Spatial Distribution of Soil Macroelements, Their Uptake by Plants, and Green Pea Yield under Strip-Till Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Meteorological Data
2.3. Experimental Treatments
2.4. Agrotechnical Practices
2.5. Measurements of Soil Parameters
2.6. Measurements of Plant Parameters
2.7. Statistical Analyses
3. Results
3.1. Content of the Macroelements in the Soil
3.2. Length and Dry Matter Weight of Green Pea Shoots and Roots
3.3. Content of Macroelements in the Biomass and Their Uptake by Green Peas
3.4. Seed Yield and Yield Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, D.; Lenka, S.; Lenka, N.K.; Trivedi, S.K.; Bhattacharjya, S.; Sahoo, S.; Saha, J.K.; Patra, A.K. Effect of Reversal of Conservation Tillage on Soil Nutrient Availability and Crop Nutrient Uptake in Soybean in the Vertisols of Central India. Sustainability 2020, 12, 6608. [Google Scholar] [CrossRef]
- Chandra, A.; Joshi, B.; Guru, S.K. A Comparative Study on Tillage Practices and Their Impact on Soil Properties and Root Attributes of Plants. Int. J. Chem. Stud. 2018, 6, 2257–2263. [Google Scholar]
- Jaskulska, I.; Gałązka, A.; Jaskulski, D. Strip-till as a Means of Decreasing Spatial Variability of Winter Barley within a Field Scale. Acta Agric. Scand., Sect. B—Soil Plant Sci. 2019, 69, 516–527. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Gierasimiuk, P.; Rusecki, H. The Effect of Subsurface Placement of Mineral Fertilizer on Some Soil Properties under Reduced Tillage Soybean Cultivation. Agronomy 2021, 11, 859. [Google Scholar] [CrossRef]
- Lv, L.; Gao, Z.; Liao, K.; Zhu, Q.; Zhu, J. Impact of Conservation Tillage on the Distribution of Soil Nutrients with Depth. Soil Tillage Res. 2023, 225, 105527. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Gałęzewski, L. Peas and Barley Grown in the Strip-Till One Pass Technology as Row Intercropping Components in Sustainable Crop Production. Agriculture 2022, 12, 229. [Google Scholar] [CrossRef]
- Lekavičienė, K.; Šarauskis, E.; Naujokienė, V.; Buragienė, S.; Kriaučiūnienė, Z. The Effect of the Strip Tillage Machine Parameters on the Traction Force, Diesel Consumption and CO2 Emissions. Soil Tillage Res. 2019, 192, 95–102. [Google Scholar] [CrossRef]
- Hansel, F.D.; Amado, T.J.C.; Ruiz Diaz, D.A.; Rosso, L.H.M.; Nicoloso, F.T.; Schorret, M. Phosphorus Fertilizer Placement and Tillage Affect Soybean Root Growth and Drought Tolerance. Agron. J. 2017, 109, 2936–2944. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer Placement to Improve Crop Nutrient Acquisition and Yield: A Review and Meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Waring, B.G.; Álvarez-Cansino, L.; Barry, K.E.; Becklund, K.K.; Dale, S.; Gei, M.G.; Keller, A.B.; Lopez, O.R.; Markesteijn, L.; Mangan, S.; et al. Pervasive and Strong Effects of Plants on Soil Chemistry: A Meta-analysis of Individual Plant ‘Zinke’ Effects. Proc. R. Soc. B 2015, 282, 20151001. [Google Scholar] [CrossRef]
- Macák, M.; Candráková, E.; Đalović, I.; Prasad, P.V.V.; Farooq, M.; Korczyk-Szabó, J.; Kováčik, P.; Šimanský, V. The Influence of Different Fertilization Strategies on the Grain Yield of Field Peas (Pisum sativum L.) under Conventional and Conservation Tillage. Agronomy 2020, 10, 1728. [Google Scholar] [CrossRef]
- Szpunar-Krok, E. Physiological Response of Pea (Pisum sativum L.) Plants to Foliar Application of Biostimulants. Agronomy 2022, 12, 3189. [Google Scholar] [CrossRef]
