Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Compilation
2.2. Data Description
2.3. Data Analysis
3. Results
3.1. Data Exploratory Analysis
3.2. Effects of Nitrogen and Water Management on Soil NO3− Concentration and N2O Emissions
3.3. Effects of Soil Physicochemical Properties on Soil NO3− Concentration and N2O Emissions
3.4. Direct and Indirect Effects of Nitrogen and Irrigation Management and Soil Physicochemical Properties on Soil NO3− Concentration and N2O Emissions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Li, Y.; Liu, A.; Yue, X.; Li, T. Effect of north wall materials on the thermal environment in Chinese solar greenhouse (part a: Experimental researches). Open Phys. 2019, 17, 752–767. [Google Scholar] [CrossRef]
- Lv, H.; Lin, S.; Wang, Y.; Lian, X.; Zhao, Y.; Li, Y.; Du, J.; Wang, Z.; Wang, J.; Butterbach-Bahl, K. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environ. Pollut. 2019, 245, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Qasim, W.; Xia, L.; Shan, L.; Li, W.; Zhao, Y.; Butterbach-Bahl, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef] [PubMed]
- Qasim, W.; Wan, L.; Lv, H.; Zhao, Y.; Hu, J.; Meng, F.; Lin, S.; Butterbach-Bahl, K. Impact of anaerobic soil disinfestation on seasonal N2O emissions and N leaching in greenhouse vegetable production system depends on amount and quality of organic matter additions. Sci. Total Environ. 2022, 830, 154673. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.J.; Song, D.P.; Jiang, R.; He, P.; Shi, Y.Y.; Pan, Z.L.; Zou, G.Y.; He, W.T. Modelling adaptation measures to improve maize production and reduce soil N2O emissions under climate change in Northeast China. Atmos. Environ. 2024, 319, 120241. [Google Scholar] [CrossRef]
- Chen, L.; Xie, H.; Wang, G.; Yuan, L.; Qian, X.; Wang, W.; Xu, Y.; Zhang, W.; Zhang, H.; Liu, L.; et al. Reducing environmental risk by improving crop management practices at high crop yield levels. Field Crops Res. 2021, 265, 108123. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Kou, X.; Wang, S.; Liu, J.; Xu, R.; Han, G.; Wu, L.; Zhu, L. Zizania aquatica–duck ecosystem with recycled biogas slurry maintained crop yield. Nutr. Cycl. Agroecosys. 2019, 115, 331–345. [Google Scholar] [CrossRef]
- Liu, Y. Interactive Effects of Irrigation and Nitrogen on Greenhouse Soil Nitrogen Utilization and Accumulation of Soil Nitrate. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2017. (In Chinese). [Google Scholar]
- Serra, J.; Cordovil, C.M.; Marinheiro, J.; Aguilera, E.; Lassaletta, L.; SanzCobena, A.; Garnier, J.; Billen, G.; De, V.W.; Dalgaard, T.; et al. Nitrogen inputs by irrigation is a missing link in the agricultural nitrogen cycle and related policies in Europe. Sci. Total Environ. 2023, 889, 164249. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, Y.; Yu, J.; Huang, J.; Kang, Y.; Du, Y.; Tian, G. Interaction of the coupled effects of irrigation mode and nitrogen fertilizer format on tomato production. Water 2023, 15, 1546. [Google Scholar] [CrossRef]
- Wu, Y.; Si, W.; Yan, S.; Wu, L.; Zhao, W.; Zhang, J.; Zhang, F.; Fan, J. Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices. Agric. Water Manag. 2023, 277, 108092. [Google Scholar] [CrossRef]
- Hu, Y.; Zeeshan, M.; Wang, G.; Pan, Y.; Liu, Y.; Zhou, X. Supplementary irrigation and varying nitrogen fertilizer rate mediate grain yield, soil-maize nitrogen accumulation and metabolism. Agric. Water Manag. 2023, 276, 108066. [Google Scholar] [CrossRef]
- Zhang, J. Modeling Nitrous Oxide Emissions and Nitrate Leaching from Greenhouse Vegetable System by Using a Biogeochemical Model. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. (In Chinese). [Google Scholar]
- Jiang, N. Study on CO2, N2O Emissions under Different Water-Fertilizer Treatment in Facility Vegetable Soil. Master’s Thesis, Capital Normal University, Beijing, China, 2011. (In Chinese). [Google Scholar]
- Zhang, Q.; Niu, W.; Du, Y.; Sun, J.; Cui, B.; Zhang, E.; Wang, Y.; Siddique, H.M. Effects of aerated drip irrigation and nitrogen doses on N2O emissions, microbial activity, and yield of tomato and muskmelon under greenhouse conditions. Agric. Water Manag. 2023, 283, 108321. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Q.; Cui, B.; Gu, X.; Niu, W. Effects of water and nitrogen coupling on soil N2O emission characteristics of greenhouse celery field under aerated irrigation. Trans. CSAE 2017, 33, 127–134. [Google Scholar]
