The Effects of Incorporating Caraway into a Multi-Cropping Farming System on the Crops and the Overall Agroecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Agrochemical Studies
2.4. Soil Shear Resistance
2.5. Soil Aggregate–Size Distribution
2.6. Soil CO2 Emission
2.7. Plant Root Studies
2.8. Soil Enzyme Activity
2.9. Weed Dry Biomass
2.10. Meteorological Conditions
2.11. Statistical Analysis
3. Results
3.1. An Integrated Assessment of the Effect of Multi-Cropping System Crops on the Agroecosystem in 2017–2019
3.2. An Integrated Assessment of the Effect of Multi-Cropping System Crops on the Agroecosystem in 2018–2020
3.3. An Integrated Assessment of the Effect of Multi-Cropping System Crops on the Agroecosystem in 2019–2021
4. Discussion
4.1. Soil Agrochemical Properties under Multi-Cropping System Crops
4.1.1. Total Nitrogen
4.1.2. Organic Carbon
4.1.3. Mobile Phosphorus
4.1.4. Mobile Potassium
4.2. Soil Agrophysical Properties under Multi-Cropping System Crops
4.2.1. Soil Shear Resistance
4.2.2. Macro-Aggregate Content
4.3. Soil Biological Properties under Multi-Cropping System Crops
4.3.1. Root Dry Biomass
4.3.2. Soil Enzyme Activity
4.3.3. Soil CO2 Emission
4.4. Weediness of Multi-Cropping System Crops
4.5. Challenges of Multi-Cropping System Crop Cultivation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Supporting Information
Name of Pesticide | Type | Active Substance | Amount | Abbreviation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fenix | herbicide | aclonifen 600 g L−1 | 3.00 L ha−1 | F | ||||||||
Signum | fungicide | boscalid 267 g kg−1 + pyraclostrobin 67 g kg−1 | 0.50 L ha−1 | S | ||||||||
Cyperkill 500 EC | insecticide | cypermethrin 500 g L−1 | 0.05 L ha−1 | C | ||||||||
Elegant 2 FD | herbicide | florasulam 6.25 g L−1 + 2.4-D 300 g L−1 | 0.40 L ha−1 | E | ||||||||
Karate Zeon 5 CS | insecticide | lambda-cyhalothrin 50 g L−1 | 0.14 L ha−1 | KZ | ||||||||
Bumper 25 EC | fungicide | propiconazole 250 g L−1 | 0.50 L ha−1 | B | ||||||||
Bulldock 025 EC | insecticide | beta-cyfluthrin 25 g L−1 | 0.30 L ha−1 | Bu | ||||||||
Miradol 250 SC | fungicide | azoxystrobin 250 g L−1 | 0.60 L ha−1 | M | ||||||||
Trimmer | herbicide | tribenuron-methyl 500 g kg−1 | 0.10 kg ha−1 | T | ||||||||
First year of caraway vegetative season | Second year of caraway vegetative season | Third year of caraway vegetative season | ||||||||||
2017, 2019 | 2018, 2020 | 2019, 2021 | ||||||||||
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | ||||
Sole | SB-SB-SB | – | E + KZ ** | B ** | – | E + KZ ** | M + Bu ** | – | E + T ** | B ** | ||
SW-SB-SB | – | E + KZ ** | B ** | – | E + KZ ** | M + Bu ** | – | E + T ** | B ** | |||
P-SB-SB | F * | – | S + C ** | – | E + KZ ** | M + Bu ** | – | – | B ** | |||
CA-BF | F * | – | – | – | – | – | – | – | ||||
Binary | SB-CA | – | – | B ** | – | – | – | – | – | – | ||
SW-CA | – | – | B ** | – | – | – | – | – | – | |||
P-CA | F * | – | S + C ** | – | – | – | – | – | – | |||
Trinary | SB-CA-WC | – | – | B ** | – | – | – | – | – | – | ||
SW-CA-WC | – | – | B ** | – | – | – | – | – | – | |||
P-CA-WC | – | – | S + C ** | – | – | – | – | – | – | |||
First year of caraway vegetative season | Second year of caraway vegetative season | Third year of caraway vegetative season | ||||||||||
2018 | 2019 | 2020 | ||||||||||
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | ||||
Sole | SB-SW-WW | – | E + KZ ** | B ** | – | E + KZ ** | M + Bu ** | A + St ** | Mr + MF ** | O + Bu ** | ||