- Rapčan, I.; Bukvić, G.; Grljušić, S.; Teklić, T.; Jurišić, M. Yield of Green Mass, Grain and Other Yield Components of Field Pea (Pisum sativum L.) in Dependence of Agroecological Conditions and Seed Maturity. Mljekarstvo 2010, 60, 104–112. [Google Scholar]
- Dhillon, L.K.; Lindsay, D.; Yang, T.; Zakeri, H.; Tar’an, B.; Knight, J.D.; Warkentin, T.D. Biological Nitrogen Fixation Potential of Pea Lines Derived from Crosses with Nodulation Mutants. Field Crops Res. 2022, 289, 108731. [Google Scholar] [CrossRef]
- Janusauskaite, D. Productivity of Three Pea (Pisum sativum L.) Varieties as Influenced by Nutrient Supply and Meteorological Conditions in Boreal Environmental Zone. Plants 2023, 12, 1938. [Google Scholar] [CrossRef]
- Şenbek, G.; Halil, D.S.; Uzun, A.; Açikgöz, E. Determination of the Seed Yield and Quality Characteristics of Some Advanced-Generation Field Pea (Pisum sativum L.). J. Agric. Sci. 2023, 29, 142–148. [Google Scholar] [CrossRef]
- European Commission. Common Agricultural Policy for 2023–2027: 28 Strategic Plans; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Singh, K.P.; Meena, V.; Somasundaram, J.; Singh, S.; Dotaniya, M.L.; Das, H.; Singh, O.; Srivastava, A. Interactive Effect of Tillage and Crop Residue Management on Weed Dynamics, Root Characteristics, Crop Productivity, Profitability and Nutrient Uptake in Chickpea (Cicer arietinum L.) under Vertisol of Central India. PLoS ONE 2022, 17, e0279831. [Google Scholar] [CrossRef]
- Faligowska, A.; Kalembasa, S.; Kalembasa, D.; Panasiewicz, K.; Szymańska, G.; Ratajczak, K.; Skrzypczak, G. The Nitrogen Fixation and Yielding of Pea in Different Soil Tillage Systems. Agronomy 2022, 12, 352. [Google Scholar] [CrossRef]
- Wu, D.-T.; Li, W.-X.; Wan, J.-J.; Hu, Y.-C.; Gan, R.-Y.; Zou, L. A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023, 12, 2527. [Google Scholar] [CrossRef]
- Polakowski, C.; Ryżak, M.; Sochan, A.; Beczek, M.; Mazur, R.; Bieganowski, A. Particle Size Distribution of Various Soil Materials Measured by Laser Diffraction—The Problem of Reproducibility. Minerals 2021, 11, 465. [Google Scholar] [CrossRef]
- Piotrowska-Długosz, A.; Długosz, J.; Kalisz, B.; Gąsiorek, M. Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth. Agronomy 2024, 14, 83. [Google Scholar] [CrossRef]
- Polish Norm PN-R-04031; The Method of Soil Sampling. Polish Committee for Standardization: Warsaw, Poland, 1997.
- Polish Norm PN-ISO 10390; Soil Quality—Determination of Soil pH. Polish Committee for Standardization: Warsaw, Poland, 1997.
- Polish Norm PN-R-04022; Chemical and Agricultural Analysis of Soil. Determining the Content of Available Potassium. Polish Committee for Standardization: Warsaw, Poland, 1996.
- Polish Norm PN-R-04023; Chemical and Agricultural Analysis of Soil. Determining the Content of Available Phosphorus. Polish Committee for Standardization: Warsaw, Poland, 1996.
- Polish Norm PN-R-04020; Chemical and Agricultural Analysis of Soil. Determining the Content of Available Magnesium. Polish Committee for Standardization: Warsaw, Poland, 1994.
- Polish Norm PN-R-04028; Chemical and Agricultural Analysis of Soil. Determining the Content of Nitrate and Ammonium Ions. Polish Committee for Standardization: Warsaw, Poland, 1997.
- Polish Norm PN-A-04018; Agri-Food Products. Determining the Content of Nitrogen by the Kjeldahl Method and Conversion to Protein. Polish Committee for Standardization: Warsaw, Poland, 1975.
