Assessing Agricultural Impact on Greenhouse Gases in the European Union: A Climate-Smart Agriculture Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digitalization in Agriculture
2.1.1. The Role of Digitalization in Agriculture
2.1.2. Digital Technologies Used in Agriculture
2.2. Climate-Smart Agriculture
2.2.1. The Impact of CSA
2.2.2. Benefits of CSA
2.3. Impact of Agriculture on GHG Emisssions
2.3.1. The Effects of Agricultural Production on GHG Emissions
2.3.2. The Direct and Indirect Effects of Digitalization on GHG Emissions
2.4. Research Methodology
- LFI—total labor force input;
- AGRO—agricultural output;
- PLF—productivity per labor force.
3. Results
4. Discussion
4.1. Research Results Discussion
4.2. Theoretical Implications
4.3. Practical Implications
4.4. Limitation and Further Research
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waaswa, A.; Nkurumwa, A.O.; Kibe, A.M.; Ng’eno, J.K. Understanding the socioeconomic determinants of adoption of climate-smart agricultural practices among smallholder potato farmers in Gilgil Sub-County, Kenya. Discov. Sustain. 2021, 2, 41. [Google Scholar] [CrossRef]
- Waaswa, A.; Nkurumwa, A.O.; Kibe, A.M.; Kipkemoi, N.J. Communicating Climate Change Adaptation Strategies: Climate-Smart Agriculture Information Dissemination Pathways among Smallholder Potato Farmers in Gilgil Sub-County, Kenya. Heliyon 2021, 7, e07873. [Google Scholar] [CrossRef] [PubMed]
- Amoo, O.T.; Ojugbele, H.O.; Abayomi, A.; Singh, P.K. Hydrological Dynamics Assessment of Basin Upstream-Downstream Linkages under Seasonal Climate Variability. In African Handbook of Climate Change Adaptation; Leal Filho, W., Ogugu, N., Adelake, L., Ayal, D., da Silva, I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–20. [Google Scholar] [CrossRef]
- Kakehazar, R.; Agahi, H.; Geravandi, S. Livelihood Resilience to Climate Change in Family Farming System (Case Study: Wheat Farmers’ Mahidasht in Kermanshah). Int. J. Agric. Manag. Dev. 2020, 10, 415–433. [Google Scholar] [CrossRef]
- Waaswa, A.; Satognon, F. Development and the Environment: Overview of the Development Planning Process in Agricultural Sector, in Uganda. J. Sustain. Dev. 2020, 13, 1. [Google Scholar] [CrossRef]
- Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Hrustek, L. Sustainability Driven by Agriculture through Digital Transformation. Sustainability 2020, 12, 8596. [Google Scholar] [CrossRef]
- Yahya, N. Agricultural 4.0: Its Implementation Toward Future Sustainability. In Book Green Urea: Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 125–145. [Google Scholar] [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [PubMed]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldu, F. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Rotz, S.; Gravely, E.; Mosby, I.; Duncan, E.; Finnis, E.; Horgan, M.; LeBlanc, J.; Martin, R.; Neufeld, H.T.; Nixon, A.; et al. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. J. Rural. Stud. 2019, 68, 112–122. [Google Scholar] [CrossRef]
- Hosan, S.; Karmaker, S.C.; Rahman, M.M.; Chapman, A.J.; Saha, B.B. Dynamic links among the demographic dividend, digitalization, energy intensity, and sustainable economic growth: Empirical evidence from emerging economies. J. Clean. Prod. 2022, 330, 129858. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, J.; Si, H.; Su, Y. The Impact of the Digital Economy on Agricultural Green Development: Evidence from China. Agriculture 2022, 12, 1107. [Google Scholar] [CrossRef]
- Thornton, P.K.; Whitbread, A.; Baedeker, T.; Cairns, J.; Claessens, L.; Baethgen, W.; Keating, B. A framework for priority-setting in climate-smart agriculture research. Agric. Syst. 2018, 167, 161–175. [Google Scholar] [CrossRef]
- Huang, Y.B.; Chen, Z.X.; Yu, T.; Huang, X.Z.; Gu, X.F. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Meier, J.; Mauser, W.; Hank, T.; Bach, H. Assessments on the impact of high- resolution-sensor pixel sizes for common agricultural policy and smart farming services in European regions. Comput. Electron. Agric. 2020, 169, 105205. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, D.; Huang, R. A Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions. Sustainability 2023, 15, 3404. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.-H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Navarro, E.; Costa, N.; Pereira, A. A Systematic Review of IoT Solutions for Smart Farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Al-Turjman, F.; Treiblmaier, H. The Interplay between the Internet of Things and agriculture: A bibliometric analysis and research agenda. Internet Things 2022, 19, 100580. [Google Scholar] [CrossRef]