SW-SW-WW | – | E + KZ * | B ** | – | E + KZ ** | M + Bu ** | A + St ** | Mr + MF ** | O + Bu ** | |||
P-SW-WW | F * | – | S + C ** | – | E + KZ ** | M + Bu ** | A + St ** | Mr + MF ** | O + Bu ** | |||
CA-BF | F * | – | – | – | – | – | – | – | – | |||
Binary | SB-CA | – | – | B + KZ ** | – | – | – | – | – | – | ||
SW-CA | – | – | B + KZ ** | – | – | – | – | – | – | |||
P-CA | F * | – | S + C ** | – | – | – | – | – | – | |||
Trinary | SB-CA-WC | – | – | B + KZ ** | – | – | – | – | – | – | ||
SW-CA-WC | – | – | B + KZ ** | – | – | – | – | – | – | |||
P-CA-WC | – | – | S + C ** | – | – | – | – | – | – |
References
- Hertel, T.W. The global supply and demand for agricultural land in 2050: A perfect storm in the making? Am. J. Agric. Econ. 2011, 93, 259–275. [Google Scholar] [CrossRef]
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Agricultural productivity and food supply to meet increased demands. In Future Foods; Academic Press: Cambridge, MA, USA, 2022; pp. 539–553. [Google Scholar]
- Arora, N.K.; Fatima, T.; Mishra, I.; Verma, M.; Mishra, J.; Mishra, V. Environmental sustainability: Challenges and viable solutions. Environ. Sustain. 2018, 1, 309–340. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping–A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Massawe, F.; Mayes, S.; Cheng, A. Crop diversity: An unexploited treasure trove for food security. Trends Plant Sci. 2016, 21, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Lizarazo, C.I.; Tuulos, A.; Jokela, V.; Mäkelä, P.S. Sustainable mixed cropping systems for the boreal-nemoral region. Front. Sustain. Food Syst. 2020, 4, 103. [Google Scholar] [CrossRef]
- Naulleau, A.; Gary, C.; Prévot, L.; Hossard, L. Evaluating strategies for adaptation to climate change in grapevine production–A systematic review. Front. Plant Sci. 2021, 11, 607859. [Google Scholar] [CrossRef] [PubMed]
- Keating, B.A.; Carberry, P.S.; Bindraban, P.S.; Asseng, S.; Meinke, H.; Dixon, J. Eco-efficient agriculture: Concepts, challenges, and opportunities. Crop Prot. 2010, 50, 109–119. [Google Scholar] [CrossRef]
- Ghanbari-Bonjar, A.; Lee, H.C. Intercropped wheat (Triticum aestivum L.) and bean (Vicia faba L.) as a whole-crop forage: Effect of harvest time on forage yield and quality. Grass Forage Sci. 2003, 58, 28–36. [Google Scholar] [CrossRef]
- Eskandari, H.; Ghanbari-Bonjar, A.; Galavi, M.; Salari, M. Forage quality of cow pea (Vigna sinensis) intercropped with corn (Zea mays) as affected by nutrient uptake and light interception. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 171–174. [Google Scholar]
- Hiddink, G.A.; Termorshuizen, A.J.; Bruggen, A.H.C.V. Mixed cropping and suppression of soilborne diseases. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2010; pp. 119–146. [Google Scholar]
- Frick, B.L.; Telford, L.; Martens, J.T. Intercropping. In Organic Field Crop Handbook, 3rd ed.; Wallace, J., Ed.; Canadian Organic Growers: Ottawa, ON, Canada, 2017; pp. 169–176. [Google Scholar]
- Gill, S.; Abid, M.; Azam, F. Mixed cropping effects on growth of wheat (Triticum aestivum L.) and chickpea (Cicer arietenum L.). Pak. J. Bot. 2009, 41, 1029–1036. [Google Scholar]
- Mahapatra, S.C. Study of grass-legume intercropping system in terms of competition indices and monetary advantage index under acid lateritic soil of India. Am. J. Exp. Agric. 2011, 1, 1. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Synowiec, A. Productive and Ecological Aspects of Mixed Cropping System. Agriculture 2021, 11, 395. [Google Scholar] [CrossRef]