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry. Plant Methods 2022, 18, 22. [Google Scholar] [CrossRef]
- Nowosielski, O. Methods for Determining Fertilization Needs; PWRiL: Warsaw, Poland, 1974. (In Polish) [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Metody Analizy i Oceny Właściwości gleb i Roślin; IOŚ: Warsaw, Poland, 1991. (In Polish) [Google Scholar]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; GK, S.; Vadivel, R.; TK, D.; et al. Nitrogen Use Efficiency—A Key to Enhance Crop Productivity under a Changing Climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Różewicz, M. Review of Current Knowledge on Strip-till Cultivation and Possibilities of Its Popularization in Poland. Polish J. Agron. 2022, 49, 20–30. [Google Scholar] [CrossRef]
- Liu, S.J.; Pubu, C.J.; Zhu, Y.Z.; Hao, W.P.; Zhang, G.X.; Han, J. Optimizing Nitrogen Application Depth Can Improve Crop Yield and Nitrogen Uptake—A Global Meta-analysis. Field Crop. Res. 2023, 295, 108895. [Google Scholar] [CrossRef]
- Li, L.; Tian, H.; Zhang, M.; Fan, P.; Ashraf, U.; Liu, H.; Chen, X.; Duan, M.; Tang, X.; Wang, Z.; et al. Deep Placement of Nitrogen Fertilizer Increases Rice Yield and Nitrogen Use Efficiency with Fewer Greenhouse Gas Emissions in a Mechanical Direct-seeded Cropping System. Crop J. 2021, 9, 1386–1396. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Sapkot, T.B.; Barberi, P.; Antichi, D.; Risaliti, R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Till. Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Guo, J.; Chen, J. The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China. Int. J. Environ. Res. Public Health 2022, 19, 15906. [Google Scholar] [CrossRef]
- Huda, A.; Gaihre, Y.K.; Islam, M.R.; Sanabria, J.; Satter, M.A.; Afroz, H.; Halder, A.; Jahiruddin, M. Floodwater Ammonium, Nitrogen Use Efficiency and Rice Yields with Fertilizer Deep Placement and Alternate Wetting and Drying under Triple Rice Cropping Systems. Nutr. Cycl. Agroecosyst. 2016, 104, 53–66. [Google Scholar] [CrossRef]
- Grüner, E.; Astor, T.; Wachendorf, M. Prediction of Biomass and N Fixation of Legume–Grass Mixtures Using Sensor Fusion. Front. Plant Sci. 2021, 11, 603921. [Google Scholar] [CrossRef] [PubMed]
- Jaskulski, D. Spatial Differentiation of Soil Moisture in Strip-till One-pass Technology. Acta Sci. Pol. Agric. 2019, 18, 109–118. [Google Scholar] [CrossRef]
- Morgan, J.B.; Connolly, E.L. Plant-Soil Interactions: Nutrient Uptake. Nat. Educ. Knowl. 2013, 4, 2. [Google Scholar]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef]
- Fernández, F.G.; Sorensen, B.A.; Villamil, M.B. A comparison of soil properties after five years of no-till and strip-till. Agron. J. 2015, 107, 1339–1346. [Google Scholar] [CrossRef]
- Moraru, P.I.; Rusu, T.; Bogdan, I.; Pop, A.I.; Sopterean, M.L. Effect of Different Tillage Systems on Soil Properties and Production on Wheat, Maize and Soybean Crop. Lucr. Stiintifice Ser. Agron. 2011, 54, 258–262. [Google Scholar]
- Stankowski, S.; Jaroszewska, A.; Osińska, B.; Tomaszewicz, T.; Gibczyńska, M. Analysis of Long-Term Effect of Tillage Systems and Pre-Crop on Physicochemical Properties and Chemical Composition of Soil. Agronomy 2022, 12, 2072. [Google Scholar] [CrossRef]
- Akter, M.M.; Hossain, M.M.; Hossan, M.S.; Khan, M.A. Effects of Potassium on the Growth, Yield and Physico-chemical Properties of Three Garden Pea (Pisum sativum) Varieties. Asian J. Agric. Horticult. Res. 2020, 5, 22–31. [Google Scholar] [CrossRef]