- Wolfert, S.; Isakhanyan, G. Sustainable agriculture by the Internet of Things—A practitioner’s approach to monitor sustainability progress. Comput. Electron. Agric. 2022, 200, 107226. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif. Intell. Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Carolan, M. Agro-Digital Governance and Life Itself: Food Politics at the Intersection of Code and Affect. Sociol. Rural. 2017, 57, 816–835. [Google Scholar] [CrossRef]
- Daum, T. Farm robots: Ecological utopia or dystopia? Trends Ecol. Evol. 2021, 36, 774–777. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Yimer, M. The Nexus between Agriculture, Food Security and Climate Change in Ethiopia. Sci. J. Crop Sci. 2015, 4, 28–37. [Google Scholar]
- Wakweya, R.B. Challenges and Prospects of Adopting Climate-Smart Agricultural Practices and Technologies: Implications for Food Security. J. Agric. Food Res. 2023, 14, 100698. [Google Scholar] [CrossRef]
- Brouziyne, Y.; El Bilali, A.; Epule Epule, T.; Ongoma, V.; Elbeltagi, A.; Hallam, J.; Moudden, F.; Al-Zubi, M.; Vadez, V.; McDonnell, R. Towards Lower Greenhouse Gas Emissions Agriculture in North Africa through Climate-Smart Agriculture: A Systematic Review. Climate 2023, 11, 139. [Google Scholar] [CrossRef]
- Pawtowski, L.; Pawtowska, M.; Kwiatkowski, C.A.; Harasim, E. The Role of Agriculture in Climate Change Mitigation—A Polish Example. Energies 2021, 14, 3657. [Google Scholar] [CrossRef]
- Brandt, P.; Kvakic, M.; Butterbach-Bahl, K.; Rufino, M.C. How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework “targetCSA”. Agric. Syst. 2017, 151, 234–245. [Google Scholar] [CrossRef]
- McCarthy, N.; Lipper, L.; Branca, G. Climate-Smart Agriculture: Smallholder Adoption and Implications for Climate Change Adaption and Mitigation; FAO: Rome, Italy, 2011; Available online: https://www.researchgate.net/publication/265229129_Climate_Smart_Agriculture_Smallholder_Adoption_and_Implications_for_Climate_Change_Adaptation_and_Mitigation (accessed on 16 February 2024).
- Zougmore, R.; Partey, S.; Ouédraogo, M.; Omitoyin, B.; Thomas, T.; Ayantunde, A.; Ericksen, P.; Said, M. Toward Climate-Smart Agriculture in West Africa: A Review of Climate Change Impacts, Adaptation Strategies and Policy Developments for the Livestock, Fishery and Crop Production Sectors. Agric. Food Secur. 2016, 5, 26. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Pawlowska, M.; Harasim, E.; Pawlowski, L. Strategies of Climate Change Mitigation in Agriculture Plant Production—A Critical Review. Energies 2023, 16, 4225. [Google Scholar] [CrossRef]
- Lipper, L.; Zilberman, D. A Short History of the Evolution of the Climate Smart Agriculture Approach and Its Links to Climate Change and Sustainable Agriculture Debates. In Climate Smart Agriculture; Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G., Eds.; Natural Resource Management and Policy 52; Springer: Cham, Switzerland, 2018; pp. 13–30. [Google Scholar] [CrossRef]
- Issahaku, G.; Abdulai, A. Adoption of Climate-Smart Practices and Its Impact on Farm Performance and Risk Exposure Among Smallholder Farmers in Ghana. Aust. J. Agric. Resour. Econ. 2020, 64, 396–420. [Google Scholar] [CrossRef]
- Gunathilaka, R.P.D.; Smart, J.C.R.; Fleming, C.M.; Hasan, S. The Impact of Climate Change on Labour Demand in the Plantation Sector: The Case of Tea Production in Sri Lanka. Aust. J. Agric. Resour. Econ. 2018, 62, 480–500. [Google Scholar] [CrossRef]
- Lybbert, T.; Sumner, D. Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion; International Centre for Trade and Sustainable Development: Geneva, Switzerland; International Food & Agricultural Trade Policy Council: Washington DC, USA, 2010; Available online: https://www.files.ethz.ch/isn/117246/agricultural-technologies-for-climate-change-mitigation-and-adaptation-in-developing-countries_web.pdf (accessed on 27 February 2024).