- Lizarazo, C.I.; Lampi, A.M.; Mäkelä, P.S. Can foliar-applied nutrients improve caraway (Carum carvi L.) seed oil composition? Ind. Crops Prod. 2021, 170, 113793. [Google Scholar] [CrossRef]
- Raal, A.; Arak, E.; Orav, A. The content and composition of the essential oil found in Carum carvi L. commercial fruits obtained from different countries. J. Essent. Oil Res. 2012, 24, 53–59. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 2020, 64, 102131. [Google Scholar] [CrossRef] [PubMed]
- Wahbi, S.; Prin, Y.; Thioulouse, J.; Sanguin, H.; Baudoin, E.; Maghraoui, T.; Maghraoui, T.; Oufdou, K.; Roux, C.L.; Galiana, A.; et al. Impact of wheat/faba bean mixed cropping or rotation systems on soil microbial functionalities. Front. Plant Sci. 2016, 7, 1364. [Google Scholar] [CrossRef] [PubMed]
- Sears, R.R.; Shah, A.N.; Lehmann, L.M.; Ghaley, B.B. Comparison of resilience of different plant teams to drought and temperature extremes in Denmark in sole and intercropping systems. Acta Agric. Scand.-B Soil Plant Sci. 2021, 71, 645–655. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 155–163. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Dresboll, D.B.; Kristensen, H.L. Crop yield, root growth and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. Eur. J. Agron. 2012, 37, 66–82. [Google Scholar] [CrossRef]
- Kadžiulienė, Ž.; Šarūnaitė, L.; Kadžiulis, L. The impact of nitrogen in red clover and lucerne swards on the subsequent spring wheat. Org. Farming Syst. A Driv. Change 2013, 9, 159–160. [Google Scholar]
- Doltra, J.; Olesen, J.E. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 2013, 44, 98–108. [Google Scholar] [CrossRef]
- Raseduzzaman, M.D.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Kozera, W.; Barczak, B.; Orłowska, M.J.; Knapowski, T. Agrotechnical and economic assessment of intercropping of caraway (Carum carvi L.). J. Cent. Eur. Agric. 2018, 19, 227–244. [Google Scholar] [CrossRef]
- Mu-chun, Y.; Ting-ting, X.; Peng-hui, S.; Jian-jun, D. Effects of different cropping patterns of soybean and maize seedlings on soil enzyme activities and MBC and MBN. J. Northeast Agric. Univ. 2012, 19, 42–47. [Google Scholar] [CrossRef]
- Li, X.; Mu, Y.; Cheng, Y.; Liu, X.; Nian, H. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol. Plant. 2013, 35, 1113–1119. [Google Scholar] [CrossRef]
- Dakora, F.D. Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol. 2003, 158, 39–49. [Google Scholar] [CrossRef]
- Adamu, G.K.; Yusuf, M.A. A comparative study of changes in soil fertility under two farming practices in the Kano close-settled zone. Eur. Sci. J. 2014, 10, 313–323. [Google Scholar]
- Wang, Z.G.; Bao, X.G.; Li, X.F.; Jin, X.; Zhao, J.H.; Sun, J.H.; Christie, P.; Li, L. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil. 2015, 39, 265–282. [Google Scholar] [CrossRef]
- Yadollahi, P.; Abad, A.R.B.; Khaje, M.; Asgharipour, M.R.; Amiri, A. Effect of intercropping on weed control in sustainable agriculture. Int. J. Agric. Crop Sci. 2014, 7, 683–686. [Google Scholar]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Nongkling, P.; Kayang, H. Soil physicochemical properties and its relationship with AMF spore density under two cropping systems. Curr. Res. Environ. Appl. Mycol. 2017, 7, 33–39. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Mohanty, M.; Bandyopadhyay, K.K.; Painuli, D.K.; Misra, A.K. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India: II. Effect of nutrient management. Field Crops Res. 2006, 96, 90–97. [Google Scholar] [CrossRef]