- Yuan, M.; Fernández, F.G.; Pittelkow, C.M.; Greer, K.D.; Schaefer, D. Soil and Crop Response to Phosphorus and Potassium Management under Conservation Tillage. Agron. J. 2020, 112, 2302–2316. [Google Scholar] [CrossRef]
- Liu, K.L.; Huang, J.; Han, T.F.; Li, Y.-Z.; Li, D.-C.; Qaswar, M.; Abbas, M.; Wang, B.-R.; Du, J.-X.; Zhang, L.; et al. The Relationship between Soil Aggregate-associated Potassium and Soil Organic Carbon with Glucose Addition in an Acrisol Following Long-term Fertilization. Soil Tillage Res. 2022, 222, 105438. [Google Scholar] [CrossRef]
- Farmaha, B.S. Strip-Till and No-Till Soybean Growth and Distribution of Roots and Soil Phosphorus, Potassium, and Water with Broadcast and Subsurface-band Fertilization. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2011; pp. 1–117. [Google Scholar]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World Phosphorus Use Efficiency in Cereal Crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef]
- Xomphoutheb, T.; Jiao, S.; Guo, X.; Mabagala, F.S.; Sui, B.; Wang, H.; Zhao, L.; Zhao, X. The Effect of Tillage Systems on Phosphorus Distribution and Forms in Rhizosphere and Non-rhizosphere Soil under Maize (Zea mays L.) in Northeast China. Sci. Rep. 2020, 10, 6574. [Google Scholar] [CrossRef] [PubMed]
- Lavrenko, S.O.; Lavrenko, N.M.; Maksymov, D.O.; Maksymov, M.V.; Didenko, N.O.; Islam, K.R. Variable Tillage Depth and Chemical Fertilization Impact on Irrigated Common Beans and Soil Physical Properties. Soil Tillage Res. 2021, 212, 105024. [Google Scholar] [CrossRef]
- Nze Memiaghe, J.D.; Cambouris, A.N.; Ziadi, N.; Karam, A. Tillage Management Impacts on Soil Phosphorus Variability under Maize–Soybean Rotation in Eastern Canada. Soil Syst. 2022, 6, 45. [Google Scholar] [CrossRef]
- Meyer, G.; Bell, M.J.; Kopittke, P.M.; Lombi, E.; Doolette, C.L.; Brunetti, G.; Klysubun, W.; Janke, C.K. Mobility and lability of phosphorus from highly concentrated fertiliser bands. Geoderma 2023, 429, 116248. [Google Scholar] [CrossRef]
- Senbayram, M.; Gransee, A.; Wahle, V.; Thiel, H. Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop Pasture Sci. 2015, 66, 1219–1229. [Google Scholar] [CrossRef]
- Santos, A.S.; Pinho, D.S.; Silva, A.C.; Brito, R.R.; Lacerda, J.J.; Silva, E.M.; Batista, J.Y.N.; Fonseca, B.S.F.D.; Gomes-Filho, E.; Paula-Marinho, S.D.O.; et al. Magnesium supplementation alleviates drought damage during vegetative stage of soybean plants. PLoS ONE 2023, 18, e0289018. [Google Scholar] [CrossRef] [PubMed]
- Biskupski, A.; Sienkiewicz-Cholewa, U.; Włodek, S.; Pabin, J. Differentiation in the contents of carbon and nutrients in experiment with many years simplifications in cultivation. Rocz. Gleb. 2009, 60, 5–11. (In Polish) [Google Scholar]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops 2010, 94, 23–25. [Google Scholar]
- Holatko, J.; Hammerschmiedt, T.; Kintl, A.; Kucerik, J.; Malicek, O.; Latal, O.; Baltazar, T.; Brtnicky, M. Effects of Strip-Till and Simultaneous Fertilization at Three Soil Depths on Soil Biochemical and Biological Properties. Agronomy 2022, 12, 2597. [Google Scholar] [CrossRef]
- Jug, D.; Sabo, M.; Jug, I.; Stipešević, B.; Stošić, M. Effect of different tillage systems on the yield and yield components of soybean [Glycine max (L.) Merr.]. Acta Agron. Hung. 2010, 58, 65–72. [Google Scholar] [CrossRef]
