Carbon and Nitrogen Stocks in Soil under Native Pastures in the Pantanal Wetland Biome, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Areas under Study
2.2. Determination of Soil Attributes
2.3. Data Processing and Analysis
3. Results
3.1. Effect of Pastures on Soil Carbon Content and Stock
3.2. Effect of Pastures on N Content and Soil C/N Ratio
3.3. SOM Fractionation and Relationships among Fractions
3.4. Interdependence Relationship among Pastures, SOM Fractions, and C and N Stocks
4. Discussion
4.1. Soil Carbon and Nitrogen Dynamics in Natural Pastures
4.2. SOM Humification in Native Pasture Areas
5. Conclusions
- Native pastures characterized by the predominance of Axonopus purpusii and Hymenachne amplexicaulis presented an increase in soil organic matter content when subjected to the absence of grazing for five years. The native pasture of Mesosetum chaseae had lower soil bulk density and lower contents of organic matter and nitrogen when subjected to the absence of grazing than under continuous grazing. The native pasture of Hymenachne amplexicaulis exhibited higher organic matter content due to its occurrence in a lower position in the landscape;
- The dynamics of nitrogen in the soil of natural pastures in the Pantanal are strongly influenced by the type of vegetation and land management. The highest nitrogen contents are found in the surface layer (0–10 cm) due to the greater deposition of organic matter with a low degree of decomposition. As soil depth increases, the C/N ratio also increases, indicating a lower availability of assimilable nitrogen;
- Continued monitoring of carbon and nitrogen stocks is crucial to assess the long-term impacts of land-use changes. Future research should focus on how agricultural intensification and different cropping systems can be adjusted to maximize carbon capture and nitrogen retention, thus contributing to the sustainability of Pantanal ecosystems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laborde, D.; Mamun, A.; Martin, W.; Piñeiro, V.; Vos, R. Agricultural subsidies and global greenhouse gas emissions. Nat. Commun. 2021, 12, 2601. [Google Scholar] [CrossRef]
- Bayer, C.; Martin-Neto, L.; Mielniczuk, J.; Pavinato, A.; Dieckow, J. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Till. Res. 2006, 86, 237–245. [Google Scholar] [CrossRef]
- Lal, R. Challenges and oppottunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Bossio, D.; Cook-Patton, S.; Ellis, P.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.; von Unger, M.; Emmer, I.; et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Nwaogu, C.; Cherubin, M. Integrated agricultural systems: The 21st century nature-based solution for resolving the global FEEES challenges. Sci. Direct 2024, 185, 1–73. [Google Scholar]
- La Scala, N.; Figueiredo, E.; Panosso, A. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities. Bras. J. Bio. 2012, 72, 775–785. [Google Scholar] [CrossRef] [PubMed]
- MAPBIOMAS—Mapeamento Inédito Indica que Brasil Estoca no Solo o Equivalente a 70 Anos das Emissões de CO2 do País. 2021. Available online: https://brasil.mapbiomas.org/2023/06/21/mapeamento-inedito-indica-que-brasil-estoca-no-solo-o-equivalente-a-70-anos-das-emissoes-de-co2-do-pais/ (accessed on 20 June 2024).