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable Intensification: What Is Its Role in Climate Smart Agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Obi, A. The Role and Perspective of Climate Smart Agriculture in Africa: A Scientific Review. Sustainability 2022, 14, 2317. [Google Scholar] [CrossRef]
- Idris, M. Understanding agricultural productivity growth in Sub-Saharan Africa: An analysis of the Nigerian economy. Int. J. Econ. Financ. Res. 2020, 6, 147–158. [Google Scholar] [CrossRef]
- Shahzad, M.F.; Abdulai, A. The heterogeneous effects of adoption of climate-smart agriculture on household welfare in Pakistan. Appl. Econ. 2021, 53, 1013–1038. [Google Scholar] [CrossRef]
- Branca, G.; Arslan, A.; Paolantonio, A.; Grewer, U.; Cattaneo, A.; Cavatassi, R.; Lipper, L.; Hillier, J.; Vetter, S. Assessing the economic and mitigation benefits of climate-smart agriculture and its implications for political economy: A case study in Southern Africa. J. Clean. Prod. 2021, 285, 125161. [Google Scholar] [CrossRef]
- Zerssa, G.; Feyssa, D.; Kim, D.-G.; Eichler-Löbermann, B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture 2021, 11, 192. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2021; FAO Statistical Yearbook—World Food and Agriculture; FAO: Rome, Italy, 2021; Available online: https://reliefweb.int/attachments/5b33a7ec-fd9d-3fb6-a7da-0a8715aa68e5/cb4477en.pdf (accessed on 22 February 2024).
- Gabriel, I.; Olajuwon, F.; Klauser, D.; Michael, B.; Renn, M. State of Climate Smart Agriculture (CSA) Practices in the North Central and Northwest Zones Nigeria. CABI Agric. Biosci. 2023, 4, 33. [Google Scholar] [CrossRef]
- Onoja, A.O.; Abraha, A.A.; Girma, A.; Achike, A.I. Climate-Smart Agricultural Practices (CSA) Adoption by Crop Farmers in Semi-arid Regions of West and East Africa: Evidence from Nigeria and Ethiopia. In Climate Change-Resilient Agriculture and Agroforestry; Castro, P., Azul, A., Leal Filho, W., Azeiteiro, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Mazhar, R.; Ghafoor, A.; Bi, X.; Zou, W. Fostering Sustainable Agriculture: Do Institutional Factors Impact the Adoption of Multiple Climate-Smart Agricultural Practices among New Entry Organic Farmers in Pakistan? J. Clean. Prod. 2021, 283, 124620. [Google Scholar] [CrossRef]
- Li, J.; Xia, E.; Wang, L.; Zhu, L.; Huang, J. Knowledge Domain and Emerging Trends of Climate-Smart Agriculture: A Bibliometric Study. Environ. Sci. Pollut. Control Ser. 2022, 29, 70360–70379. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture Sourcebook; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2013; Available online: https://www.fao.org/3/i3325e/i3325e.pdf (accessed on 16 February 2024).
- FAO. Climate Change and Food Security: Risks and Responses. 2015. Available online: https://www.fao.org/3/i5188e/I5188E.pdf (accessed on 16 February 2024).