- Adamič, S.; Leskovšek, R. Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems. Agronomy 2021, 11, 2477. [Google Scholar] [CrossRef]
- Thiagalingam, K.; Gould, N.; Watson, P. Effect of tillage on rainfed maize and soybean yield and the nitrogen fertilizer requirements for maize. Soil Tillage Res. 1991, 19, 47–54. [Google Scholar] [CrossRef]
- Lasisi, D.; Aluko, O.B. Effects of tillage methods on soybean growth and yield in a tropical sandy loam soil. Int. Agrophys. 2009, 23, 147–153. [Google Scholar]
- Boydston, R.A.; Porter, L.D.; Chaves-Cordoba, B.; Khot, L.R.; Miklas, P.N. The impact of tillage on pinto bean cultivar response to drought induced by deficit irrigation. Soil Tillage Res. 2018, 180, 63–72. [Google Scholar] [CrossRef]
- Monostori, T.; Tóth, G.; Bordé, A.; Jakab, P.; Láng, V. The Impact Of Various Primary Tillage Methods On The Yield Components Of Dry Bean. Rev. Agric. Rural Dev. 2021, 10, 16–20. [Google Scholar] [CrossRef]
- Liebhard, G.; Klik, A.; Neugschwandtner, R.W.; Nolz, R. Effects of tillage systems on soil water distribution, crop development, and evaporation and transpiration rates of soybean. Agric. Water Manag. 2022, 269, 107719. [Google Scholar] [CrossRef]
- Kurm, V.; Schilder, M.T.; Haagsma, W.K.; Bloem, J.; Scholten, O.E.; Postma, J. Reduced tillage increases soil biological properties but not suppressiveness against Rhizoctonia solani and Streptomyces scabies. Appl. Soil Ecol. 2022, 181, 104646. [Google Scholar] [CrossRef]
- Piotrowska-Długosz, A.; Długosz, J.; Frąc, M.; Gryta, A.; Breza-Boruta, B. Enzymatic activity and functional diversity of soil microorganisms along the soil profile—A matter of soil depth and soil-forming processes. Geoderma 2022, 416, 115779. [Google Scholar] [CrossRef]
- Steinweg, J.M.; Dukes, J.S.; Wallenstein, M.D. Modeling the Effects of Temperature and Moisture on Soil Enzyme Activity: Linking Laboratory Assays to Continuous Field Data. Soil Biol. Biochem. 2012, 55, 85–92. [Google Scholar] [CrossRef]
- Babin, D.; Leoni, C.; Neal, A.L.; Sessitsch, A.; Smalla, K. Editorial to the Thematic Topic “Towards a More Sustainable Agriculture through Managing Soil Microbiomes”. FEMS Microbiol. Ecol. 2021, 97, fiab094. [Google Scholar] [CrossRef] [PubMed]
- Daunoras, J.; Kačergius, A.; Gudiukaitė, R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef]
- Alarcón, R.; Hernández-Plaza, E.; Navarrete, L.; Sánchez, M.J.; Escudero, A.; Hernanz, J.L. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Till. Res. 2018, 179, 54–62. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Kienzle, J. Overview of the Worldwide Spread of Conservation Agriculture. Field Actions Sci. Rep. 2015, 8, 1–11. [Google Scholar]
- Dumanski, J.; Peiretti, R. Modern concepts of soil conservation. Int. Soil Water Conserv. Res. 2013, 1, 19–23. [Google Scholar] [CrossRef]
- de Cárcer, P.S.; Sinaj, S.; Santonja, M.; Fossati, D.; Jeangros, B. Long-term effects of crop succession, soil tillage and climate on wheat yield and soil properties. Soil Tillage Res. 2019, 190, 209–219. [Google Scholar] [CrossRef]
- Sommer, R.; Ryan, J.; Masri, S.; Singh, M.; Diekmann, J. Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil Tillage Res. 2011, 115–116, 39–46. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B. Effect of tillage on macronutrients in soil and wheat of a long-term dryland wheat-pea rotation. Soil Tillage Res. 2019, 190, 194–201. [Google Scholar] [CrossRef]
