The Stability of Aggregates in Different Amazonian Agroecosystems Is Influenced by the Texture, Acidity, and Availability of Ca and Mg in the Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characterization of the Study Area
2.2. Soil Sampling and Collection
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Aggregates in Different Agroecosystems
3.2. Physical and Chemical Attributes of Soil in Different Agroecosystems
3.3. Interaction of Soil Attributes and Aggregates
4. Discussion
4.1. Effects of Management on Soil Attributes Related to Aggregates
4.2. Soil Attributes Associated with Aggregate Formation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Silveira, J.G.; Oliveira Neto, S.N.; Canto, A.C.B.; Leite, F.F.G.D.; Cordeiro, F.R.; Assad, L.T.; Silva, G.C.C.; Marques, R.O.; Dalarme, M.S.L.; Ferreira, I.G.M.; et al. Land use, land cover change and sustainable intensification of agriculture and livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability 2022, 14, 2563. [Google Scholar] [CrossRef]
- Antonelli, A.; Zizka, A.; Carvalho, F.A.; Scharn, R.; Bacon, C.D.; Silvestro, D.; Condamine, F.L. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 2018, 115, 6034–6039. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.C.A.; Spracklen, D.V. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Chang. 2019, 2, 47. [Google Scholar] [CrossRef]
- West, T.A.P.; Fearnside, P.M. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 2021, 100, 105072. [Google Scholar] [CrossRef]
- Locatelli, J.L.; de Lima, R.P.; Santos, R.S.; Cherubin, M.R.; Creamer, R.E.; Cerri, C.E.P. Soil Strength and Structural Stability Are Mediated by Soil Organic Matter Composition in Agricultural Expansion Areas of the Brazilian Cerrado Biome. Agronomy 2023, 13, 71. [Google Scholar] [CrossRef]
- Wen, S.; Hao, J.; Wang, J.; Xiong, S.; Jiang, Y.; Zhu, Y.; Jiao, Y.; Yang, J.; Zhu, J.; Tian, X. Enhancing Soil Aggregation and Organic Carbon Retention in Greenhouse Vegetable Production through Reductive Soil Disinfestation with Straw and Fertiliser: A Comprehensive Study. Agronomy 2024, 14, 179. [Google Scholar] [CrossRef]
- Peng, X.; Yan, X.; Zhou, H.; Zhang, Y.Z.; Sun, H. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization. Soil Tillage Res. 2015, 146, 89–98. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Liang, G.; Zheng, F.; Zhang, M.; Li, S. A global meta-analysis of the impacts of no-tillage on soil aggregation and aggregate-associated organic carbon. Land Degrad. Dev. 2021, 32, 5292–5305. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Yu, X.; Jia, G. Soil microorganism regulated aggregate stability and rill erosion resistance under different land uses. Catena 2023, 228, 107176. [Google Scholar] [CrossRef]
- Zhao, S.X.; Ta, N.; Wang, X.D. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 2017, 10, 1293. [Google Scholar] [CrossRef]
- Tang, X.; Alhaj Hamoud, Y.; Shaghaleh, H.; Zhao, J.; Wang, H.; Wang, J.; Zhao, T.; Li, B.; Lu, Y. Responses of Soil Labile Organic Carbon on Aggregate Stability across Different Collapsing-Gully Erosion Positions from Acric Ferralsols of South China. Agronomy 2023, 13, 1869. [Google Scholar] [CrossRef]
- Noronha, R.L.; Souza, Z.M.; Soares, M.D.R.; Campos, M.C.C.; Farhate, C.V.V.; Oliveira, S.R.M. Soil carbon stock in archaeological black earth under different land use systems in the Brazilian Amazon. Agron. J. 2020, 112, 12–22. [Google Scholar] [CrossRef]