- Graham, S.L.; Laubach, J.; Hunt, J.E.; Mudge, P.L.; Nuñez, J.; Rogers, G.N.; Buxton, R.P.; Carrick, S.; Whitehead, D. Irrigation and grazing management affect leaching losses and soil nitrogen balance of lucerne. Agric. Water Manag. 2022, 259, 107233. [Google Scholar] [CrossRef]
- Gan, X.; Sun, S.; Fan, H.; Liu, H.; Zhang, J.; Ding, Z. Research on soil nitrogen balance mechanism and optimal water and nitrogen management model for crop rotation of vegetables in facilities. Water 2023, 15, 2878. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, G.L.; Xie, H.K.; Chang, N.J.; Zhang, J.; Zhang, J.F.; Li, G.C.; Li, H. Balancing high yields and low N2O emissions from greenhouse vegetable fields with large water and fertilizer input: A case study of multiple-year irrigation and nitrogen fertilizer regimes. Plant Soil 2023, 483, 131–152. [Google Scholar] [CrossRef]
- Ariani, M.; Setyanto, P.; Wihardjaka, A. Water filled-pore space and soil temperature related to N2O fluxes from shallot cultivated in rainy and dry season. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012109. [Google Scholar] [CrossRef]
- Duan, B.; Cai, T.; Man, X.; Xiao, R.; Gao, M.; Ge, Z.; Mencuccini, M. Different variations in soil CO2, CH4, and N2O fluxes and their responses to edaphic factors along a boreal secondary forest successional trajectory. Sci. Total Environ. 2022, 838, 155983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Batchelor, W.D.; Hu, K.; Liang, H.; Han, H.; Li, j. Simulation of N2O emissions from greenhouse vegetable production under different management systems in North China. Ecol. Model. 2022, 470, 110019. [Google Scholar] [CrossRef]
- Yin, M.; Gao, X.; Kuang, W.; Tenuta, M. Soil N2O emissions and functional genes in response to grazing grassland with livestock: A meta-analysis. Geoderma 2023, 436, 116538. [Google Scholar] [CrossRef]
- Ashiq, W.; Vasava, H.; Cheema, M.; Dunfield, K.; Daggupati, P.; Biswas, A. Interactive role of topography and best management practices on N2O emissions from agricultural landscape. Soil Tillage Res. 2021, 212, 105063. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Cui, Z.; Yue, S.; Zhang, F. Estimated reactive nitrogen losses for intensive maize production in China. Agric. Ecosyst. Environ. 2014, 197, 293–300. [Google Scholar] [CrossRef]
- Wang, G.; Ye, Y.; Chen, X.; Cui, Z. Determining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspects. Biogeosciences 2014, 11, 3031–3041. [Google Scholar] [CrossRef]
- Miao, Q.; Sun, Y.; Ma, W.; Wang, G.; Wu, L.; Chen, X.; Tian, X.; Yin, Y.; Zhang, Q.; Cui, Z. Maximizing grains while minimizing yield-scaled greenhouse gas emissions for wheat production in China. Agronomy 2023, 13, 2676. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, L.; Wang, S.; Wang, Y.; Zhang, Z.; Chen, Q.; Ren, H.; Gao, L. Effects of different irrigation methods on water distribution and nitrate nitrogen transport of cucumber in greenhouse. Trans. CSAE 2010, 26, 67–72. (In Chinese) [Google Scholar]
- Li, Y.; Wu, X.; Guo, W.; Xue, X. Characteristics of greenhouse soil N2O emissions in cucumber-tomato rotation system under different nitrogen conditions. Trans. CSAE 2014, 30, 260–267. (In Chinese) [Google Scholar]
- Wang, X.; Qin, J.; Jiang, M.; Fan, Y.; Wang, S. Developing a subsurface drip irrigation scheduling mode based on water evaporation: Impacts studies on cucumbers planted in a greenhouse in the North China Plain. Agronomy 2023, 13, 1957. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Q.; Ji, X.; Cao, M.; Zhang, Y.; Jiang, J. How do natural soil NH4+, NO3− and N2O interact in response to nitrogen input in different climatic zones? a global meta-analysis. Eur. J. Soil Sci. 2021, 72, 2231–2245. [Google Scholar] [CrossRef]
- Eagle, A.J.; Olander, L.P.; Locklier, K.L.; Heffernan, J.B.; Bernhardt, E.S. Fertilizer management and environmental factors drive N2O and NO3 losses in corn: A meta-analysis. Soil Sci. Soc. Am. J. 2017, 81, 1191. [Google Scholar] [CrossRef]
