Global Trends in Conservation Agriculture and Climate Change Research: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
- P: Agricultural ecosystems with extensive herbaceous crops.
- I: No-till (direct seeding).
- C: Conventional management system.
- O: Reduction in greenhouse gas emissions and increase in soil carbon.
- CA practices considered: Simultaneous application of the three principles of CA (no-tillage, vegetative cover, and crop rotation). Articles that mention no-till but do not include the practice of any of these three principles were excluded.
- Study types: Only those studies focusing on climate change mitigation in agroecosystems involving CA practices and compared with those that do not apply them, regardless of other mitigation strategies used (nitrification inhibitors, precision agriculture, etc.), were included. There were no language restrictions, and studies were not excluded based on the publication date.
- Studies focusing on CA but lacking an evaluation of soil carbon or effectiveness in reducing emissions of CO2, N2O, and CH4 were also excluded.
- The scientific literature was included up to the year 2022. The year 2023 was excluded as this research was conducted before its completion.
3. Results and Discussion
3.1. Main Information
- -
- United Nations Framework Convention on Climate Change, UNFCC (1992). Signed at the Earth Summit in Rio de Janeiro, it established a framework for global efforts to combat climate change.
- -
- Kyoto Protocol (1997). Adopted in Kyoto, Japan, it was the first international treaty to set binding emission reduction targets for industrialized countries.
- -
- Paris Agreement (2015). Adopted during the 21st Conference of the Parties (COP21) in Paris, it aims to limit global warming to well below 2 °C above pre-industrial levels, with efforts to limit the increase to 1.5 °C.
3.2. Sources
3.3. Authors
3.4. Documents
3.5. Keywords
3.6. Themes and Thematic Areas
4. Conclusions
4.1. Social Structure
4.2. Intellectual Structure
4.3. Conceptual Structure
- Carbon and climate change mitigation: Carbon sequestration has been central throughout all phases of study. From soil organic carbon analysis to the implementation of practices like no-tillage, carbon sequestration has become a cornerstone in understanding how Conservation Agriculture can help mitigate climate change.
- Greenhouse gas evolution: In recent years, the study of other GHGs, such as nitrous oxide (N2O), has gained relevance. While initial research primarily focused on carbon dioxide (CO2), N2O has emerged as a crucial topic due to its higher global warming potential. This suggests a broadening of the conceptual focus to encompass a wider range of GHGs.
- Consolidation of themes and keywords: The results show how previously separate topics, such as the carbon cycle or soil aggregate stability, have converged over time. This reflects a conceptual integration where different approaches to soil sustainability, carbon sequestration, and emission reduction merge.
- Emerging trends: Over time, emerging topics, such as methane (CH4), which has historically received less attention, have begun to gain prominence, suggesting future research directions that could further expand the conceptual field of Conservation Agriculture.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassam, A.; Friedrich, T.; Derpsch, R. Successful Experiences and Lessons from Conservation Agriculture Worldwide. Agronomy 2022, 12, 769. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Adhikari, K.P.; Lamichhane, S. Soil organic carbon sequestration potential of conservation agriculture in arid and semi-arid regions: A review. J. Arid. Environ. 2023, 217, 105028. [Google Scholar] [CrossRef]
- Conservation Agriculture. Available online: https://www.fao.org/conservation-agriculture/overview/what-is-conservation-agriculture/en/ (accessed on 11 October 2023).