- Souza, F.G.; Campos, M.C.C.; Pinheiro, E.N.; Lima, A.F.L.; Brito Filho, E.G.; Cunha, J.M.; Santos, E.A.N.; Brito, W.B.M. Aggregate stability and carbon stocks in Forest conversion to different cropping systems in Southern Amazonas, Brazil. Carbon Manag. 2020, 11, 81–96. [Google Scholar] [CrossRef]
- Silva, L.I.; Campos, M.C.C.; Wadt, P.G.S.; Cunha, J.M.; Oliveira, I.A.; Freitas, L.; Santos, E.A.N.; Brito Filho, E.G. Resistência à penetração de um Latossolo Vermelho-Amarelo Distrófico sob diferentes manejos e métodos. R. Dep. De Geogr. 2020, 40, 40–48. [Google Scholar] [CrossRef]
- Frozzi, J.C.; Cunha, J.M.; Campos, M.C.C.; Bergamin, A.C.; Brito, W.B.M.; Fraciscon, U.; Silva, D.M.P.; Lima, A.F.L.; Brito Filho, E.G. Physical attributes and organic carbon in soils under natural and anthropogenic environments in the South Amazon region. Environ. Earth. Sci. 2020, 79, 251–266. [Google Scholar] [CrossRef]
- Churchman, G.J. The philosophical status of soil science. Geoderma 2010, 157, 214–221. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Silva, J.F.d.; Gontijo Neto, M.M.; Silva, G.F.d.; Borghi, E.; Calonego, J.C. Soil Organic Matter and Aggregate Stability in Soybean, Maize and Urochloa Production Systems in a Very Clayey Soil of the Brazilian Savanna. Agronomy 2022, 12, 1652. [Google Scholar] [CrossRef]
- Ye, L.; Ji, L.; Chen, H.; Chen, X.; Tan, W. Spatial Contribution of Environmental Factors to Soil Aggregate Stability in a Small Catchment of the Loess Plateau, China. Agronomy 2022, 12, 2557. [Google Scholar] [CrossRef]
- Kumar, D.; Purakayastha, T.J.; Das, R.; Yadav, R.K.; Shivay, Y.S.; Jha, P.K.; Singh, S.; Aditi, K.; Prasad, P.V.V. Long-Term Effects of Organic Amendments on Carbon Stability in Clay–Organic Complex and Its Role in Soil Aggregation. Agronomy 2023, 13, 39. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteoro. Zeitschrift. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.E.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- IUSS Working Group WRB World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Maia, M.A.M.; Marmos, J.L. Geodiversidade do Estado do Amazonas; CPRM: Manaus, Brazil, 2010; pp. 73–77. Available online: https://rigeo.sgb.gov.br/handle/doc/16624 (accessed on 21 March 2024).
- Radam Brasil. Levantamento de Recursos Naturais; Ministério das Minas e Energia v. 27: Rio de Janeiro, Brazil, 1982; p. 561.
- Kemper, W.D.; Rosenau, R.C. Size distribution of aggregates. In Methods of Soil Analysis; Part 1. Physical and Mineralogical Methods. Ed 9.; American Society of Agronomy: Madison, NY, USA, 1986; pp. 425–442. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; EMBRAPA: Brasília, Brazil, 2017; 573p. [Google Scholar]
- Schaller, F.W.; Stockinger, K.R. A comparison of five methods for expressing aggregation data1. Soil Sci. Soc. Am. J. 1953, 17, 310–313. [Google Scholar] [CrossRef]
- Alvarenga, C.C.; Mello, C.R.D.; Mello, J.M.D.; Silva, A.M.D.; Curi, N. Índice de qualidade do solo associado à recarga de água subterrânea (IQSRA) na bacia hidrográfica do Alto Rio Grande, MG. Rev. Bras. Cienc. Solo 1986, 36, 1608–1619. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Burak, D.L.; Passos, R.R.; Sarnaglia, A.S. Utilização da análise muitivariada na avaliação de parâmetros geomorfológicos e atributos físicos do solo. Enciclopédia Biosf. 2010, 6, 1–11. [Google Scholar]
- Zhao, Z.; Mao, Y.; Gao, S.; Lu, C.; Pan, C.; Li, X. Organic carbon accumulation and aggregate formation in soils under organic and inorganic fertilizer management practices in a rice–wheat cropping system. Sci. Rep. 2023, 13, 3665. [Google Scholar] [CrossRef]