- Gruber, S.; Mohring, J.; Claupein, W. On the way towards conservation tillage-soil moisture and mineral nitrogen in a long-term field experiment in Germany. Soil Tillage Res. 2011, 115–116, 80–87. [Google Scholar] [CrossRef]
Year | Soil Tillage (ST) | Soil Layer (SL) | 3 Weeks after Sowing | At Harvest | ||
---|---|---|---|---|---|---|
Sampling Place (SP) | ||||||
Row | Inter-Row | Row | Inter-Row | |||
2016 | Plowing | 0–20 | 34.5 a ± 0.85 | 34.8 a ± 0.29 | 7.88 a ± 0.68 | 7.38 a ± 0.73 |
20–40 | 29.7 a ± 2.95 | 29.7 a ± 6.82 | 10.5 a ± 1.02 | 9.98 a ± 1.62 | ||
Mean | 32.1 B ± 3.25 | 32.2 B ± 3.05 | 9.21 A ± 1.65 | 8.68 A ± 1.82 | ||
Strip-tilling | 0–20 | 52.8 a ± 1.85 | 39.2 a ± 2.42 | 10.7 a ± 2.80 | 10.9 a ± 1.91 | |
20–40 | 33.5 a ± 4.88 | 26.5 a ± 1.52 | 9.49 a ± 2.69 | 9.15 a ± 0.32 | ||
Mean | 43.2 A ± 11.0 | 32.9 B ± 7.15 | 11.1 A ± 2.55 | 10.0 A ± 1.54 | ||
p-value | ST × SP < 0.001; ST × SL × SP = 0.107 | ST × SP = 0.763; ST × SL × SP = 0.874 | ||||
2017 | Plowing | 0–20 | 17.4 b ± 1.22 | 16.5 b ± 1.19 | 12.9 a ± 1.60 | 14.2 a ± 1.34 |
20–40 | 24.9 b ± 5.77 | 25.7 b ± 4.27 | 11.1 a ± 0.30 | 12.9 a ± 1.15 | ||
Mean | 21.2 B ± 5.52 | 21.1 B ± 5.80 | 12.0 A ± 1.44 | 13.5 A ± 1.32 | ||
Strip-tilling | 0–20 | 48.2 a ± 2.76 | 16.2 b ± 0.84 | 14.5 a ± 1.85 | 14.3 a ± 0.64 | |
20–40 | 25.8 b ± 8.37 | 24.8 b ± 6.13 | 11.8 a ± 0.38 | 12.6 a ± 0.80 | ||
Mean | 37.0 A ± 13.18 | 20.5 B ± 6.12 | 13.2 A ± 1.90 | 13.5 A ± 1.14 | ||
p-value | ST × SP < 0.001; ST × SL × SP = 0.001 | ST × SP = 0.210; ST × SL × SP = 0.819 |
Year | Soil Tillage (ST) | Soil Layer (SL) | 3 Weeks after Sowing | At Harvest | ||
---|---|---|---|---|---|---|
Sampling Place (SP) | ||||||
Row | Inter-Row | Row | Inter-Row | |||
2016 | Plowing | 0–20 | 242.4 a ± 2.27 | 235.8 a ± 27.4 | 165.0 a ± 6.46 | 157.5 a ± 7.70 |
20–40 | 236.0 a ± 20.8 | 232.7 a ± 30.3 | 190.5 a ± 25.2 | 200.9 a ± 2.19 | ||
Mean | 239.2 A ± 13.7 | 234.2 A ± 25.9 | 177.7 A ± 21.6 | 179.2 A ± 24.3 | ||
Strip-tilling | 0–20 | 303.2 a ± 11.2 | 241.7 a ± 29.7 | 204.0 a ± 34.0 | 223.5 a ± 24.9 | |
20–40 | 203.6 a ± 18.3 | 214.6 a ± 8.69 | 159.2 a ± 8.65 | 154.8 a ± 6.46 | ||
Mean | 253.4 A ± 59.7 | 228.1 A ± 24.6 | 181.6 A ± 25.2 | 189.1 A ± 41.0 | ||
p-value | ST × SP = 0.314; ST × SL × SP = 0.095 | ST × SP = 0.593; ST × SL × SP = 0.079 | ||||
2017 | Plowing | 0–20 | 170.0 bc ± 6.75 | 176.0 b ± 6.24 | 190.6 a ± 8.63 | 202.0 a ± 4.23 |
20–40 | 169.1 bc ± 5.94 | 166.7 bc ± 8.02 | 199.2 a ± 7.26 | 203.7 a ± 3.39 | ||
Mean | 169.6 A ± 5.71 | 171.3 A ± 8.21 | 194.9 A ± 8.57 | 202.6 A ± 3.55 | ||
Strip-tilling | 0–20 | 211.0 a ± 15.15 | 188.1 ab ± 10.1 | 233.0 a ± 7.00 | 257.6 a ± 11.2 | |
20–40 | 139.4 d ± 7.58 | 148.9 cd ± 6.24 | 190.9 a ± 3.35 | 197.6 a ± 11.0 | ||
Mean | 175.2 A ± 40.7 | 168.5 A ± 22.7 | 212.0 A ± 23.6 | 227.6 A ± 34.3 | ||
p-value | ST × SP = 0.254; ST × SL × SP = 0.011 | ST × SP = 0.236; ST × SL × SP = 0.393 |
Year | Soil Tillage (ST) | Soil Layer (SL) | 3 Weeks after Sowing | At Harvest | ||
---|---|---|---|---|---|---|
Sampling Place (SP) | ||||||
Row | Inter-Row | Row | Inter-Row | |||
2016 | Plowing | 0–20 | 129.8 a ± 5.25 | 126.2 a ± 4.74 | 117.9 a ± 0.00 | 119.7 a ± 4.22 |