- Couto, E.; Oliveira, M. The soil diversity of the Pantanal. In The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland; Junk, W., Da Silva, C., Nunes da Cunha, C., Wantzen, K., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2011; pp. 40–64. [Google Scholar]
- Cardoso, L.; Silva, M.; Silva, C.; Curi, N.; Freitas, D. Estoques de carbono e nitrogênio em solo sob florestas nativas e pastagens no bioma Pantanal. Pesq. Agropec. Bras. 2010, 45, 1028–1035. [Google Scholar] [CrossRef]
- Louzada, R.; Bergier, I.; McGlue, M.; Roque, F.; Rasbold, G.; Domingos-Luz, L.; Edward, L. Fluvial avulsions influence soil fertility in the Pantanal wetlands (Brazil). Sci. Total Environ. 2024, 926, 172127. [Google Scholar] [CrossRef]
- Barbiero, L.; Rezende Filho, A.; Firquim, S.; Furian, S.; Sakamoto, A.; Valles, V.; Graham, R.; Fort, M.; Ferreira, R.; Queiroz Neto, J. Soil morphological control on saline and freshwater lake hydrogeochemistry in the Pantanal of Nhecolândia, Brazil. Geoderma 2008, 148, 91–106. [Google Scholar] [CrossRef]
- Santos, G.; Silva, L.; Canellas, L.; Camargo, F. Fundamentos da Matéria Orgânica do Solo: Ecossistemas Tropicais e Subtropicais; Genesis: Porto Alegre, Brazil, 2008; p. 654. [Google Scholar]
- Wendling, B.; Jucksch, I.; Mendonça, E.; Alvarenga, R. Organic-matter pools of soil under pines and annual cultures. Commun. Soil Sci. Plant Anal. 2010, 41, 1707–1722. [Google Scholar] [CrossRef]
- Tiwari, J.; Ramanathan, A.; Bauddh, K.; Korstad, J. Humic substances: Structure, function and benefits for agroecosystems—A review. Pedosphere 2023, 33, 237–249. [Google Scholar] [CrossRef]
- West, T.; Post, W. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Stevenson, F. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1994; p. 496. [Google Scholar]
- Garnett, M.; Ineson, P.; Stevenson, A.; Howard, D. Terrestrial organic carbon in a British moorland. Glob. Change Biol. 2001, 7, 375–388. [Google Scholar] [CrossRef]
- Fujisaka, S.; Castilla, C.; Escobar, G.; Rodrigues, V.; Veneklaas, E.; Thomas, R.; Fisher, M. The effects of forest conversion on annual crops and pastures: Estimates of carbon emissions and plant species loss in a Brazilian Amazon colony. Agric. Ecosyst. Environ. 1998, 69, 17–26. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Camill, P.; Mckone, M.; Sturges, S.; Severud, W.; Ellis, E.; Limmer, J.; Martin, C.; Purdir, A.; Sandel, B.; Talukder, S.; et al. Community and ecosystem-level changes in a species-rich tallgrass prairie restoration. Ecol. Appl. 2004, 14, 1680–1694. [Google Scholar] [CrossRef]
- Mahaney, W.; Smemo, K.; Gross, K. Impacts of C4 grass introductions on soil carbon and nitrogen cycling in C3-dominated successional systems. Ecosyst. Ecol. 2008, 157, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.; Santana, M., Jr.; Maia, N.; Dubeux, J., Jr.; Gameiro, A.; Kunrath, T.; Mendonça, G.; Simili, F. Nitrogen balance and efficiency as indicators for monitoring the proper use of fertilizers in agricultural and livestock systems. Sci. Rep. 2022, 12, 12021. [Google Scholar] [CrossRef]