- Zobeidi, T.; Yazdanpanah, M.; Komendantova, N.; Sieber, S.; Löhr, K. Factors affecting smallholder farmers’ technical and non-technical adaptation responses to drought in Iran. J. Environ. Manag. 2021, 298, 113552. [Google Scholar] [CrossRef]
- Savari, M.; Eskandari Damaneh, H. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Red. 2022, 67, 102654. [Google Scholar] [CrossRef]
- Clar, C. Coordinating climate change adaptation across levels of government: The gap between theory and practice of integrated adaptation strategy processes. J. Environ. Plan. Manag. 2019, 62, 2166–2185. [Google Scholar] [CrossRef]
- Keshavarz, M.; Soltani Moqadas, R. Assessing rural households’ resilience and adaptation strategies to climate variability and change. J. Arid Environ. 2021, 184, 104323. [Google Scholar] [CrossRef]
- Memarbashi, P.; Mojarradi, G.; Keshavarz, M. Climate-Smart Agriculture in Iran: Strategies, Constraints, and Drivers. Sustainability 2022, 14, 15573. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Giles, J.; Grosjean, G.; Le Coq, J.F.; Huber, B.; Bui, V.L.; Läderach, P. Barriers to implementing climate policies in agriculture: A case study from Viet Nam. Front. Sustain. Food Syst. 2021, 5, 439881. [Google Scholar] [CrossRef]
- Czyzewski, B.; Kryszak, T. Impact of Different Models of Agriculture on Greenhouse Gases (GHG) Emissions: A Sectoral Approach. Outlook Agric. 2018, 47, 68–76. [Google Scholar] [CrossRef]
- Israel, M.A.; Amikuzuno, J.; Danso-Abbeam, G. Assessing Farmers’ Contribution to Greenhouse Gas Emission and the Impact of Adopting Climate-Smart Agriculture on Mitigation. Ecol. Process 2020, 9, 51. [Google Scholar] [CrossRef]
- Hellin, J.; Fisher, E.; Taylor, M.; Bhasme, S.; Loboguerrero, A.M. Transformative Adaptation: From Climate-Smart to Climate-Resilient Agriculture. CABI Agric. Biosci. 2023, 4, 30. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa. Agriculture 2020, 10, 52. [Google Scholar] [CrossRef]
- Chandra, A.; McNamara, K.E.; Dargusch, P. Climate-smart agriculture: Perspectives and framings. Clim. Policy 2018, 18, 526–541. [Google Scholar] [CrossRef]
- Siedenburg, J.; Martin, A.; McGuire, S. The power of “farmer-friendly” financial incentives to deliver climate-smart agriculture: A critical data gap. J. Integr. Environ. Sci. 2012, 9, 201–217. [Google Scholar] [CrossRef]
- Vardy, M.; Oppenheimer, M.; Dubash, N.K.; O’Reilly, J.; Jamieson, D. The Intergovernmental Panel on Climate Change: Challenges and Opportunities. Annu. Rev. Environ. Resour. 2017, 42, 55–75. [Google Scholar] [CrossRef]
- Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global Climate Change and Greenhouse Effect. Entrep. Sustain. Issues 2020, 7, 2897. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global Greenhouse Gas Emissions from Animal-Based Foods Are Twice Those of Plant-Based Foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- Wijerathna-Yapa, A.; Pathirana, R. Sustainable Agro-Food Systems for Addressing Climate Change and Food Security. Agriculture 2022, 12, 1554. [Google Scholar] [CrossRef]
- Latake, P.T.; Pawar, P.; Ranveer, A.C. The Greenhouse Effect and Its Impacts on Environment. Int. J. Innov. Res. Creat. Technol. 2015, 1, 333–337. Available online: https://www.ijirct.org/papers/IJIRCT1201068.pdf (accessed on 2 March 2024).
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. A review of greenhouse gas emissions from the agriculture sector in Africa. Agric. Syst. 2018, 166, 124–134. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C.; Hatano, R. Carbon, Nitrogen and Water Footprints of Organic Rice and Conventional Rice Production over 4 Years of Cultivation: A Case Study in the Lower North of Thailand. Agronomy 2022, 12, 380. [Google Scholar] [CrossRef]
- Arunrat, N.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review. Agronomy 2020, 10, 1061. [Google Scholar] [CrossRef]
- Basso, B.; Antle, J. Digital Agriculture to Design Sustainable Agricultural Systems. Nat. Sustain. 2020, 3, 254–256. [Google Scholar] [CrossRef]
- Ozdogan, B.; Gacar, A.; Aktas, H. Digital Agriculture Practices in the Context of Agriculture 4.0. J. Econ. Financ. Account. 2017, 4, 186–193. Available online: https://dergipark.org.tr/en/download/article-file/370149 (accessed on 2 March 2024). [CrossRef]
- Eurostat. Total Labour Force Input. Available online: https://ec.europa.eu/eurostat/databrowser/view/aact_ali01/default/table?lang=en&category=agr.aact.aact_ali (accessed on 29 February 2024).