- Zhong, W.; Shuai, Q.; Zeng, P.; Guo, Z.; Hu, K.; Wang, X.; Zeng, F.; Zhu, J.; Feng, X.; Lin, S.; et al. Effect of Ecologically Restored Vegetation Roots on the Stability of Shallow Aggregates in Ionic Rare Earth Tailings Piles. Agronomy 2023, 13, 993. [Google Scholar] [CrossRef]
- Petter, F.A.; Lima, L.B.; Morais, L.A.; Tavanti, R.F.R.; Nunes, M.E.; Freddia, O.S.; Marimon, B.H., Jr. Carbon stocks in oxisols under agriculture and forestin the southern Amazon of Brazil. Geoderma Reg. 2017, 11, 53–61. [Google Scholar] [CrossRef]
- Enck, B.F.; Campos, M.C.C.; Pereira, M.G.; Souza, F.G.; Santos, O.A.Q.; Diniz, Y.V.D.F.G.; Martins, T.S.; Cunha, J.M.; Lima, A.F.L.; Souza, T.A.F.D. Forest–Fruticulture Conversion Alters Soil Traits and Soil Organic Matter Compartments. Plants 2022, 11, 2917. [Google Scholar] [CrossRef]
- Marques, J.D.O.; Luizão, F.J.; Teixeira, W.G.; Nogueira, E.M.; Fearnside, P.M.; Sarrazin, M. Soil carbon stocks under Amazonian forest: Distribution in the soil fractions and vulnerability to emission. Open J. For. 2017, 7, 121–142. [Google Scholar] [CrossRef]
- Assunção, S.A.; Pereira, M.G.; Rosset, J.S.; Berbara, R.L.L.; García, A.C. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Sci. Total Environ. 2019, 658, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.F.L.; Campos, M.C.C.; Enck, B.F.; Simões, W.S.; Araújo, R.M.; Santos, L.A.C.; Cunha, J.M. Physical soil attributes in areas under forest/pasture conversion in northern Rondônia. Brazil. Environ. Monit. Assess. 2022, 194, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yuan, H.; Yu, M.; Cheng, X. Large macroaggregate properties are sensitive to the conversion of pure plantation to uneven-aged mixed plantations. Catena 2020, 194, 104724. [Google Scholar] [CrossRef]
- Melo, V.F.; Orrutéa, A.G.; Motta, A.C.V.; Testoni, S.A. Land use and changes in soil morpgology and physical-chemical properties in southern Amazon. Rev. Bras. Cienc. Solo 2017, 41, e0170034. [Google Scholar] [CrossRef]
- Moura, E.G.; Sousa, R.M.; Campos, L.S.; Cardoso-Silva, A.J.; Mooney, S.J.; Aguiar, A.C.F. Could more efficient utilization of ecosystem services improve soil quality indicators to allow sustainable intensification of Amazonian family farming. Ecol. Indic. 2021, 127, 107723. [Google Scholar] [CrossRef] [PubMed]
- Cherubin, M.R.; Franco, A.L.C.; Cerri, C.E.P.; Oliveira, D.M.S.; Davies, C.A.; Cerri, C.C. Sugarcane expansion in Brazilian tropical soils—Effects of land use change on soil chemical atributes. Agric. Ecosyst. Environ. 2015, 211, 173–184. [Google Scholar] [CrossRef]
- Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma 2015, 247, 24–37. [Google Scholar] [CrossRef]
- Soares, M.D.R.; Souza, Z.M.; Campos, M.C.C.; Cooper, M.; Tavares, R.L.M.; Lovera, L.H.; Farhate, C.V.V.; Cunha, J.M. Physical quality and posority aspects of Amazon Anthropogenic soils under different management systems. Appl. Environ. Soil Sci. 2022, 2022, 6132322. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Rao, C.A.R.; Kareemulla, K.; Nagasree, K.B.; Venkateswarlu, S.K. Estimation of economic returns to soil and water conservation research-an ex ante analysis. Agric. Resour. Econ. Rev. 2010, 23, 41–46. [Google Scholar] [CrossRef]
- Ngetich, K.F.; Diels, J.; Shisanya, C.A.; Mugwe, J.N.; Mucheru-muna, M.; Mugendi, D.N. Effects of selected soil and water conservation techniques on runoff. sediment yield and maize productivity under sub-humid and semi-arid conditions in Kenya. Catena 2014, 121, 288–296. [Google Scholar] [CrossRef]