- Roscoe, R.; Boddey, R.; Salton, J. Sistemas de manejo e matéria orgânica do solo. In Dinâmica da Matéria Orgânica do Solo em Sistemas Conservacionistas: Modelagem Matemática e Métodos Auxiliaries; Roscoe, R., Mercante, F., Salton, J., Eds.; Embrapa Agropecuária Oeste: Dourados, Brazil, 2006; pp. 17–41. [Google Scholar]
- Roscoe, R.; Buurman, P.; Velthorst, E.; Vasconcellos, C. Soil organic matter dynamics in density and particle-size fractions as revealed 13 12 by the C/C isotopic ratio in a Cerrado’s Oxisol. Geoderma 2001, 104, 185–202. [Google Scholar] [CrossRef]
- Detwiller, R. Land use changes and the global carbon cycle: The role of tropical soils. Biogeochemistry 1986, 2, 67–93. [Google Scholar] [CrossRef]
- Houghton, R.; Hobble, J.; Melillo, J.; Moore, B.; Peterson, B.; Shaver, G.; Woodwell, G. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecol. Monog. 1983, 53, 235–262. [Google Scholar] [CrossRef]
- Fernandes, F.; Cerri, C.; Fernandes, A. Alterações na matéria orgânica de um podzol hidromórfico pelo uso com pastagens cultivadas no Pantanal Mato-Grossense. Pesq. Agropec. Bras. 1999, 34, 1943–1951. [Google Scholar] [CrossRef]
- Kaschuk, G.; Aalberton, O.; Hungria, M. Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: Inferences to improve soil quality. Plant Soil 2011, 338, 467–481. [Google Scholar] [CrossRef]
- Rodela, L. Unidades de Vegetação e Pastagens Nativas do Pantanal da Nhecolândia, Mato Grosso do Sul. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2006; 222p. [Google Scholar]
- Santos, H.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; de Araujo Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa Solos: Brasilia, Brazil, 2006; 353p. [Google Scholar]
- Teixeira, P.; Donagemma, G.; Fontana, A.; Teixeira, W. Manual de Métodos de Análise de Solo; Embrapa: Brasilia, Brazil, 2017; 573p. [Google Scholar]
- Sisti, C.; Santos, H.; Kohhann, R.; Alves, B.; Urquiaga, S.; Boddey, R. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till. Res. 2004, 76, 39–58. [Google Scholar] [CrossRef]
- Swift, R. Organic matter characterization. In Methods of Soil Analysis; Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., Tabatabai, M., Johnston, C., Sumner, M., Eds.; Soil Science Society American: Madison, WI, USA, 1996; pp. 1011–1020. [Google Scholar]
- Benites, V.; Madari, B.; Machado, P.A. Extração e Fracionamento Quantitativo de Substâncias Húmicas do Solo: Um Procedimento Simplificado de Baixo Custo; Comunicado Técnico 16; Embrapa Solos: Brasilia, Brazil, 2003; 7p. [Google Scholar]
- Hayes, M.; McCarthy, P.; Malcolm, R.; Swift, R. (Eds.) Structures of humic substances: The emergence of forms. In Humic Substance, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1989; pp. 3–31. [Google Scholar]
- Ferreira, D. Sisvar: A computer statistical analysis system. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Sneath, P.; Sokal, R. Numerical Taxonomy; Freeman and Co.: New York, NY, USA, 1973; 573p. [Google Scholar]
- Hair, J.; Black, W.; Babin, B.; Anderson, R.; Tatham, R. Análise Multivariada de Dados, 5th ed.; Bookman: Delhi, India, 2005; 688p. [Google Scholar]