- Eurostat. Agricultural Output. Available online: https://ec.europa.eu/eurostat/databrowser/view/aact_eaa07__custom_10308459/default/table?lang=en (accessed on 29 February 2024).
- Eurostat. Crop Output. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00054/default/table?lang=en&category=t_agr.t_aact (accessed on 29 February 2024).
- Eurostat. Animal Output. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00055/default/table?lang=en&category=t_agr.t_aact (accessed on 29 February 2024).
- Eurostat. Air Emissions Accounts by NACE Rev. 2 Activity. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ac_ainah_r2__custom_10308538/default/table?lang=en (accessed on 29 February 2024).
- European Commission. The Digital Economy and Society Index (DESI). Available online: https://digital-strategy.ec.europa.eu/en/policies/desi (accessed on 29 February 2024).
- Ankamah, J.; Kodua, T.T.; Addae, M. Structural equation modelling of perception for sustainable agriculture as climate change mitigation strategy in Ghana. Environ. Syst. Res. 2021, 10, 26. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, Z.; Qiao, Y.; Du, K.; Yueet, Z.; Tian, C.; Leng, P.; Cheng, H.; Chen, G. Different responses of agroecosystem greenhouse gas emissions to tillage practices in a Chinese wheat–maize cropping system. Carbon Res. 2023, 2, 7. [Google Scholar] [CrossRef]
- Barati, A.A.; Azadi, H.; Movahhed Moghaddam, S.; Scheffran, J.; Pour, M.D. Agricultural expansion and its impacts on climate change: Evidence from Iran. Environ. Dev. Sustain. 2024, 26, 5089–5115. [Google Scholar] [CrossRef]
- Garson, D. Partial Least Squares (PLS-SEM). Available online: https://www.smartpls.com/resources/ebook_on_pls-sem.pdf (accessed on 24 January 2024).
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.A. Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M.; SmartPLS 4. Monheim am Rhein, Germany: SmartPLS. 2024. Available online: https://www.smartpls.com (accessed on 2 March 2024).
- Maraveas, C.; Karavas, C.-S.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Symeonaki, E. Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture 2023, 13, 1464. [Google Scholar] [CrossRef]
- Ruijs, M.; Benninga, J. Market Potential and Investment Opportunities of High-Tech Greenhouse Vegetable Production in the USA: An Exploratory Study for Midwest and East Coast Regions and the State of California; Wageningen University & Research: Wageningen, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; Hodson, A.K.; Bloom, A.J.; Carter, M.R.; Cattaneo, A.; Chartres, C.; Hatfield, J.L.; Henry, K.; Hopmans, J.W.; Horwath, W.R.; et al. Climate-Smart Agriculture Global Research Agenda: Scientific Basis for Action. Agric. Food Secur. 2014, 3, 11. [Google Scholar] [CrossRef]
- Kaptymer, B.L.; Ute, J.A.; Hule, M.N. Climate smart agriculture and its implementation challenges in Africa. Curr. J. Appl. Sci. Technol. 2019, 38, 1–13. [Google Scholar] [CrossRef]
- Munoz-Liesa, J.; Royapoor, M.; Cuerva, E.; Gasso-Domingo, S.; Gabarrell, X.; Josa, A. Building-integrated greenhouses raise energy co-benefits through active ventilation systems. Build. Environ. 2022, 208, 108585. [Google Scholar] [CrossRef]
- Khumalo, N.Z.; Sibanda, M.; Mdoda, L. Implications of a Climate-Smart Approach to Food and Income Security for Urban Sub-Saharan Africa: A Systematic Review. Sustainability 2024, 16, 1882. [Google Scholar] [CrossRef]
- Robertson, G.P. Abatement of Nitrous Oxide, Methane, and the Other Non-CO2 Greenhouse Gases: The Need for a Systems Approach. In The Global Carbon Cycle; Field, C.B., Raupach, M.R., Eds.; Island Press: Washington, DC, USA, 2004; pp. 493–506. [Google Scholar]