- Oliveira, I.A.; Campos, M.C.C.; Freitas, L.; Aquino, R.E.; Cunha, J.M.; Soare, M.D.R.; Silva, L.S.; Fonseca, J.S.; Silva, D.M.P.; Souza, Z.M.; et al. Carbon stock variability and aggregate stability in soils of Amazon, Brazil. Aust. J. Crop Sci. 2018, 12, 922–930. [Google Scholar] [CrossRef]
- Jiao, S.; Li, J.; Li, Y.; Xu, Z.; Kong, B.; Li, Y.; Shen, Y. Variation of soil organic carbon and physical properties in relation to land uses in the Yellow River Delta, China. Sci. Rep. 2020, 10, 0317. [Google Scholar] [CrossRef]
- Zheng, K.; Cheng, J.; Xia, J.; Liu, G.; Xu, L. Effects of soil bulk density and moisture content on the physico-mechanical propertiesof paddy soil in plough layer. Water 2021, 13, 2290. [Google Scholar] [CrossRef]
- Puerta, V.L.; Pereira, E.I.P.; Wittwer, R.; Heijden, M.V.D.; Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 2018, 180, 1–9. [Google Scholar] [CrossRef]
- Guest, E.J.; Palfreeman, L.J.; Holden, J.; Chapman, P.J.; Firbank, L.G.; Lappage, M.G.; Helgason, T.; Leake, J.R. Soil macroaggregation drives sequestration of organic carbon and nitrogen with three-year grass-clover leys in arable rotations. Sci. Total Environ. 2022, 852, 158358. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A.; Blankinship, J.C.; Crow, S.E.; Druhan, J.L.; Hicks Pries, C.E.; et al. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Barberis, E.; Ajmore-Marsan, F.; Boero, V.; Arduino, E. Aggregation of soil particles by iron oxides in various size fractions of soil B horizons. J. Soil Sci. 1991, 42, 525–542. [Google Scholar] [CrossRef]
- Puget, P.; Chenu, C.; Balesdent, J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 2000, 51, 595–605. [Google Scholar] [CrossRef]
- Perelomov, L.V. The role of interactions between bacteria and clay minerals in pedochemical processes. Geochem. Int. 2023, 61, 1026–1035. [Google Scholar] [CrossRef]
- Yang, C.; Liu, N.; Zhang, Y. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 2019, 337, 444–452. [Google Scholar] [CrossRef]
- Yu, H.; Ding, W.; Chen, Z.; Zhang, H.; Luo, J.; Bolan, N. Accumulation of organic C components in soil and aggregates. Sci. Rep. 2015, 5, 13804. [Google Scholar] [CrossRef]
Land Use | Use |
---|---|
Canutama | |
Annatto (Bixa orellana) | Area under cultivation of annatto (Bixa orellana) for 3 years, with spacing of 4.0 × 4.0 m between plants, with the following cultural practices: pruning, periodic cleaning and pest control, and without fertilization and liming. Crop debris and invasive plants were left in the area to cover the soil. |
Guarana (Paullinia cupana) | Area under cultivation of guarana (Paullinia cupana) for 7 years, with spacing of 5.0 × 5.0 m between plants, with the following cultural treatments: pruning, periodic cleaning and pest control, and without fertilization and liming. Crop debris and invasive plants were left in the area to cover the soil. |
Cupuaçu (Theobroma grandiflorum) | Area under cultivation of cupuaçu (Theobroma grandiflorum) for 7 years, with spacing of 7.0 × 7.0 m between plants, with the following cultural treatments: pruning, periodic cleaning and pest control, and without fertilization and liming. Crop debris and invasive plants were left in the area to cover the soil. |
Humaitá | |
Cassava (Manihot esculenta) | The area cultivated with cassava has 10 years of successive cultivation, and was corrected, fertilized, and harrowed only in the second year of cultivation. Regular spacing of 1.0 × 1.0 m is used between plants, with periodic cleaning and pest control. Crop debris and invasive plants were left in the area to cover the soil. |