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Quintanilla–Fernández, C. Historia y Evolución de los Sistemas de laboreo—El laboreo de conservación. In Agricultura de Conservación: Fundamentos Agronómicos, Medioambientales y Económicos, 1st ed.; Torres, L.G., Fernández, P.G., Eds.; AELC/SV: Córdoba, Spain, 1997; Volume 1, pp. 1–12. [Google Scholar]
- Greenland, D.J. Bringing the Green Revolution to the Shifting Cultivator. Science 1975, 190, 841–844. [Google Scholar] [CrossRef]
- Lal, R. No-tillage Effects on Soil Properties under Different Crops in Western Nigeria. Soil Sci. Soc. Am. J. 1976, 40, 762–768. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Tillage and crop effects on seasonal dynamics of soil CO2 evolution, water content, temperature, and bulk density. Appl. Soil Ecol. 1995, 2, 95–109. [Google Scholar] [CrossRef]
- McConkey, B. Crop rotation and tillage impact on carbon sequestration in Canadian prairie soils. Soil Tillage Res. 2003, 74, 81–90. [Google Scholar] [CrossRef]
- Potter, K.N.; Torbert, H.A.; Jones, O.R.; Matocha, J.E.; Morrison, J.E.; Unger, P.W. Distribution and amount of soil organic C in long-term management systems in Texas. Soil Tillage Res. 1998, 47, 309–321. [Google Scholar] [CrossRef]
- Peters, H.P.F.; Van Raan, A.F.J. Structuring scientific activities by co-author analysis. Scientometrics 1991, 20, 235–255. [Google Scholar] [CrossRef]
- de Moraes Sá, J.C.; Lal, R.; Briedis, C.; de Oliveira Ferreira, A.; Tivet, F.; Inagaki, T.M.; Potma Gonçalves, D.R.; Canalli, L.B.; Burkner dos Santos, J.; Romaniw, J. Can C-budget of natural capital be restored through conservation agriculture in a tropical and subtropical environment? Environ. Pollut. 2022, 298, 118817. [Google Scholar] [CrossRef] [PubMed]
- Bayer, C.; Martin-Neto, L.; Mielniczuk, J.; Pavinato, A.; Dieckow, J. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res. 2006, 86, 237–245. [Google Scholar] [CrossRef]
- Boddey, R.M.; Jantalia, C.P.; Conceiçao, P.C.; Zanatta, J.A.; Bayer, C.; Mielniczuk, J.; Dieckow, J.; Dos Santos, H.P.; Denardin, J.E.; Aita, C.; et al. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Glob. Change Biol. 2010, 16, 784–795. [Google Scholar] [CrossRef]
- Rodrigues, L.A.T.; Dieckow, J.; Giacomini, S.; Ottonelli, A.S.; Zorzo, G.P.P.; Bayer, C. Carbon sequestration capacity in no-till soil decreases in the long-term due to saturation of fine silt plus clay-size fraction. Geoderma 2022, 412, 115711. [Google Scholar] [CrossRef]
- Veloso, M.G.; Angers, D.A.; Tiecher, T.; Giacomini, S.; Dieckow, J.; Bayer, C. High carbon storage in a previously degraded subtropical soil under no-tillage with legume cover crops. Agric. Ecosyst. Environ. 2018, 268, 15–23. [Google Scholar] [CrossRef]
- Pes, L.Z.; Amado, T.J.C.; La Scala, N.; Bayer, C.; Fiorin, J.E. The primary sources of carbon loss during the crop-establishment period in a subtropical Oxisol under contrasting tillage systems. Soil Tillage Res. 2011, 117, 163–171. [Google Scholar] [CrossRef]
- Bayer, C.; Gomes, J.; Zanatta, J.A.; Vieira, F.C.B.; Piccolo, M.C.; Dieckow, J.; Six, J. Soil nitrous oxide emissions as affected by long-term tillage, cropping systems and nitrogen fertilization in Southern Brazil. Soil Tillage Res. 2015, 146, 213–222. [Google Scholar] [CrossRef]
- Bayer, C.; Gomes, J.; Vieira, F.C.B.; Zanatta, J.A.; de Cássia Piccolo, M.; Dieckow, J. Methane emission from soil under long-term no-till cropping systems. Soil Tillage Res. 2012, 124, 1–7. [Google Scholar] [CrossRef]
- Liu, W.X.; Wei, Y.X.; Li, R.C.; Chen, Z.; Wang, H.D.; Virk, A.L.; Lal, R.; Zhao, X.; Zhang, H.L. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Sci. Total Environ. 2022, 847, 157518. [Google Scholar] [CrossRef] [PubMed]