- Chauhan, Y.K.; Ratan, R. Study on placement of sensors for readings accuracy level enhancement in greenhouse. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering; Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; pp. 245–254. [Google Scholar]
- Pinandhito, G.P.R.; Nuriawati, N.; Dianafi, D.R.; Wirawati, D.K.S.; Mayori, I.M.; Syakira, N.A.; Arianto, N.F.; Pratama, R.A.; Cahyani, S.D.A.; Nchimunya, N. Study of Biopharmaceutical Agricultural Development in Karanganyar Regency. J. Reg. Rural. Stud. 2023, 1, 57–70. [Google Scholar] [CrossRef]
- Westermann, O.; Forch, W.; Thornton, P.; Korner, J.; Cramer, L.; Campbell, B. Scaling Up Agricultural Interventions: Case Studies of Climate-Smart Agriculture. Agric. Syst. 2018, 165, 283–293. [Google Scholar] [CrossRef]
- Amadu, F.O.; McNamara, P.E.; Miller, D.C. Understanding the Adoption of Climate-Smart Agriculture: A Farm-Level Typology with Empirical Evidence from Southern Malawi. World Dev. 2020, 126, 104692. [Google Scholar] [CrossRef]
- Azizi-Khalkheili, T.; Aenis, T.; Menatizadeh, M.; Zamani, G.H. Farmers’ Decision-Making Process under Climate Change: Developing a Conceptual Framework. Int. J. Agric. Manag. Dev. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Mashi, S.A.; Inkani, A.I.; Oghenejabor, O.D. Determinants of Awareness Levels of Climate Smart Agricultural Technologies and Practices of Urban Farmers in Kuje, Abuja. Nigeria. Technol. Soc. 2022, 70, 102030. [Google Scholar] [CrossRef]
- Brown, B.; Llewellyn, R.; Nuberg, I. Global Learnings to Inform the Local Adaptation of Conservation Agriculture in Eastern and Southern Africa. Glob. Food Secur. 2018, 17, 213–220. [Google Scholar] [CrossRef]
- Torquebiau, E.; Rosenzweig, C.; Chatrchyan, A.M.; Andrieu, N.; Khosla, R. Identifying Climate-Smart Agriculture Research Needs. Cah. Agric. 2018, 27, 26001. [Google Scholar] [CrossRef]
- Ingram, J.; Maye, D. What Are the Implications of Digitalisation for Agricultural Knowledge? Front. Sustain. Food Syst. 2020, 4, 66. [Google Scholar] [CrossRef]
- Jamil, I.; Jun, W.; Mughal, B.; Raza, M.H.; Imran, M.A.; Waheed, A. Does the adaptation of climate-smart agricultural practices increase farmers’ resilience to climate change? Environ. Sci. Pollut. Res. 2021, 28, 27238–27249. [Google Scholar] [CrossRef]
- Teklu, A.; Simane, B.; Bezabih, M. Effect of Climate Smart Agriculture Innovations on Climate Resilience among Smallholder Farmers: Empirical Evidence from the Choke Mountain Watershed of the Blue Nile Highlands of Ethiopia. Sustainability 2023, 15, 4331. [Google Scholar] [CrossRef]
- Dougill, A.J.; Hermans, T.D.G.; Eze, S.; Antwi-Agyei, P.; Sallu, S.M. Evaluating climate-smart agriculture as route to building climate resilience in african food systems. Sustainability 2021, 13, 9909. [Google Scholar] [CrossRef]
- Kassaye, A.Y.; Shao, G.; Wang, X.; Belete, M. Evaluating the practices of climate-smart agriculture sustainability in Ethiopia using geocybernetic assessment matrix. Environ. Dev. Sustain. 2022, 24, 724–764. [Google Scholar] [CrossRef]
- Nugraha, A.T.; Rahmawati, R.; Auliah, A.; Prayitno, G. Farmers’ Social Capital in Supporting Sustainable Agriculture: The Case of Pujon Kidul Tourism Village, Indonesia. Civense 2022, 5, 235–249. [Google Scholar] [CrossRef]
- Gugissa, D.A.; Abro, Z.; Tefera, T. Achieving a Climate-Change Resilient Farming System through Push-Pull Technology: Evidence from Maize Farming Systems in Ethiopia. Sustainability 2022, 14, 2648. [Google Scholar] [CrossRef]