- Hiltbrunner, J.; Liedgens, M. Performance of winter wheat varieties in white clover living mulch. Biol. Agric. Hortic. 2008, 26, 85–101. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E. Facilitative root interactions in intercrops. In Root Physiology: From Gene to Function; Lambers, H., Colmer, T.D., Eds.; Plant Ecophysiology; Springer: Dordrecht, The Netherlands, 2005; pp. 237–250. [Google Scholar]
- Rao, C.H.S.; Grover, M.; Kundu, S.; Desai, S. Soil Enzymes. In Encyclopedia of Soil Science; Taylor and Francis: Abingdon, UK, 2017; pp. 2100–2107. [Google Scholar]
- Allen, D.E.; Singh, B.P.; Dalal, R.C. Soil Health Indicators Under Climate Change: A Review of Current Knowledge. In Soil Health and Climate Change; Singh, B., Cowie, A., Chan, K., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 29, pp. 25–45. [Google Scholar]
- Freibauer, A.; Rounsevell, M.D.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Betencourt, E.; Duputel, M.; Colomb, B.; Desclaux, D.; Hinsinger, P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol. Biochem. 2012, 46, 181–190. [Google Scholar] [CrossRef]
- Hu, F.; Gan, Y.; Cui, H.; Zhao, C.; Feng, F.; Yin, W.; Chai, Q. Intercropping maize and wheat with conservation agriculture principles improves water harvesting and reduces carbon emissions in dry areas. Eur. J. Agron. 2016, 74, 9–17. [Google Scholar] [CrossRef]
- Mthembu, B.E.; Everson, T.M.; Everson, C.S. Intercropping maize (Zea mays L.) with lablab (Lablab purpureus L.) for sustainable fodder production and quality in smallholder rural farming systems in South Africa. Agroecol. Sustain. Food Syst. 2018, 42, 362–382. [Google Scholar] [CrossRef]
- Hirte, J.; Leifeld, J.; Abiven, S.; Oberholzer, H.R.; Hammelehle, A.; Mayer, J. Overestimation of crop root biomass in field experiments due to extraneous organic matter. Front. Plant Sci. 2017, 8, 284. [Google Scholar] [CrossRef]
- Eichler-Loebermann, B.; Zicker, T.; Kavka, M.; Busch, S.; Brandt, C.; Stahn, P.; Miegel, K. Mixed cropping of maize or sorghum with legumes as affected by long-term phosphorus management. Field Crops Res. 2021, 265, 108120. [Google Scholar] [CrossRef]
- Oelmann, Y.; Lange, M.; Leimer, S.; Roscher, C.; Aburto, F.; Alt, F.; Bange, N.; Berner, D.; Boch, S.; Boeddinghaus, R.S.; et al. Above-and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nat. Commun. 2021, 12, 4431. [Google Scholar] [CrossRef]
- Zhu, S.G.; Cheng, Z.G.; Yin, H.H.; Zhou, R.; Yang, Y.M.; Wang, J.; Zhu, H.; Wang, W.; Wang, B.Z.; Li, W.B.; et al. Transition in plant–plant facilitation in response to soil water and phosphorus availability in a legume-cereal intercropping system. BMC Plant Biol. 2022, 22, 311. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, P.; Xiang, R.; He, S.; Zhou, Y.; Yin, X.; Long, G. Nitrogen fertilization overweighs intercropping in promotion of dissolved organic carbon concentration and complexity in potato-cropped soil. Plant Soil 2021, 462, 273–284. [Google Scholar] [CrossRef]
- Datt, N.; Singh, D. Enzymes in relation to soil biological properties and sustainability. In Sustainable Management of Soil and Environment; Meena, R., Kumar, S., Bohra, J., Jat, M., Eds.; Springer: Singapore, 2019; pp. 383–406. [Google Scholar]
- Samuel, A.D.; Domuta, C.; Ciobanu, C.; Sandor, M. Field management effects on soil enzyme activities. Rom. Agric. Res. 2008, 28, 61–68. [Google Scholar]