- Kaiser, H. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 13 March 2024).
- Hayes, M.H.B.; Swift, R.S. Chapter One—Vindication of humic substances as a key component of organic matter in soil and water. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 163, pp. 1–37. [Google Scholar]
- Ghabbour, E.A.; Davies, G.; Misiewicz, T.; Alami, R.A.; Askounis, E.M.; Cuozzo, N.P.; Filice, A.J.F.; Haskell, J.M.; Moy, A.K.; Roach, A.C.; et al. Chapter One—National Comparison of the Total and Sequestered Organic Matter Contents of Conventional and Organic Farm Soils. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 146, pp. 1–35. [Google Scholar]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Desbiez, A.; Keuroghlian, A. Ageing feral pigs (Sus scrofa) through tooth eruption and wear. Suif. Soun. 2009, 9, 48–55. [Google Scholar]
- Moreira, F.; Siqueira, J. Microbiologia e Bioquímica do Solo; Editora UFLA: Lavras, Brazil, 2006; 729p. [Google Scholar]
- Neill, C.; Melillo, J.; Steudler, P.; Cerri, C.; Moraes, J.; Piccolo, M.; Brito, M. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol. Appl. 1997, 7, 1216–1225. [Google Scholar] [CrossRef]
- Victoria, R.; Fernandes, F.; Martinelli, L.; Piccolo, C.; Camargo, P.; Trumbore, S. Past vegetation changes in the Brazilian Pantanal arboreal-grassy savanna ecotone by using carbon isotopes in the soil organic matter. Glob. Change Biol. 1995, 1, 165–171. [Google Scholar] [CrossRef]
- Ceballos, D.; Frangi, J.; Jobbágy, E. Soil volume and carbon storage shifts in drained and afforested wetlands of the Paraná River Delta. Biogeochemistry 2013, 112, 359–372. [Google Scholar] [CrossRef]
- Mitsch, W.; Gosselink, J. Wetlands, 4th ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2007; 582p. [Google Scholar]
- Mitra, S.; Wassmann, R.; Vlek, P. An appraisal of global wetland area and its organic carbon stock. Curr. Sci. 2005, 88, 25–35. [Google Scholar]
- Xavier, F.; Maia, S.; Ribeiro, K.; Mendonça, E.; Oliveira, T. Effect of cover plants on soil C and N dynamics in different soil management systems in dwarf cashew culture. Agric. Ecosyst. Environ. 2013, 165, 173–183. [Google Scholar] [CrossRef]
- Wilson, C.; Strickland, M.; Hutchings, J.; Bianchi, T.; Flory, S. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Glob. Chang. Biol. 2018, 24, 2997–3009. [Google Scholar] [CrossRef]
- Reichert, J.; Suzuki, L.; Reinert, D.; Horn, R.; Hakansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Till. Res 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Albuquerque, J.; Sangoi, L.; Ender, M. Efeitos da interação lavoura-pecuária nas propriedades físicas do solo e características da cultura do milho. R. Bras. Ciênc. Solo 2001, 25, 717–723. [Google Scholar] [CrossRef]
- Oliveira, T.; Costa, L.; Figueiredo, M.; Regazzi, A. Efeitos dos ciclos de umedecimento e secagem sobre a estabilidade de agregados em água de quatro latossolos Brasileiros. R. Bras. Ciênc. Solo 1996, 20, 509–515. [Google Scholar]
- Cantarutti, R.; Nascimento, D., Jr.; Costa, O. Impacto animal sobre o solo: Compactação e reciclagem de nutrientes. In A Produção Animal na Visão dos Brasileiros; Matos, W., Ed.; FEALQ: Piracicaba, Brazil, 2001; pp. 826–837. [Google Scholar]