- Virk, A.L.; Liu, W.S.; Chen, Z.; N’Dri Bohoussou, Y.; Cheema, M.A.; Khan, K.S.; Zhao, X.; Zhang, H.L. Effects of different tillage systems and cropping sequences on soil physicochemical properties and greenhouse gas emissions. Agric. Ecosyst. Environ. 2022, 335, 108010. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.P.; Turner, W.A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983, 22, 191–235. [Google Scholar] [CrossRef]
- Batista-Canino, R.M.; Santana-Hernández, L.; Medina-Brito, P. A scientometric analysis on entrepreneurial intention literature: Delving deeper into local citation. Heliyon 2023, 9, e13046. [Google Scholar] [CrossRef]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Six, J.; Ogle, S.M.; Jay Breidt, F.; Conant, R.T.; Mosier, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.; Han, B.; Ouyang, Z.; Duan, X.; Zheng, H.; Miao, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob. Change Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Grandy, A.S.; Robertson, G.P. Land-Use Intensity Effects on Soil Organic Carbon Accumulation Rates and Mechanisms. Ecosystems 2007, 10, 59–74. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B.S. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Baggs, E.M.; Stevenson, M.; Pihlatie, M.; Regar, A.; Cook, H.; Cadisch, G. Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant Soil 2003, 254, 361–370. [Google Scholar] [CrossRef]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Ordóñez-Fernández, R.; Carbonell-Bojollo, R.; Veroz-González, O.; Gil-Ribes, J.A. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Garfield, E. Keywords Plus®: ISI’s breakthrough retrieval method. Part 1. Expanding your searching power on Current Contents on Diskette. Curr. Contents 1990, 32, 5–9. [Google Scholar]
- Derpsch, R.; Kassam, A.; Reicosky, D.; Friedrich, T.; Calegari, A.; Basch, G.; Gonzalez-Sanchez, E.; dos Santos, D.R. Nature’s laws of declining soil productivity and Conservation Agriculture. Soil Secur. 2024, 14, 100127. [Google Scholar] [CrossRef]
- Campbell, C. Tillage and crop rotation effects on soil organic C and N in a coarse-textured Typic Haploboroll in southwestern Saskatchewan. Soil Tillage Res. 1996, 37, 3–14. [Google Scholar] [CrossRef]
- Díaz-Zorita, M.; Grove, J.H. Duration of tillage management affects carbon and phosphorus stratification in phosphatic Paleudalfs. Soil Tillage Res. 2002, 66, 165–174. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil Tillage Res. 1995, 34, 41–60. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Conway, G.; Moreno-Garcia, M.; Kassam, A.; Mkomwa, S.; Ordoñez-Fernandez, R.; Triviño-Tarradas, P.; Carbonell-Bojollo, R. Meta-analysis on carbon sequestration through Conservation Agriculture in Africa. Soil Tillage Res. 2019, 190, 22–30. [Google Scholar] [CrossRef]
- Kiran Kumara, T.M.; Kandpal, A.; Pal, S. A meta-analysis of economic and environmental benefits of conservation agriculture in South Asia. J. Environ. Manag. 2020, 269, 110773. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Datta, M.; Meena, R.S.; Patil, S.B.; Singh, R. Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. Agric. Ecosyst. Environ. 2019, 275, 81–92. [Google Scholar] [CrossRef]
- Hendrix, P.F.; Franzluebbers, A.J.; McCracken, D.V. Management effects on C accumulation and loss in soils of the southern Appalachian Piedmont of Georgia. Soil Tillage Res. 1998, 47, 245–251. [Google Scholar] [CrossRef]
- Smith, W.N.; Desjardins, R.L.; Pattey, E. The net flux of carbon from agricultural soils in Canada 1970–2010. Glob. Change Biol. 2000, 6, 557–568. [Google Scholar] [CrossRef]