- Nath, C.P.; Kumar, N.; Das, K.; Hazra, K.K.; Praharaj, C.S.; Singh, N.P. Impact of variable tillage based residue management and legume based cropping for seven years on enzymes activity, soil quality index and crop productivity in rice ecology. Environ. Sustain. Indicat. 2021, 10, 100107. [Google Scholar] [CrossRef]
- Utobo, E.B.; Tewari, L. Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Environ. Res. 2015, 13, 147–169. [Google Scholar]
- Lee, S.H.; Kim, M.S.; Kim, J.G.; Kim, S.O. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability 2020, 12, 8209. [Google Scholar] [CrossRef]
- Attademo, A.M.; Sanchez-Hernandez, J.C.; Lajmanovich, R.C.; Repetti, M.R.; Peltzer, P.M. Enzyme activities as indicators of soil quality: Response to intensive soybean and rice crops. Water Air Soil Pollut. 2021, 232, 295. [Google Scholar] [CrossRef]
- Trap, J.; Riah, W.; Akpa-Vinceslas, M.; Bailleul, C.; Laval, K.; Trinsoutrot-Gattin, I. Improved effectiveness and efficiency in measuring soil enzymes as universal soil quality indicators using microplate fluorimetry. Soil Biol. Biochem. 2012, 45, 98–101. [Google Scholar] [CrossRef]
- Heenan, D.P.; Chan, K.Y.; Knight, P.G. Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a Chromic luvisol. Soil Tillage Res. 2004, 76, 59–68. [Google Scholar] [CrossRef]
- 53. Gulwa, U.; Mgujulwa, N.; Beyene, S.T. Benefits of grass-legume inter-cropping in livestock systems. Afr. J. Agric. Res. 2018, 13, 1311–1319. [Google Scholar] [CrossRef]
- Andrés, P.; Doblas-Miranda, E.; Silva-Sánchez, A.; Mattana, S.; Font, F. Physical, chemical, and biological indicators of soil quality in Mediterranean vineyards under contrasting farming schemes. Agronomy 2022, 12, 2643. [Google Scholar] [CrossRef]
- Lindsey, R. Climate Change: Atmospheric Carbon Dioxide, Nat’l Oceanic & Atmospheric Admin. 2022. Available online: https://www.climate.gov/news-features/understandingclimate/climate-change-atmospheric-carbon-dioxide (accessed on 15 July 2023).
- Chai, Q.; Qin, A.; Gan, Y.; Yu, A. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron. Sustain. Dev. 2014, 34, 535–543. [Google Scholar] [CrossRef]
- Hu, F.; Feng, F.; Zhao, C.; Chai, Q.; Yu, A.; Yin, W.; Gan, Y. Integration of wheat-maize intercropping with conservation practices reduces CO2 emissions and enhances water use in dry areas. Soil Tillage Res. 2017, 169, 44–53. [Google Scholar] [CrossRef]
- Beedy, T.L.; Snapp, S.S.; Akinnifesi, F.K.; Sileshi, G.W. Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric. Ecosyst. Environ. 2010, 138, 139–146. [Google Scholar] [CrossRef]
- Skinulienė, L.; Bogužas, V.; Steponavičienė, V.; Sinkevičienė, A.; Marcinkevičienė, A.; Sinkevičius, A. Impact of long-term crop rotation combinations on soil CO2 emissions and earthworm abundance. Agric. Sci. 2019, 26, 83–93. [Google Scholar]
- Romaneckas, K.; Balandaitė, J.; Sinkevčienė, A.; Kimbirauskienė, R.; Jasinskas, A.; Ginelevičius, U.; Romaneckas, A.; Petlickaitė, R. Short-Term Impact of Multi-Cropping on Some Soil Physical Properties and Respiration. Agronomy 2022, 12, 141. [Google Scholar] [CrossRef]
- WRB IUSS Working Group. Global Soil Resources Reference Framework. In International Soil Classification System for Naming Soils and Creating Soil Map Legends, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; Available online: https://www.fao.org/soils-portal/data-hub/soil-classification/universal-soil-classification/en/ (accessed on 17 July 2023).