Agroforestry | An agroforestry system has been in cultivation for about 20 years, with an average spacing between plants of 1.80 m. The species are conilon coffee (Coffea canephora), cacao (Theobroma cacao), pupunha (Bactris gasipaes), andiroba (Carapa Guianensis), and orange (Citrus sinensis). Crop debris and invasive plants were left in the area to cover the soil. |
Sugarcane (Saccharum officinarum) | Area cultivated with sugarcane, where there was no fertilization or liming, with 1.10 m spacing between rows and pest control. The area has burned sugarcane management planned for another 10 years of use. The remains of crops and invasive plants were left in the areas. |
Manicoré | |
Brachiaria (Brachiaria brizanta) | Area using brachiaria (Brachiaria brizanta), with 10 years under extensive grazing and a carrying capacity of one animal unit per hectare. |
Forest | The area is characterized by a humid tropical forest, and is formed by a set of dense and multi-stratified trees ranging between 20 and 50 m in height. |
>2 mm | 1–2 mm | <1 mm | GAD | WAD | |
---|---|---|---|---|---|
BD | 0.06 ns | −0.16 ** | 0.01 ns | −0.19 ** | 0.00 ns |
SRP | −0.11 * | 0.03 ns | 0.15 ** | −0.40 ** | −0.10 * |
Tp | 0.01 ns | 0.17 ** | 0.06 ns | 0.33 ** | 0.07 ns |
SOC | 0.32 ** | −0.36 ** | −0.26 ** | 0.05 ns | 0.12 ** |
CS | 0.37 ** | −0.43 ** | −0.29 ** | 0.01 ns | 0.16 ** |
Sand | 0.31 ** | −0.25 ** | −0.29 ** | 0.34 ** | 0.18 ** |
Silt | 0.06 ns | 0.13 ** | 0.03 ns | 0.04 ns | 0.02 ns |
Clay | −0.20 ** | 0.08 ns | 0.22 ** | −0.35 ** | −0.17 ** |
pH | 0.19 ** | −0.25 ** | −0.15 ** | 0.06 ns | 0.13 ** |
H + Al | −0.23 ** | 0.08 ns | 0.27 ** | −0.40 ** | −0.27 ** |
Ca2+ | 0.28 ** | −0.24 ** | −0.27 ** | 0.28 ** | 0.25 ** |
Mg2+ | 0.28 ** | −0.26 ** | −0.25 ** | 0.17 ** | 0.27 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.F.L.d.; Campos, M.C.C.; Silva, J.d.B.; Araújo, W.d.O.; Mantovanelli, B.C.; Souza, F.G.d.; Beirigo, R.M.; Silva, D.M.P.d.; Macedo, R.S.; Oliveira, F.P.d. The Stability of Aggregates in Different Amazonian Agroecosystems Is Influenced by the Texture, Acidity, and Availability of Ca and Mg in the Soil. Agronomy 2024, 14, 677. https://doi.org/10.3390/agronomy14040677
Lima AFLd, Campos MCC, Silva JdB, Araújo WdO, Mantovanelli BC, Souza FGd, Beirigo RM, Silva DMPd, Macedo RS, Oliveira FPd. The Stability of Aggregates in Different Amazonian Agroecosystems Is Influenced by the Texture, Acidity, and Availability of Ca and Mg in the Soil. Agronomy. 2024; 14(4):677. https://doi.org/10.3390/agronomy14040677
Chicago/Turabian StyleLima, Alan Ferreira Leite de, Milton César Costa Campos, Joalison de Brito Silva, Witória de Oliveira Araújo, Bruno Campos Mantovanelli, Fernando Gomes de Souza, Raphael Moreira Beirigo, Douglas Marcelo Pinheiro da Silva, Rodrigo Santana Macedo, and Flávio Pereira de Oliveira. 2024. "The Stability of Aggregates in Different Amazonian Agroecosystems Is Influenced by the Texture, Acidity, and Availability of Ca and Mg in the Soil" Agronomy 14, no. 4: 677. https://doi.org/10.3390/agronomy14040677
APA StyleLima, A. F. L. d., Campos, M. C. C., Silva, J. d. B., Araújo, W. d. O., Mantovanelli, B. C., Souza, F. G. d., Beirigo, R. M., Silva, D. M. P. d., Macedo, R. S., & Oliveira, F. P. d. (2024). The Stability of Aggregates in Different Amazonian Agroecosystems Is Influenced by the Texture, Acidity, and Availability of Ca and Mg in the Soil. Agronomy, 14(4), 677. https://doi.org/10.3390/agronomy14040677