [Google Scholar] [CrossRef]
- Lindborg, R.; Bernués, A.; Hartel, T.; Helm, A.; Bosch, R.R. Ecosystem Services Provided by Semi-Natural and Improved Grasslands–Synergies, Trade-Offs and Bundles. In Grassland at the Heart of Circular and Sustainable Food Systems; European Grassland Federation EGF: Caen, France, 2022; pp. 55–63. [Google Scholar]
- Bruun, M.; Smith, H.G. Landscape Composition Affects Habitat Use and Foraging Flight Distances in Breeding European Starlings. Biol. Conserv. 2003, 114, 179–187. [Google Scholar] [CrossRef]
- Evans, K.L.; Wilson, J.D.; Bradbury, R.B. Effects of Crop Type and Aerial Invertebrate Abundance on Foraging Barn Swallows Hirundo Rustica. Agric. Ecosyst. Environ. 2007, 122, 267–273. [Google Scholar] [CrossRef]
- Piha, M.; Tiainen, J.; Holopainen, J.; Vepsäläinen, V. Effects of Land-Use and Landscape Characteristics on Avian Diversity and Abundance in a Boreal Agricultural Landscape with Organic and Conventional Farms. Biol. Conserv. 2007, 140, 50–61. [Google Scholar] [CrossRef]
- Smith, H.G.; Bruun, M. The Effect of Pasture on Starling (Sturnus vulgaris) Breeding Success and Population Density in a Heterogeneous Agricultural Landscape in Southern Sweden. Agric. Ecosyst. Environ. 2002, 92, 107–114. [Google Scholar] [CrossRef]
- Berg, Å.; Cronvall, E.; Eriksson, Å.; Glimskär, A.; Hiron, M.; Knape, J.; Pärt, T.; Wissman, J.; Żmihorski, M.; Öckinger, E. Assessing Agri-Environmental Schemes for Semi-Natural Grasslands during a 5-Year Period: Can We See Positive Effects for Vascular Plants and Pollinators? Biodivers. Conserv. 2019, 28, 3989–4005. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Luoto, M.; Virkkala, R.; Rainio, K. Effects of Habitat Cover, Landscape Structure and Spatial Variables on the Abundance of Birds in an Agricultural–Forest Mosaic. J. Appl. Ecol. 2004, 41, 824–835. [Google Scholar] [CrossRef]
- Öckinger, E.; Smith, H.G. Semi-natural Grasslands as Population Sources for Pollinating Insects in Agricultural Landscapes. J. Appl. Ecol. 2007, 44, 50–59. [Google Scholar] [CrossRef]
- Wallander, J.; Isaksson, D.; Lenberg, T. Wader Nest Distribution and Predation in Relation to Man-Made Structures on Coastal Pastures. Biol. Conserv. 2006, 132, 343–350. [Google Scholar] [CrossRef]
- Wilson, J.B.; Peet, R.K.; Dengler, J.; Pärtel, M. Plant Species Richness: The World Records. J. Veg. Sci. 2012, 23, 796–802. [Google Scholar] [CrossRef]
- Żmihorski, M.; Kotowska, D.; Berg, Å.; Pärt, T. Evaluating Conservation Tools in Polish Grasslands: The Occurrence of Birds in Relation to Agri-Environment Schemes and Natura 2000 Areas. Biol. Conserv. 2016, 194, 150–157. [Google Scholar] [CrossRef]
- Halada, L.; Evans, D.; Romão, C.; Petersen, J.-E. Which Habitats of European Importance Depend on Agricultural Practices? Biodivers. Conserv. 2011, 20, 2365–2378. [Google Scholar] [CrossRef]
- Lindborg, R.; Bengtsson, J.; Berg, Å.; Cousins, S.A.; Eriksson, O.; Gustafsson, T.; Hasund, K.P.; Lenoir, L.; Pihlgren, A.; Sjödin, E. A Landscape Perspective on Conservation of Semi-Natural Grasslands. Agric. Ecosyst. Environ. 2008, 125, 213–222. [Google Scholar] [CrossRef]