- Staugaitis, G.; Vaišvila, Z.J. Soil Agrochemical Research. In Scientific-Methodical Material; The Lithuanian Research Centre for Agriculture and Forestry Agrochemical Research Laboratory: Kėdainiai District, Lithuanian, 2019; p. 112. [Google Scholar]
- Rudinskienė, A.; Marcinkevičienė, A.; Velička, R.; Kosteckas, R.; Kriaučiūnienė, Z.; Vaisvalavičius, R. The Comparison of Soil Agrochemical and Biological Properties in the Multi-Cropping Farming. Syst. Plants 2022, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- Butnor, J.R.; Johnsen, K.H.; Maier, C.A. Soil properties differently influence estimates of soil CO2 efflux from three chamber-based measurement systems. Biogeochemistry 2005, 73, 283–301. [Google Scholar] [CrossRef]
- Mccormack, M.L.; Guo, D.; Iversen, C.M.; Chen, W.; Eissenstat, D.M.; Fernandez, C.W.; Li, L.; Ma, C.; Ma, Z.; Poorter, H.; et al. Building a better foundation: Improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol. 2017, 215, 27–37. [Google Scholar] [CrossRef]
- Chunderova, A.I. The Enzymatic Activity of Sod-Podzolic Soils of the North-Western Region. Doctoral Dissertation, Tallinn University, Tallinn, Estonia, 1973; p. 46. [Google Scholar]
- Stancevičius, A. Weed Inventory and Field Weed Mapping; The Science: Vilnius, Lithuania, 1979; p. 37. [Google Scholar]
- Lohmann, G. Entwicklung eines Bewertungsverfahrens für Anbausysteme mit Differenzierten Aufwandmengen Ertragssteigernder und Ertragssichernder Betriebsmittel. Ph.D. Thesis, University of Bonn, Bonn, Germany, 1994; p. 139. (In German). [Google Scholar]
- Heyland, K.U. Zur Methodik einer integrierten Darstellung und Bewertung der Produktionsverfahren im Pflanzenbau. In Pflanzenbauwissenschaften; Verlag Eugen Ulmer GmbH & Co.: Stuttgart, Germany, 1998; Volume 2, pp. 145–159. (In German) [Google Scholar]
- Sammama, H.; El Kaoua, M.; Hsissou, D.; Latique, S.; Selmaoui, K.; Alfeddy, M.N. The impact of wheat and faba bean intercrop on the competitive interactions, grain yield, biochemical parameters and mineral content of leaves. Zemdirb.-Agric. 2021, 108, 233–240. [Google Scholar] [CrossRef]
- Andersen, M.K.; Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil 2005, 266, 273–287. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Andersen, M.K.; Joernsgaard, B.; Jensen, E.S. Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crops Res. 2006, 95, 256–267. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Murwira, H.K.; Nyamangara, J. Cotton–cowpea intercropping and its N2 fixation capacity improves yield of a subsequent maize crop under Zimbabwean rain-fed conditions. Plant Soil 2006, 287, 327–336. [Google Scholar] [CrossRef]
- Thorsted, M.D.; Olesen, J.E.; Weiner, J. Width of clover strips and wheat rows influence grain yield in winter wheat/white clover intercropping. Field Crops Res. 2006, 95, 280–290. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume–cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef]
- Iannetta, P.P.; Young, M.; Bachinger, J.; Bergkvist, G.; Doltra, J.; Lopez-Bellido, R.J.; Monti, M.; Pappa, V.A.; Reckling, M.; Topp, C.F.E.; et al. A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: The potential role of biological nitrogen fixation. Front. Plant Sci. 2016, 7, 1700. [Google Scholar] [CrossRef] [PubMed]
- Nasar, J.; Alam, A.; Nasar, A.; Khan, M.Z. Intercropping induce changes in above and below ground plant compartments in mixed cropping system. Biomed. J. Sci. Tech. Res. 2019, 17, 13043–13050. [Google Scholar] [CrossRef]
- Eze, S.; Dougill, A.J.; Banwart, S.A.; Hermans, T.D.; Ligowe, I.S.; Thierfelder, C. Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems. Soil Tillage Res. 2020, 201, 104639. [Google Scholar] [CrossRef]
- Adamu, G.K.; Dawaki, M.U. Fertility Status of Soils under Irrigation along the Jakara Stream in Metropolitan Kano. Bayero J. Pure Appl. Sci. 2008, 1, 67–70. [Google Scholar]