- Gifford, R.; Roderick, M. Soil carbon stocks and bulk density: Spatial or cumulative mass coordinates as a basis of expression? Glob. Change Biol. 2003, 9, 1507–1514. [Google Scholar] [CrossRef]
- Maia, S.; Ogle, S.; Cerri, C.; Cerri, C. Effect of grassland management on soil carbon sequestration in Rondônia and Mato-Grosso states, Brazil. Geoderma 2009, 149, 84–91. [Google Scholar] [CrossRef]
- Feller, C.; Beare, M. Physical control of soil organic matter dynamics in the tropics. Geoderma 1997, 79, 69–116. [Google Scholar] [CrossRef]
- Zinn, Y.; Resck, D.; Silva, J. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. For. Ecol. Manag. 2002, 166, 285–294. [Google Scholar] [CrossRef]
- Zinn, Y.; Lal, R.; Resck, D. Changes in soil organic carbon stocks under agriculture in Brazil. Soil Till. Res. 2005, 84, 28–40. [Google Scholar] [CrossRef]
- Amelung, W.; Flach, K.; Zech, W. Climatic effects on soil organic matter composition in the Great Plains. Soil Sci. Soc. Am. J. 1997, 61, 115–123. [Google Scholar] [CrossRef]
- Carvalho, J.; Raucci, G.; Cerri, C.; Bernoux, M.; Feigl, B.; Wruck, F.; Cerri, C. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Till. Res 2010, 110, 175–186. [Google Scholar] [CrossRef]
- Moraes, J.; Neill, C.; Volkoff, B.; Cerri, C.; Melillo, J.; Lima, V.; Steudler, P. Soil carbon and nitrogen stocks following forest conversion to pasture in the Western Brazilian Amazon Basin. Acta Sci. 2003, 24, 1369–1376. [Google Scholar]
- Frazão, L.; Frazão, L.; Santana, I.; Campos, D.; Feigl, B.; Cerri, C. Estoques de carbono e nitrogênio e fração leve da matéria orgânica em Neossolo Quartzarênico sob uso agrícola. Pesq. Agropec. Bras. 2010, 45, 1198–1204. [Google Scholar] [CrossRef]
- Mielniczuk, J.; Bayer, C.; Vezzani, F.; Lovato, T.; Fernandes, F.; Debarba, L. Manejo de solo e culturas e sua relação com os estoques de carbono e nitrogênio do solo. In Tópicos em Ciência do Solo; Curi, N., Marques, J., Guilherme, L., Lima, J., Lopes, A., Alvarez, V., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2003; pp. 209–248. [Google Scholar]
- Lopes, A.; Sousa, D.; Chaer, G.; Reis Júnior, F.; Goedert, W.; Mendes, I. Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Sci. Soc. Am. J. 2013, 77, 461–472. [Google Scholar] [CrossRef]
- Chantigny, M.; Rochette, P.; Angers, A. Short-term C and N dynamics in a soil amended whit pigs slurry and barley straw: A field experiment. Can. J. Soil Sci. 2001, 81, 131–137. [Google Scholar] [CrossRef]
- Moraes, G.; Xavier, F.; Mendonça, E.; Araújo Filho, J.; Oliveira, T. Chemical and structural characterization of soil humic substances under agroforestry and conventional systems. R. Bras. Ciênc. Solo 2011, 35, 1597–1608. [Google Scholar] [CrossRef]
- Guimarães, D.; Gonzaga, M.; Silva, T.; Silva, T.; Dias, N.; Matias, M. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Till. Res 2013, 126, 177–182. [Google Scholar] [CrossRef]