- Gori Maia, A.; da Silveira, R.L.F.; Veneo Campos Fonseca, C.; Burney, J.; Cesano, D. Climate resilience programmes, and technical efficiency: Evidence from the smallholder dairy farmers in the Brazilian semi-arid region. Clim. Dev. 2022, 14, 197–207. [Google Scholar] [CrossRef]
- Hellin, J.; Amarnath, G.; Challinor, A.; Fisher, E.; Girvetz, E.; Guo, Z.; Hodur, J.; Loboguerrero, A.M.; Pacillo, G.; Rose, S.; et al. Transformative Adaptation and Implications for Transdisciplinary Climate Change Research. Environ. Res. Clim. 2022, 1, 023001. [Google Scholar] [CrossRef]
Variable | Data | Measures | Period | Sources |
---|---|---|---|---|
C | Connectivity | Score | 2017–2022 | [81] |
DPS | Digital public services | Score | 2017–2022 | [81] |
HC | Human capital | Score | 2017–2022 | [81] |
IDT | Integration of digital technology | Score | 2017–2022 | [81] |
AGRO | Agricultural output | Million purchasing power standards (PPS) | 2017–2022 | [77] |
CRO | Crop output | Million purchasing power standards (PPS) | 2017–2022 | [78] |
ANO | Animal output | Million purchasing power standards (PPS) | 2017–2022 | [79] |
LFI | Total labor force input | 1000 annual work units | 2017–2022 | [76] |
PLF | Productivity per labor force | Million purchasing power standards (PPS)/1000 annual work units | 2017–2022 | [74] |
GHGAGR | GHGs in agriculture | Tons | 2017–2022 | [74] |
Variable | VIF |
---|---|
C | 1.760 |
DPS | 3.238 |
HC | 3.597 |
IDT | 3.598 |
CRO | 4.522 |
ANO | 4.522 |
PLF | 1.000 |
GHGAGR | 1.000 |
Saturated Model | |
---|---|
SRMR | 0.073 |
d_ULS | 0.19 |
d_G | 0.117 |
Chi-Square | 84.360 |
NFI | 0.934 |
Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | Hypotheses | |
---|---|---|---|---|---|---|
Digital Economy and Society Index → Productivity per labor force (H1) | 0.464 | 0.475 | 0.07 | 6.612 | 0.000 | Validated |
Productivity per labor force → Agricultural output (H2) | 0.179 | 0.185 | 0.067 | 2.675 | 0.008 | Validated |
Agricultural output → Greenhouse gases in agriculture (H3) | 0.976 | 0.977 | 0.006 | 162.242 | 0.000 | Validated |
Digital Economy and Society Index → Greenhouse gases in agriculture (H4) | 0.029 | 0.026 | 0.021 | 1.384 | 0.167 | Invalidated |
Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | |
---|---|---|---|---|---|
Digital Economy and Society Index → Productivity per labor force → Agricultural output | 0.083 | 0.086 | 0.031 | 2.686 | 0.007 |
Productivity per labor force → Agricultural output → Greenhouse gases in agriculture | 0.175 | 0.18 | 0.065 | 2.692 | 0.007 |
Digital Economy and Society Index → Productivity per labor force → Agricultural output → Greenhouse gases in agriculture | 0.081 | 0.084 | 0.03 | 2.707 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vărzaru, A.A. Assessing Agricultural Impact on Greenhouse Gases in the European Union: A Climate-Smart Agriculture Perspective. Agronomy 2024, 14, 821. https://doi.org/10.3390/agronomy14040821
Vărzaru AA. Assessing Agricultural Impact on Greenhouse Gases in the European Union: A Climate-Smart Agriculture Perspective. Agronomy. 2024; 14(4):821. https://doi.org/10.3390/agronomy14040821
Chicago/Turabian StyleVărzaru, Anca Antoaneta. 2024. "Assessing Agricultural Impact on Greenhouse Gases in the European Union: A Climate-Smart Agriculture Perspective" Agronomy 14, no. 4: 821. https://doi.org/10.3390/agronomy14040821
APA StyleVărzaru, A. A. (2024). Assessing Agricultural Impact on Greenhouse Gases in the European Union: A Climate-Smart Agriculture Perspective. Agronomy, 14(4), 821. https://doi.org/10.3390/agronomy14040821