- Röös, E.; Patel, M.; Spångberg, J.; Carlsson, G.; Rydhmer, L. Limiting Livestock Production to Pasture and By-Products in a Search for Sustainable Diets. Food Policy 2016, 58, 1–13. [Google Scholar] [CrossRef]
- Röös, E.; Ekelund, L.; Tjärnemo, H. Communicating the Environmental Impact of Meat Production: Challenges in the Development of a Swedish Meat Guide. J. Clean. Prod. 2014, 73, 154–164. [Google Scholar] [CrossRef]
- Vickery, J.; Tallowin, J.; Feber, R.; Asteraki, E.; Atkinson, P.; Fuller, R.; Brown, V. The Management of Lowland Neutral Grasslands in Britain: Effects of Agricultural Practices on Birds and Their Food Resources. J. Appl. Ecol. 2001, 38, 647–664. [Google Scholar] [CrossRef]
- Pärt, T.; Söderström, B. Conservation Value of Semi-natural Pastures in Sweden: Contrasting Botanical and Avian Measures. Conserv. Biol. 1999, 13, 755–765. [Google Scholar] [CrossRef]
- Francksen, R.M.; Turnbull, S.; Rhymer, C.M.; Hiron, M.; Bufe, C.; Klaus, V.H.; Newell-Price, P.; Stewart, G.; Whittingham, M.J. The Effects of Nitrogen Fertilisation on Plant Species Richness in European Permanent Grasslands: A Systematic Review and Meta-Analysis. Agronomy 2022, 12, 2928. [Google Scholar] [CrossRef]
- Hiron, M.; Berg, Å.; Eggers, S.; Pärt, T. Are Farmsteads Over-Looked Biodiversity Hotspots in Intensive Agricultural Ecosystems? Biol. Conserv. 2013, 159, 332–342. [Google Scholar] [CrossRef]
- Glimskär, A.; Skånes, H. Land Type Categories as a Complement to Land Use and Land Cover Attributes in Landscape Mapping and Monitoring. In Land Use and Land Cover Semantics—Principles, Best Practices and Prospects; CLC Press/Taylor Fr.: Boca Raton, FL, USA, 2015. [Google Scholar]
- EU Commission Regulation (EC) No 796/2004 of 21 April 2004 Laying down Detailed Rules for the Implementation of Cross-Compliance, Modulation and the Integrated Administration and Control System Provided for in of Council Regulation (EC) No 1782/2003 Establishing Common Rules for Direct Support Schemes under the Common Agricultural Policy and Establishing Certain Support Schemes for Farmers. 2004. Available online: https://op.europa.eu/en/publication-detail/-/publication/5fb699ea-8fa5-4ec4-b4db-519b91d65e72 (accessed on 5 March 2024).
- Ett rikt odlingslandskap—Fördjupad utvärdering 2023; Rapport 2022:17; Jordbruksverket: Jönköping, Sweden, 2022.
- Hultgren, J.; Hiron, M.; Glimskär, A.; Bokkers, E.A.; Keeling, L.J. Environmental Quality and Compliance with Animal Welfare Legislation at Swedish Cattle and Sheep Farms. Sustainability 2022, 14, 1095. [Google Scholar] [CrossRef]
- Sweden, S. Jordbruksstatistisk Sammanställning 2019 Med Data Om Livsmedel–Tabeller [Agricultural Statistics 2019 Including Food Statistics–Tables]; Statistics Sweden; Agriculture and Energy Statistics Unit: Örebro, Sweden, 2020. [Google Scholar]
- Svenska Vallföreningen Svenska Vallbrev. 2019. Available online: http://www.svenskavall.se/DynamicFiles/ContentFiles/00003754/Vall-och-betesdrift-sartryck-2019.pdf (accessed on 5 March 2024).