- Li, Z.; Gao, Q.; Liu, Y.; He, C.; Zhang, X.; Zhang, J. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 2011, 233, 1129–1143. [Google Scholar] [CrossRef]
- Li, L.; Tilman, D.; Lambers, H.; Zhang, F.S. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytol. 2014, 203, 63–69. [Google Scholar] [CrossRef]
- Muofhe, M.L.; Dakora, F.D. Modification of rhizosphere pH by the symbiotic legume Aspalathus linearis growing in a sandy acidic soil. Funct. Plant Biol. 2000, 27, 1169–1173. [Google Scholar] [CrossRef]
- Blaise, D.; Bonde, A.N.; Chaudhary, R.S. Nutrient uptake and balance of cotton+ pigeonpea strip intercropping on rainfed Vertisols of central India. Nutr. Cycl. Agroecosyst. 2005, 73, 135–145. [Google Scholar] [CrossRef]
- Mondal, S.S.; Ghosh, A.; Acharya, D.; Maiti, D. Production potential and economics of different rainfed rice (Oryw sativa)-based utera cropping systems and its effect on fertility build up of soil. Indian J. Agron. 2004, 49, 6–9. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D.; Basak, B.B.; Meena, R.S. Potassium uptake by crops as well as microorganisms. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: New Delhi, India, 2016; pp. 267–280. [Google Scholar]
- Xiao, X.; Cheng, Z.; Meng, H.; Liu, L.; Li, H.; Dong, Y. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel. PLoS ONE 2013, 8, e62173. [Google Scholar] [CrossRef]
- Juchnevičienė, A.; Raudonius, S.; Avižienytė, D.; Romaneckas, K.; Bogužas, V. Effect of long-term reduced tillage and direct drilling on winter wheat yield. Agric. Sci. 2012, 19, 139–150. [Google Scholar]
- Meng, S.; Zhao, G.; Yang, Y. Impact of plant root morphology on rooted-soil shear resistance using triaxial testing. Adv. Civ. Eng. 2020, 2020, 8825828. [Google Scholar] [CrossRef]
- Alagöz, Z.; Yilmaz, E. Effects of different sources of organic matter on soil aggregate formation and stability: A laboratory study on a Lithic Rhodoxeralf from Turkey. Soil Tillage Res. 2009, 103, 419–424. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Cowie, A.L.; Fang, Y.; Collins, D.; Badgery, W.; Dalal, R.C. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil Tillage Res. 2018, 178, 209–223. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Nasar, J.; Shao, Z.; Gao, Q.; Zhou, X.; Fahad, S.; Liu, S.; Li, C.; Banda, J.S.K.; Kgorutla, L.E.; Dawar, K.M. Maize-alfalfa intercropping induced changes in plant and soil nutrient status under nitrogen application. Arch. Agron. Soil Sci. 2022, 68, 151–165. [Google Scholar] [CrossRef]
- Bellostas, N.; Hauggaard-Nielsen, H.; Andersen, M.K.; Jensen, E.S. Early interference dynamics in intercrops of pea, barley and oilseed rape. Biol. Agric. Hortic. 2003, 21, 337–348. [Google Scholar] [CrossRef]
- Saha, S.; Prakash, V.; Kundu, S.; Kumar, N.; Mina, B.L. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in NW Himalaya. Eur. J. Soil Biol. 2008, 44, 309–315. [Google Scholar] [CrossRef]
- Cui, T.; Fang, L.; Wang, M.; Jiang, M.; Shen, G. Intercropping of gramineous pasture ryegrass (Lolium perenne L.) and leguminous forage alfalfa (Medicago sativa L.) increases the resistance of plants to heavy metals. J. Chem. 2018, 2018, 7803408. [Google Scholar] [CrossRef]
- Liu, E.; Teclemariam, S.G.; Yan, C.; Yu, J.; Gu, R.; Liu, S.; He, W.; Liu, Q. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma 2014, 213, 379–384. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Kennedy, A.C. Grain legumes in Northern Great Plains: Impacts on selected biological soil processes. J. Agron. 2007, 99, 1700–1709. [Google Scholar] [CrossRef]
- Rochette, P.; Janzen, H.H. Towards a revised coefficient for estimating N2O emissions from legumes. Nutr. Cycl. Agroecosyst. 2005, 73, 171–179. [Google Scholar] [CrossRef]