- Bayer, C.; Mielniczuk, J.; Amado, T.J.C.; Martin-Neto, L.; Fernandes, S.V. Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Tillage Res. 2000, 54, 101–109. [Google Scholar] [CrossRef]
- Mrabet, R.; Saber, N.; El-Brahli, A.; Lahlou, S.; Bessam, F. Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil Tillage Res. 2001, 57, 225–235. [Google Scholar] [CrossRef]
- Aslam, T.; Choudhary, M.A.; Saggar, S. Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand. Agric. Ecosyst. Environ. 2000, 77, 257–262. [Google Scholar] [CrossRef]
- Hollinger, S.E.; Bernacchi, C.J.; Meyers, T.P. Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric. For. Meteorol. 2005, 130, 59–69. [Google Scholar] [CrossRef]
- Churchman, G.J.; Foster, R.C.; D’Acqui, L.P.; Janik, L.J.; Skjemstad, J.O.; Merry, R.H.; Weissmann, D.A. Effect of land-use history on the potential for carbon sequestration in an Alfisol. Soil Tillage Res. 2010, 109, 23–35. [Google Scholar] [CrossRef]
- Fernández, R.; Quiroga, A.; Zorati, C.; Noellemeyer, E. Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage. Soil Tillage Res. 2010, 109, 103–109. [Google Scholar] [CrossRef]
- Fiorini, A.; Boselli, R.; Maris, S.C.; Santelli, S.; Perego, A.; Acutis, M.; Brenna, S.; Tabaglio, V. Soil type and cropping system as drivers of soil quality indicators response to no-till: A 7-year field study. Appl. Soil Ecol. 2020, 155, 103646. [Google Scholar] [CrossRef]
- Guo, L.; Shi, J.; Lin, W.; Liang, J.; Lu, Z.; Tang, X.; Liu, Y.; Wu, P.; Li, C. Soil Bacteria Mediate Soil Organic Carbon Sequestration under Different Tillage and Straw Management in Rice-Wheat Cropping Systems. Agriculture 2022, 12, 1552. [Google Scholar] [CrossRef]
- Boeckx, P.; Van Nieuland, K.; Van Cleemput, O. Short-term effect of tillage intensity on N2O and CO2 emissions. Agron. Sustain. Dev. 2011, 31, 453–461. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Barker-Reid, F.; Eckard, R. Simulation of N2O emissions from rain-fed wheat and the impact of climate variation in southeastern Australia. Plant Soil 2008, 309, 239–251. [Google Scholar] [CrossRef]
- Metay, A.; Chapuis-Lardy, L.; Findeling, A.; Oliver, R.; Alves Moreira, J.A.; Feller, C. Simulating N2O fluxes from a Brazilian cropped soil with contrasted tillage practices. Agric. Ecosyst. Environ. 2011, 140, 255–263. [Google Scholar] [CrossRef]
- Piva, J.T.; Dieckow, J.; Bayer, C.; Zanatta, J.A.; de Moraes, A.; Pauletti, V.; Tomazi, M.; Pergher, M. No-till reduces global warming potential in a subtropical Ferralsol. Plant Soil 2012, 361, 359–373. [Google Scholar] [CrossRef]
- Smith, J.; Wagner-Riddle, C.; Dunfield, K. Season and management related changes in the diversity of nitrifying and denitrifying bacteria over winter and spring. Appl. Soil Ecol. 2010, 44, 138–146. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Xie, B.; Mei, B.; Wang, R.; Butterbach-Bahl, K.; Zhu, J.; Yin, R. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biol. Biochem. 2009, 41, 2131–2140. [Google Scholar] [CrossRef]
- Corrochano-Monsalve, M.; Bozal-Leorri, A.; Sánchez, C.; González-Murua, C.; Estavillo, J.M. Joint application of urease and nitrification inhibitors to diminish gaseous nitrogen losses under different tillage systems. J. Clean. Prod. 2021, 289, 125701. [Google Scholar] [CrossRef]
- Glenn, A.J.; Moulin, A.P.; Roy, A.K.; Wilson, H.F. Soil nitrous oxide emissions from no-till canola production under variable rate nitrogen fertilizer management. Geoderma 2021, 385, 114857. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Gao, Z.; Feng, Y.; Laraib, I.; Chen, F.; Chu, Q. Exploring wheat-based management strategies to balance agricultural production and environmental sustainability in a wheat−maize cropping system using the DNDC model. J. Environ. Manag. 2022, 307, 114445. [Google Scholar] [CrossRef]