- Melo, L.; Silva, C.; Dias, B. Characterization of the organic matrix of residues from different origins. R. Bras. Ciênc. Solo 2008, 32, 101–110. [Google Scholar] [CrossRef]
- Canellas, L.; Teixeira, L., Jr.; Dobbss, L.; Silva, C.; Medici, L.; Zandonadi, D.; Facanha, A. Humic acids crossinteractions with root and organic acids. Ann. Appl. Bio. 2008, 153, 157–166. [Google Scholar] [CrossRef]
- Santos, S.; Cispim, S.; Comastri Filho, J.; Cardoso, E. Princípios de Agroecologia no Manejo das Pastagens Nativas do Pantanal; Documentos 63; Embrapa Pantanal: Corumbá, Brazil, 2004; pp. 1–35. [Google Scholar]
- Petsch, D.; Cionek, V.; Thomaz, S.; Santos, N. Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia 2023, 850, 2563–2584. [Google Scholar] [CrossRef]
- Couto, E.; Corrêa, G.; Oliveira, V.; Nascimento, A.; Vidal-Torrado, P.; Beirigo, R.; Schaefer, C. Soils of Pantanal: The largest continental wetland. In The Soils of Brazil; Schaefer, C.E.G.R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 239–267. [Google Scholar]
Pasture | Total Carbon (g kg−1) | Soil Bulk Density (kg dm−3) | Carbon Stock (Mg ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–10 | 10–20 | 20–40 | 0–40 | 0–10 | 10–20 | 20–40 | 0–40 | 0–10 | 10–20 | 20–40 | 0–40 | |
Ap-G | 8.62 Ba | 4.61 Ab | 1.01 Ac | 14.24 | 1.28 Ab | 1.37 Aa | 1.35 Aa | 4.00 | 13.19 Aa | 6.35 Ab | 0.68 Ac | 21.15 |
Ap-N | 10.36 Aa | 3.78 Ab | 1.81 Ac | 15.95 | 1.17 Bb | 1.38 Aa | 1.33 Aa | 3.88 | 10.12 Ba | 5.16 Ab | 1.21 Ac | 20.11 |
Ha-G | 80.6 Ba | 55.56 Bb | 4.57 Ac | 140.73 | 0.48 Bc | 0.88 Ab | 1.44 Aa | 2.80 | 55.13 Aa | 48.51 Ab | 3.3 Ac | 92.98 |
Ha-N | 129.67 Aa | 68.91 Ab | 5.03 Ac | 203.61 | 0.68 Ac | 0.75 Ab | 1.43 Aa | 2.86 | 61.27 Aa | 51.75 Aa | 3.6 Ab | 127.41 |
Mc-G | 7.51 Aa | 3.31 Ab | 2.75 Ab | 13.57 | 1.33 Aa | 1.33 Aa | 1.31 Aa | 3.97 | 10.01 Aa | 4.41 Ab | 1.8 Ac | 20.66 |
Mc-N | 5.64 Ba | 3.56 Ab | 2.52 Ab | 11.72 | 1.25 Ba | 1.30 Aa | 1.26 Aa | 3.81 | 7.02 Ba | 4.62 Ab | 1.59 Ac | 20.38 |
Pasture | Total Nitrogen (g kg−1) | Nitrogen Stock (Mg ha−1) | C/N | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–10 | 10–20 | 20–40 | 0–40 | 0–10 | 10–20 | 20–40 | 0–40 | 0–10 | 10–20 | 20–40 | 20–40 | |
Ap-G | 0.78 Aa | 0.34 Ab | 0.06 Ac | 1.18 | 1.00 Aa | 0.47 Ab | 0.15 Bc | 1.62 | 13.17 Ab | 13.62 Ab | 18.26 Aa | 45.05 |
Ap-N | 0.63 Ba | 0.27 Ab | 0.12 Ac | 1.02 | 0.74 Ba | 0.38 Ab | 0.33 Ab | 1.45 | 13.15 Ac | 13.93 Ab | 15.29 Ba | 42.37 |
Ha-G | 7.63 Ba | 5.43 Bb | 0.29 Ac | 13.35 | 5.07 Ba | 4.97 Aa | 0.83 Ab | 10.87 | 10.10 Ab | 10.01 Ab | 16.55 Aa | 36.66 |
Ha-N | 13.06 Aa | 6.57 Ab | 0.30 Ac | 19.93 | 5.97 Aa | 4.74 Ab | 0.85 Ac | 11.56 | 10.12 Ab | 10.38 Ab | 16.95 Aa | 37.45 |
Mc-G | 0.56 Aa | 0.25 Ab | 0.19 Ab | 1.00 | 0.75 Aa | 0.34 Ac | 0.49 Ab | 1.58 | 12.56 Ab | 13.93 Aa | 15.02 Aa | 41.51 |
Mc-N | 0.38 Ba | 0.27 Ab | 0.17 Ac | 0.82 | 0.48 Ba | 0.35 Ab | 0.45 Aa | 1.28 | 13.11 Aa | 13.80 Aa | 14.10 Aa | 41.01 |
Pasture | C-Fulvic Acid (g kg−1) | C-Humic Acid (g kg−1) | C-Humin (g kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–10 | 10–20 | 20–40 | 0–40 | 0–10 | 10–20 | 20–40 | 0–40 | 0–10 | 10–20 | 20–40 | 0–40 | |