20–40 | 133.1 a ± 3.75 | 135.1 a ± 2.25 | 122.2 a ± 4.35 | 127.3 a ± 4.54 | ||
Mean | 131.5 A ± 4.48 | 130.7 A ± 5.93 | 120.1 A ± 3.63 | 123.5 A ± 5.73 | ||
Strip-tilling | 0–20 | 144.8 a ± 4.52 | 136.5 a ± 5.46 | 127.4 a ± 1.44 | 133.1 a ± 0.00 | |
20–40 | 140.6 a ± 0.75 | 135.6 a ± 1.91 | 122.4 a ± 1.91 | 124.1 a ± 2.26 | ||
Mean | 142.7 A ± 3.70 | 135.1 A ± 3.70 | 124.9 A ± 3.14 | 128.6 A ± 5.13 | ||
p-value | ST × SP = 0.089; ST × SL × SP = 0.717 | ST × SP = 0.912; ST × SL × SP = 0.147 | ||||
2017 | Plowing | 0–20 | 125.1 a ± 2.54 | 123.6 a ± 4.17 | 110.6 a ± 5.02 | 112.4 a ± 4.17 |
20–40 | 125.1 a ± 2.54 | 122.0 a ± 2.65 | 108.8 a ± 3.54 | 110.5 a ± 9.06 | ||
Mean | 125.1 A ± 2.27 | 122.8 A ± 3.25 | 109.7 A ± 4.01 | 111.5 A ± 6.88 | ||
Strip-tilling | 0–20 | 110.2 a ± 11.1 | 105.5 a ± 3.46 | 136.8 a ± 13.3 | 141.1 a ± 5.02 | |
20–40 | 91.2 a ± 5.63 | 93.8 a ± 1.17 | 111.2 a ± 10.2 | 116.8 a ± 6.85 | ||
Mean | 110.7 A ± 13.1 | 99.7 A ± 6.79 | 124.0 A ± 17.6 | 129.0 A ± 14.4 | ||
p-value | ST × SP = 0.763; ST × SL × SP = 0.292 | ST × SP = 0.626; ST × SL × SP = 0.912 |
Year | Soil Tillage (ST) | Soil Layer (SL) | 3 Weeks after Sowing | At Harvest | ||
---|---|---|---|---|---|---|
Sampling Place (SP) | ||||||
Row | Inter-Row | Row | Inter-Row | |||
2016 | Plowing | 0–20 | 126.0 a ± 8.19 | 128.0 a ± 6.08 | 105.0 a ± 4.00 | 102.0 a ± 7.94 |
20–40 | 132.0 a ± 3.61 | 130.0 a ± 5.57 | 106.7 a ± 4.73 | 107.7 a ± 1.53 | ||
Mean | 129.0 A ± 6.54 | 129.0 A ± 5.33 | 105. 8 A ± 4.02 | 104.8 A ± 5.98 | ||
Strip-tilling | 0–20 | 125.3 a ± 0.58 | 135.3 a ± 13.4 | 92.0 a ± 8.72 | 100.0 a ± 5.57 | |
20–40 | 121.7 a ± 1.53 | 130.0 a ± 2.00 | 112.3 a ± 9.07 | 106.0 a ± 3.46 | ||
Mean | 123.5 A ± 2.26 | 132.7 A ± 9.07 | 102.2 A ± 13.7 | 103.0 A ± 5.29 | ||
p-value | ST × SP = 0.102; ST × SL × SP = 0.828 | ST × SP = 0.721; ST × SL × SP = 0.088 | ||||
2017 | Plowing | 0–20 | 76.3 a ± 1.53 | 84.0 a ± 6.24 | 78.0 a ± 1.73 | 79.0 a ± 2.65 |
20–40 | 80.3 a ± 1.53 | 87.0 a ± 8.00 | 73.3 a ± 1.15 | 77.7 a ± 2.89 | ||
Mean | 78.3 B ± 2.58 | 85.5 AB ± 6.63 | 75.7 A ± 2.88 | 78.3 A ± 2.58 | ||
Strip-tilling | 0–20 | 92.0 a ± 5.29 | 92.7 a ± 3.06 | 82.7 a ± 0.58 | 84.7 a ± 3.21 | |
20–40 | 91.0 a ± 5.20 | 85.7 a ± 2.52 | 72.7 a ± 1.53 | 74.0 a ± 1.73 | ||
Mean | 91.5 A ± 4.72 | 89.2 A ± 4.58 | 77.7 A ± 5.57 | 79.3 A ± 6.28 | ||
p-value | ST × SP = 0.025; ST × SL × SP = 0.526 | ST × SP = 0.570; ST × SL × SP = 0.263 |
Year | Soil Tillage (ST) | 7 Weeks after Sowing | 11 Weeks after Sowing | ||
---|---|---|---|---|---|
Length (cm) | |||||
Shoots | Roots | Shoots | Roots | ||
2016 | Plowing | 15.4 b ± 0.82 | 10.5 b ± 1.03 | 54.9 b ± 1.59 | 12.3 b ± 1.20 |
Strip-tilling | 18.0 a ± 1.38 | 16.6 a ± 1.86 | 64.8 a ± 1.35 | 19.3 a ± 2.17 | |
p-value | ST = 0.019 | ST < 0.001 | ST = 0.001 | ST = 0.001 | |
2017 | Plowing | 20.9 a ± 1.04 | 11.3 a ± 1.00 | 56.2 a ± 2.40 | 12.8 a ± 1.78 |
Strip-tilling | 19.8 a ± 1.75 | 11.9 a ± 0.44 | 56.7 a ± 2.33 | 15.6 a ± 1.59 | |
p-value | ST = 0.320 | ST = 0.750 | ST = 0.384 | ST = 0.059 | |
Dry matter weight (g m2) | |||||
2016 | Plowing | 20.1 b ± 1.76 | 2.00 b ± 0.31 | 307.6 a ± 23.7 | 8.83 a ± 1.39 |
Strip-tilling | 27.4 a ± 3.02 | 5.19 a ± 1.13 | 347.1 a ± 29.3 | 8.39 a ± 1.22 | |
p-value | ST = 0.006 | ST = 0.002 | ST = 0.081 | ST = 0.226 | |
2017 | Plowing | 52.5 a ± 1.68 | 8.39 a ± 1.02 | 277.5 a ± 20.6 | 9.93 a ± 0.67 |