- Karlsson, J.; Einarsson, R.; Tidåker, P. Vallens Roll i Hållbara Livsmedelssystem—Hur Välintegrerad Är Vallen i Växtodlingssystemen? In Proceedings of the Vallkonferens 2023, Institutionen för Växtproduktionsekologi, Sveriges lantbruksuniversitet, Uppsala, Sweden, 7–8 February 2023. [Google Scholar]
- Lundin, A.; Kindström, M.; Glimskär, A. Metodik för Regional Miljöövervakning av Gräsmarker och Våtmarker 2015–2020; Länsstyrelsen i Örebro län: Örebro, Sweden, 2016. [Google Scholar]
- Ihse, M. Colour Infrared Aerial Photography as a Tool for Vegetation Mapping and Change Detection in Environmental Studies of Nordic Ecosystems: A Review. Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2007, 61, 170–191. [Google Scholar] [CrossRef]
- Cousins, S.A.; Ihse, M. A Methodological Study for Biotope and Landscape Mapping Based on CIR Aerial Photographs. Landsc. Urban Plan. 1998, 41, 183–192. [Google Scholar] [CrossRef]
- Tyler, T.; Herbertsson, L.; Olofsson, J.; Olsson, P.A. Ecological Indicator and Traits Values for Swedish Vascular Plants. Ecol. Indic. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Diekmann, M. Species Indicator Values as an Important Tool in Applied Plant Ecology—A Review. Basic Appl. Ecol. 2003, 4, 493–506. [Google Scholar] [CrossRef]
- Lumley, T. Analysis of Complex Survey Samples. J. Stat. Softw. 2004, 9, 1–19. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Harrison, X.A. Using Observation-Level Random Effects to Model Overdispersion in Count Data in Ecology and Evolution. PeerJ 2014, 2, e616. [Google Scholar] [CrossRef] [PubMed]
- Kindt, R.; Coe, R. Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies; World Agroforestry Centre: Nairobi, Kenya, 2005; ISBN 92-9059-179-X. [Google Scholar]
- Hartig, F. Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.4.6. 2022. Available online: http://florianhartig.github.io/DHARMa/ (accessed on 5 March 2024).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage Publications: New York, NY, USA, 2019. [Google Scholar]
- Fox, J. Effect Displays in R for Generalised Linear Models. J. Stat. Softw. 2003, 8, 1–27. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.-M.; Kremen, C.; M’gonigle, L.K.; Rader, R. Delivery of Crop Pollination Services Is an Insufficient Argument for Wild Pollinator Conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef] [PubMed]
- Riedinger, V.; Renner, M.; Rundlöf, M.; Steffan-Dewenter, I.; Holzschuh, A. Early Mass-Flowering Crops Mitigate Pollinator Dilution in Late-Flowering Crops. Landsc. Ecol. 2014, 29, 425–435. [Google Scholar] [CrossRef]
- Riggi, L.G.; Lundin, O.; Berggren, Å. Mass-Flowering Red Clover Crops Have Positive Effects on Bumblebee Richness and Diversity after Bloom. Basic Appl. Ecol. 2021, 56, 22–31. [Google Scholar] [CrossRef]
- Spörndly, E.; Glimskär, A. Grazing Livestock and Stocking Rate in Swedish Semi-Natural Pastures; Report; Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018. [Google Scholar]
- Jamieson, A.; Hessle, A. Hinder Och Möjligheter För Ökad Naturbetesdrift Ur Ett Lantbrukarperspektiv: En Kunskapsöversikt; SustAinimal Report; Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2021. [Google Scholar]
Swedish Aerial Photography Land Use Classification | Definition for This Study |
---|---|
11 Managed pasture or meadow | Semi-natural PG |
21 Arable land used for arable crops and ley | Improved temporary grassland (TG) |
22 Arable land with permanent grazing or mowing | Improved PG |
24 Former arable land with permanent grazing or mowing | Improved PG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilera Nuñez, G.; Glimskär, A.; Zacchello, G.; Francksen, R.M.; Whittingham, M.J.; Hiron, M. Agriculturally Improved and Semi-Natural Permanent Grasslands Provide Complementary Ecosystem Services in Swedish Boreal Landscapes. Agronomy 2024, 14, 567. https://doi.org/10.3390/agronomy14030567
Aguilera Nuñez G, Glimskär A, Zacchello G, Francksen RM, Whittingham MJ, Hiron M. Agriculturally Improved and Semi-Natural Permanent Grasslands Provide Complementary Ecosystem Services in Swedish Boreal Landscapes. Agronomy. 2024; 14(3):567. https://doi.org/10.3390/agronomy14030567
Chicago/Turabian StyleAguilera Nuñez, Guillermo, Anders Glimskär, Giulia Zacchello, Richard M. Francksen, Mark J. Whittingham, and Matthew Hiron. 2024. "Agriculturally Improved and Semi-Natural Permanent Grasslands Provide Complementary Ecosystem Services in Swedish Boreal Landscapes" Agronomy 14, no. 3: 567. https://doi.org/10.3390/agronomy14030567
APA StyleAguilera Nuñez, G., Glimskär, A., Zacchello, G., Francksen, R. M., Whittingham, M. J., & Hiron, M. (2024). Agriculturally Improved and Semi-Natural Permanent Grasslands Provide Complementary Ecosystem Services in Swedish Boreal Landscapes. Agronomy, 14(3), 567. https://doi.org/10.3390/agronomy14030567