Ap-G | 0.62 Aa | 0.39 Ab | 0.30 Ac | 1.31 | 2.29 Aa | 0.67 Ab | 0.17 Ac | 3.13 | 7.45 Aa | 3.55 Ab | 0.54 Ac | 11.54 |
Ap-N | 0.51 Ba | 0.36 Ab | 0.24 Ac | 1.11 | 1.49 Ba | 0.62 Ab | 0.20 Ac | 2.31 | 6.61 Aa | 2.79 Ab | 1.37 Ac | 10.77 |
Ha-G | 1.12 Ba | 1.27 Aa | 0.36 Ab | 2.75 | 12.82 Ba | 15.60 Aa | 1.69 Ab | 30.11 | 66.66 Ba | 38.69 Bb | 2.53 Ac | 107.88 |
Ha-N | 2.20 Aa | 1.22 Ab | 0.34 Ac | 3.76 | 16.13 Aa | 7.41 Bb | 2.34 Ac | 25.88 | 111.34 Aa | 60.27 Ab | 2.35 Ac | 173.96 |
Mc-G | 0.50 Aa | 0.39 Ab | 0.34 Ac | 1.23 | 1.68 Aa | 0.10 Bb | 0.17 Bb | 1.95 | 5.33 Aa | 2.82 Ab | 2.24 Ab | 10.39 |
Mc-N | 0.48 Aa | 0.39 Aa | 0.35 Ab | 1.22 | 1.23 Ba | 0.56 Ab | 0.36 Ac | 2.15 | 3.94 Ba | 2.62 Ab | 1.81 Ab | 8.37 |
Pasture | C-HAF/C-FAF | C-HAF+C-FAF/C-HuF | ||||
---|---|---|---|---|---|---|
0–10 | 10–20 | 20–40 | 0–10 | 10–20 | 20–40 | |
Ap-G | 3.68 Aa | 1.70 Ab | 0.57 Ac | 0.39 Ab | 0.30 Ab | 0.87 Aa |
Ap-N | 2.92 Ba | 1.73 Ab | 0.95 Ac | 0.30 Aa | 0.36 Aa | 0.32 Ba |
Ha-G | 11.64 Aa | 12.50 Aa | 5.21 Ab | 0.21 Ab | 0.45 Ab | 0.87 Aa |
Ha-N | 7.40 Aa | 6.04 Ba | 7.26 Aa | 0.17 Ab | 0.15 Bb | 1.14 Aa |
Mc-G | 3.38 Aa | 0.27 Bb | 0.51 Bb | 0.42 Aa | 0.18 Aa | 0.23 Aa |
Mc-N | 2.59 Ba | 1.44 Ab | 1.05 Ab | 0.45 Aa | 0.37 Aa | 0.39 Aa |
0–10 cm Layer | ||
---|---|---|
Principal component | Dim1 | Dim2 |
Explained variance (%) | 81.4 * | 13.5 * |
Correlation | ||
C-fulvic | 0.96 | 0.01 |
C-humic | 0.97 | 0.11 |
C-humin | 0.98 | 0.08 |
C-stock | 0.93 | 0.24 |
N-stock | −0.38 | 0.87 |
0–20 cm Layer | ||
Principal component | Dim1 | Dim2 |
Explained variance (%) | 83.8 * | 8.1 * |
Correlation | ||
C-fulvic | 0.96 | −0.12 |
C-humic | 0.96 | −0.25 |
C-humin | 0.97 | −0.18 |
C-stock | 0.84 | 0.07 |
N-stock | 0.79 | 0.49 |
20–40 cm layer | ||
Principal component | Dim1 | Dim2 |
Explained variance (%) | 59.4 * | 26.4 * |
Correlation | ||
C-fulvic | 0.40 | 0.70 |
C-humic | 0.80 | −0.35 |
C-humin | 0.85 | 0.42 |
C-stock | 0.89 | −0.02 |
N-stock | −0.45 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, D.A.F.d.; Silva, M.L.N.; Cardoso, E.L.; Oliveira, D.M.d.S.; Moitinho, M.R.; Curi, N. Carbon and Nitrogen Stocks in Soil under Native Pastures in the Pantanal Wetland Biome, Brazil. Agronomy 2024, 14, 1994. https://doi.org/10.3390/agronomy14091994
Freitas DAFd, Silva MLN, Cardoso EL, Oliveira DMdS, Moitinho MR, Curi N. Carbon and Nitrogen Stocks in Soil under Native Pastures in the Pantanal Wetland Biome, Brazil. Agronomy. 2024; 14(9):1994. https://doi.org/10.3390/agronomy14091994
Chicago/Turabian StyleFreitas, Diego Antonio França de, Marx Leandro Naves Silva, Evaldo Luis Cardoso, Dener Marcio da Silva Oliveira, Mara Regina Moitinho, and Nilton Curi. 2024. "Carbon and Nitrogen Stocks in Soil under Native Pastures in the Pantanal Wetland Biome, Brazil" Agronomy 14, no. 9: 1994. https://doi.org/10.3390/agronomy14091994
APA StyleFreitas, D. A. F. d., Silva, M. L. N., Cardoso, E. L., Oliveira, D. M. d. S., Moitinho, M. R., & Curi, N. (2024). Carbon and Nitrogen Stocks in Soil under Native Pastures in the Pantanal Wetland Biome, Brazil. Agronomy, 14(9), 1994. https://doi.org/10.3390/agronomy14091994