Strip-tilling | 56.2 a ± 3.03 | 8.28 a ± 0.56 | 298.6 a ± 11.8 | 11.44 a ± 1.20 | |
p-value | ST = 0.073 | ST = 0.857 | ST = 0.125 | ST = 0.070 |
Year | Soil Tillage (ST) | 7 Weeks after Sowing | 11 Weeks after Sowing | ||
---|---|---|---|---|---|
Content % | Uptake kg ha−1 | Content % | Uptake kg ha−1 | ||
N | |||||
2016 | Plowing | 6.16 a ± 0.17 | 13.6 b ± 1.41 | 3.56 b ± 0.15 | 112.8 b ± 9.54 |
Strip-tilling | 5.82 b ± 0.20 | 19.0 a ± 2.35 | 3.99 a ± 0.18 | 142.1 a ± 15.1 | |
p-value | ST = 0.043 | ST = 0.008 | ST = 0.011 | ST = 0.017 | |
2017 | Plowing | 4.80 a ± 0.03 | 29.2 a ± 0.97 | 3.16 a ± 0.16 | 91.0 a ± 9.56 |
Strip-tilling | 4.73 a ± 0.18 | 30.5 a ± 1.66 | 3.18 a ± 0.08 | 98.7 a ± 5.54 | |
p-value | ST = 0.454 | ST = 0.227 | ST = 0.829 | ST = 0.212 | |
K | |||||
2016 | Plowing | 4.58 a ± 0.33 | 10.2 b ± 1.49 | 3.32 a ± 0.25 | 104.9 b ± 6.47 |
Strip-tilling | 4.40 a ± 0.16 | 14.4 a ± 1.68 | 3.38 a ± 0.08 | 119.9 a ± 7.66 | |
p-value | ST = 0.354 | ST = 0.010 | ST = 0.685 | ST = 0.024 | |
2017 | Plowing | 4.88 a ± 0.31 | 29.7 a ± 2.10 | 3.50 a ± 0.37 | 101.1 a ± 18.2 |
Strip-tilling | 5.01 a ± 0.20 | 32.4 a ± 2.79 | 3.38 a ± 0.56 | 104.7 a ± 15.5 | |
p-value | ST = 0.494 | ST = 0.174 | ST = 0.744 | ST = 0.774 |
Year | Soil Tillage (ST) | 7 Weeks after Sowing | 11 Weeks after Sowing | ||
---|---|---|---|---|---|
Content % | Uptake kg ha−1 | Content % | Uptake kg ha−1 | ||
P | |||||
2016 | Plowing | 0.365 a ± 0.014 | 0.825 b ± 0.096 | 0.253 b ± 0.013 | 8.03 b ± 0.846 |
Strip-tilling | 0.358 a ± 0.015 | 1.18 a ± 0.171 | 0.290 a ± 0.008 | 10.3 a ± 0.931 | |
p-value | ST = 0.507 | ST = 0.012 | ST = 0.002 | ST = 0.011 | |
2017 | Plowing | 0.330 a ± 0.022 | 2.00 a ± 0.183 | 0.228 a ± 0.017 | 6.53 a ± 0.602 |
Strip-tilling | 0.315 a ± 0.030 | 2.03 a ± 0.320 | 0.240 a ± 0.014 | 7.45 a ± 0.661 | |
p-value | ST = 0.448 | ST = 0.868 | ST = 0.303 | ST = 0.084 | |
Mg | |||||
2016 | Plowing | 0.363 a ± 0.010 | 0.825 b ± 0.096 | 0.356 a ± 0.005 | 11.3 a ± 0.849 |
Strip-tilling | 0.363 a ± 0.010 | 1.18 a ± 0.150 | 0.348 a ± 0.010 | 12.3 a ± 0.735 | |
p-value | ST = 1.00 | ST = 0.008 | ST = 0.114 | ST = 0.125 | |
2017 | Plowing | 0.275 a ± 0.006 | 1.68 a ± 0.096 | 0.290 b ± 0.024 | 8.33 b ± 0.222 |
Strip-tilling | 0.283 a ± 0.026 | 1.83 a ± 0.126 | 0.340 a ± 0.000 | 10.6 a ± 0.387 | |
p-value | ST = 0.598 | ST = 0.126 | ST = 0.006 | ST = <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepanek, M.; Piekarczyk, M.; Błaszczyk, K. Spatial Distribution of Soil Macroelements, Their Uptake by Plants, and Green Pea Yield under Strip-Till Technology. Agronomy 2024, 14, 711. https://doi.org/10.3390/agronomy14040711
Szczepanek M, Piekarczyk M, Błaszczyk K. Spatial Distribution of Soil Macroelements, Their Uptake by Plants, and Green Pea Yield under Strip-Till Technology. Agronomy. 2024; 14(4):711. https://doi.org/10.3390/agronomy14040711
Chicago/Turabian StyleSzczepanek, Małgorzata, Mariusz Piekarczyk, and Karolina Błaszczyk. 2024. "Spatial Distribution of Soil Macroelements, Their Uptake by Plants, and Green Pea Yield under Strip-Till Technology" Agronomy 14, no. 4: 711. https://doi.org/10.3390/agronomy14040711
APA StyleSzczepanek, M., Piekarczyk, M., & Błaszczyk, K. (2024). Spatial Distribution of Soil Macroelements, Their Uptake by Plants, and Green Pea Yield under Strip-Till Technology. Agronomy, 14(4), 711. https://doi.org/10.3390/agronomy14040711