- Hao, X. Study on Nutrient Balance and Optimized Management in Soil-Greenhouse Vegetable System. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2012. (In Chinese). [Google Scholar]
- Cheng, W.; Han, S.; Wu, J.; Li, M.; Shi, Z.; Wang, H.; Tang, S.; Hu, P.; Huang, H. Effects of continuous straw incorporation substitute for K-fertilizer on crop yield and soil potassium balance. Soils Fertil. Sci. China 2019, 5, 72–78. (In Chinese) [Google Scholar]
- Zhang, A.; Zhang, X.; Liang, Q.; Sun, M.T. Co-application of straw incorporation and biochar addition stimulated soil N2O and NH3 productions. PLoS ONE 2024, 19, e0289300. [Google Scholar] [CrossRef]
- Gao, S.J.; Peng, Q.; Liu, X.R.; Xu, C.Y. The effect of biochar and straw return on N2O emissions and crop yield: A three-year field experiment. Agriculture 2023, 13, 2091. [Google Scholar] [CrossRef]
- Liao, S.; Chen, Y.; Li, Y.; Sun, Y. Effect of slow-release fertilizer on yield and quality of tomato and NO3-N leaching under reduction irrigation condition. Soils Fertil. Sci. China 2015, 6, 70–75. (In Chinese) [Google Scholar]
- Ma, Z.; Jia, J.; Xie, Y.; Li, Y.; Bai, C. Effects of nitrification inhibitors and biochar on N2O and CO2 emissions from vegetable soil. J. Shanxi Agric. Sci. 2019, 47, 1019–1022. (In Chinese) [Google Scholar]
- Cheng, X.; Tian, X.; Guo, Y.; Li, R.; Zhang, L.; Ji, Y.; Li, B. Effects of nitrification inhibitor/microbial inoculum on nitrogen fate in soil-vegetable system of greenhouse. Plant Nutr. Fertil. Sci. 2022, 28, 1466–1477. (In Chinese) [Google Scholar]
- Wang, Y.; Zhang, L.; Jiao, X.; Chen, Y.; Sui, Y. Effects of biochar addition on soil nitrogen migration in greenhouse vegetable field. Chin. Agric. Sci. Bull. 2020, 36, 91–95. (In Chinese) [Google Scholar]
- Yin, L. Research and Application of Preventing and Controlling Obstacles of Strawberry Continuous Planting in Greenhouse. Master’s Thesis, Yangzhou University, Yangzhou, China, 2018. (In Chinese). [Google Scholar]
- Adomako, M.O.; Roiloa, S.; Yu, F.H. Potential roles of soil microorganisms in regulating the effect of soil nutrient heterogeneity on plant performance. Microorganisms 2022, 10, 2399. [Google Scholar] [CrossRef]
- Lu, K. Optimized Management of Nitrogen Fertilizer and Strategies for Reducing Nitrogen Leaching Loss in Greenhouse Vegetable Field in Taihu Lake Region. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2011. (In Chinese). [Google Scholar]
- Che, Z. Impacts of Soil Acidification on the Structure and Function of the Nitrification and Denitrification Microbial Community. Ph.D. Thesis, Anhui Agricultural University, Hefei, China, 2017. (In Chinese). [Google Scholar]
Total N Input (kg hm−2) | Irrigation Rate (mm) | OC (g kg−1) | ||||
≤423.6 | >423.6 | ≤208.9 | >208.9 | ≤14 | >14 | |
n | 239 | 188 | 199 | 107 | 217 | 207 |
r | 0.0539 | −0.0469 | 0.0197 | −0.0110 | −0.0173 | 0.2789 ** |
TN (g kg−1) | AN (mg kg−1) | ST (°C) | ||||
≤1.7 | >1.7 | ≤144 | >144 | ≤20.4 | >20.4 | |
n | 169 | 214 | 118 | 124 | 132 | 166 |
r | −0.0200 | 0.2577 ** | −0.0300 | 0.2883 ** | 0.4631 ** | 0.0200 |
BW (g cm−1) | pH | WFPS (%) | ||||
≤1.3 | >1.3 | ≤7.4 | >7.4 | ≤56.3 | >56.3 | |
n | 216 | 211 | 120 | 307 | 143 | 146 |
r | 0.2898 ** | −0.0400 | 0.0200 | 0.2526 ** | 0.1330 | 0.1319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Xu, H.; Huang, K.; Wang, J.; Zhao, H.; Qian, X.; Wang, J. Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis. Agronomy 2024, 14, 1387. https://doi.org/10.3390/agronomy14071387
Wang G, Xu H, Huang K, Wang J, Zhao H, Qian X, Wang J. Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis. Agronomy. 2024; 14(7):1387. https://doi.org/10.3390/agronomy14071387
Chicago/Turabian StyleWang, Guiliang, Haojie Xu, Kaiyuan Huang, Jinchuang Wang, Haitao Zhao, Xiaoqing Qian, and Juanjuan Wang. 2024. "Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis" Agronomy 14, no. 7: 1387. https://doi.org/10.3390/agronomy14071387
APA StyleWang, G., Xu, H., Huang, K., Wang, J., Zhao, H., Qian, X., & Wang, J. (2024). Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis. Agronomy, 14(7), 1387. https://doi.org/10.3390/agronomy14071387