- Ibrahim, H.; Hatira, A.; Pansu, M. Modelling the functional role of microorganisms in the daily exchanges of carbon between atmosphere, plants and soil. Procedia Environ. Sci. 2013, 19, 96–105. [Google Scholar] [CrossRef]
- Yan, J.J.; Yan, L.F.; Yang, J. Pang effects of soybean and cotton growth on soil respiration. Acta Sci. Agron. 2010, 36, 1559–1567. [Google Scholar]
- Mennan, H.; Jabran, K.; Zandstra, B.H.; Pala, F. Non-chemical weed management in vegetables by using cover crops: A review. Agronomy 2020, 10, 257. [Google Scholar] [CrossRef]
- Sturm, D.J.; Peteinatos, G.; Gerhards, R. Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Res. 2018, 58, 331–337. [Google Scholar] [CrossRef]
- Szumigalski, A.; Acker, R.V. Weed suppression and crop production in annual intercrops. Weed Res. 2005, 53, 813–825. [Google Scholar] [CrossRef]
- Cheriere, T.; Lorin, M.; Corre-Hellou, G. Species choice and spatial arrangement in soybean-based intercropping: Levers that drive yield and weed control. Field Crops Res. 2020, 256, 107923. [Google Scholar] [CrossRef]
- Gu, C.; Bastiaans, L.; Anten, N.P.; Makowski, D.; Werf, W.V.D. Annual intercropping suppresses weeds: A meta-analysis. Agric. Ecosyst. Environ. 2021, 322, 107658. [Google Scholar] [CrossRef]
- Golijan, J.; Marković, D. The benefits of organic production of medicinal and aromatic plants in intercropping system. Acta Agric. Serb. 2018, 23, 61–76. [Google Scholar] [CrossRef]
Year/Month | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | SAT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average air temperature (°C) | |||||||||||||
2017 | −3.7 | −1.5 | 3.7 | 5.6 | 12.9 | 15.4 | 16.8 | 17.5 | 13.4 | 7.6 | 3.9 | 1.2 | 2344.0 |
2018 | −1.5 | −6.2 | −1.9 | 10.2 | 17.2 | 17.5 | 20.1 | 19.2 | 14.8 | 8.3 | 2.8 | 0.7 | 2645.6 |
2019 | −3.2 | 1.3 | 3.2 | 9.1 | 13.0 | 19.8 | 17.1 | 18.1 | 13.1 | 9.1 | 5.0 | 2.3 | 2800.6 |
2020 | 2.5 | 2.2 | 3.6 | 6.9 | 10.5 | 19.0 | 17.4 | 18.7 | 14.9 | 10.3 | 5.2 | 0.6 | 2458.6 |
2021 | −3.5 | −5.0 | 1.7 | 6.2 | 11.4 | 19.5 | 22.6 | 16.5 | 11.6 | 8.1 | 4.2 | −2.3 | 2668.9 |
Long-term average | −3.7 | −4.7 | 0.3 | 6.9 | 13.2 | 16.1 | 18.7 | 17.3 | 12.6 | 6.8 | 2.8 | −2.8 | - |
Average precipitation rate (mm) | |||||||||||||
2017 | 18.4 | 31.3 | 53.1 | 73.7 | 10.5 | 80.2 | 79.6 | 55.0 | 87.1 | 105.8 | 44.6 | 68.6 | 707.9 |
2018 | 57.2 | 23.7 | 22.7 | 64.8 | 17.6 | 57.6 | 137.5 | 66.2 | 55.3 | 36.7 | 51.9 | 76.3 | 667.5 |
2019 | 58.5 | 31.6 | 43.4 | 0.6 | 29.9 | 49.4 | 60.1 | 68.2 | 43.3 | 46.8 | 20.5 | 42.3 | 494.6 |
2020 | 52.8 | 54.9 | 29.3 | 4.0 | 94.4 | 99.3 | 60.4 | 92.8 | 13.3 | 52.5 | 30.0 | 17.1 | 600.8 |
2021 | 82.2 | 12.3 | 22.0 | 33.7 | 121.6 | 40.3 | 48.4 | 122.2 | 29.1 | 27.2 | 55.5 | 38.0 | 632.5 |
Long-term average | 38.1 | 35.1 | 37.2 | 41.3 | 61.7 | 76.9 | 96.6 | 88.9 | 60.0 | 51.0 | 51.0 | 41.9 | 697.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudinskienė, A.; Marcinkevičienė, A.; Velička, R.; Steponavičienė, V. The Effects of Incorporating Caraway into a Multi-Cropping Farming System on the Crops and the Overall Agroecosystem. Agronomy 2024, 14, 625. https://doi.org/10.3390/agronomy14030625
Rudinskienė A, Marcinkevičienė A, Velička R, Steponavičienė V. The Effects of Incorporating Caraway into a Multi-Cropping Farming System on the Crops and the Overall Agroecosystem. Agronomy. 2024; 14(3):625. https://doi.org/10.3390/agronomy14030625
Chicago/Turabian StyleRudinskienė, Aušra, Aušra Marcinkevičienė, Rimantas Velička, and Vaida Steponavičienė. 2024. "The Effects of Incorporating Caraway into a Multi-Cropping Farming System on the Crops and the Overall Agroecosystem" Agronomy 14, no. 3: 625. https://doi.org/10.3390/agronomy14030625
APA StyleRudinskienė, A., Marcinkevičienė, A., Velička, R., & Steponavičienė, V. (2024). The Effects of Incorporating Caraway into a Multi-Cropping Farming System on the Crops and the Overall Agroecosystem. Agronomy, 14(3), 625. https://doi.org/10.3390/agronomy14030625