- Bijarniya, D.; Parihar, C.M.; Jat, R.K.; Kalvania, K.; Kakraliya, S.K.; Jat, M.L. Portfolios of Climate Smart Agriculture Practices in Smallholder Rice-Wheat System of Eastern Indo-Gangetic Plains—Crop Productivity, Resource Use Efficiency and Environmental Foot Prints. Agronomy 2020, 10, 1561. [Google Scholar] [CrossRef]
- Zhang, S.; McLaughlin, N.B.; Cui, S.; Yang, X.; Liu, P.; Wu, D.; Liang, A. Effects of long-term tillage on carbon partitioning of nematode metabolism in a Black soil of Northeast China. Appl. Soil Ecol. 2019, 138, 207–212. [Google Scholar] [CrossRef]
- Tellez-Rio, A.; García-Marco, S.; Navas, M.; López-Solanilla, E.; Tenorio, J.L.; Vallejo, A. N2O and CH4 emissions from a fallow–wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem. Sci. Total Environ. 2015, 508, 85–94. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, J.; Chen, L.; Shen, M.; Zhang, X.; Zhang, M.; Bian, X.; Zhang, J.; Zhang, W. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–wheat cropping system. Eur. J. Agron. 2015, 63, 47–54. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Chen, J.; Liu, T.Q.; Cao, C.G.; Li, C.F. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmos. Environ. 2016, 144, 274–281. [Google Scholar] [CrossRef]
- Gupta, N.; Pradhan, S.; Jain, A.; Patel, N. Sustainable Agriculture in India 2021: What We Know and How to Scale Up, 1st ed.; Council on Energy, Environment and Water: New Delhi, India, 2021; pp. 29–33. [Google Scholar]
- He, J.; Jiang, S. Conservation Agriculture in China: Innovations, Investment Opportunities and Challenges; FAO Investment Centre Country Highlights No. 19; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
Terms Related to No-Till/Direct Seeding | Terms Related to Climate Change | |
---|---|---|
Operator used between terms of the same group: “OR” | No till * No-till * Zero till * Zero-till * Direct drill * Direct seed * Direct sow * Conservation agriculture Conservation till * | Climate change Cabon dioxide fixation Carbon dioxide sequestration CO2 fixation CO2 sequestration Carbon sequestration C sequestration Carbon fixation C fixation Carbon sink * C sink * Greenhouses emission * GHG emission * Carbon dioxide emission * CO2 emission * Nitrous oxide emission * N2O emission * Methane emission * CH4 emission * |
Operator used between terms of different groups: “AND” |
Level of Analysis | Metrics | Unit of Analysis | Bibliometric Technique | Statistical Technique | Structure |
---|---|---|---|---|---|
Author | Most productive authors and Annual production per author Most collaborative countries | Authors | Co-citation and collaboration Collaboration | Intellectual and social Social | |
Document | Most-cited documents Most frequent author keywords (DE) Most frequent Keywords Plus (ID) | References Author keywords (DE) and Keywords Plus (ID) | Co-citation Co-words | Network Network thematic mapping and Thematic evolution | Intellectual Conceptual |
Source | Source dynamics Most productive source | Journal | Co-citation | Network | Conceptual |
Network | Co-Citation | Collaboration | |||
---|---|---|---|---|---|
Source | Authors | References | Authors | Country | |
Clustering | Walktrap | Walktrap | Walktrap | Walktrap | Waltrap |
Nodes | 50 | 60 | 50 | 50 | 60 |
Min. edge | 2 | 2 | 2 | 2 | 1 |
N. labels | 500 | 500 | 1000 | 1000 | 1000 |
Cluster layout | Automatic | Automatic | Automatic | Automatic | Automatic |
Description | Period 1 (1995–2002) | Period 2 (2003–2012) | Period 3 (2013–2022) | Total (1995–2022) |
---|---|---|---|---|
Main information about data | ||||
Sources (Journals, Books, etc.) | 8 | 35 | 58 | 69 |
Documents | 37 | 188 | 425 | 650 |
Annual Growth Rate (%) | 25.85 | 8.54 | 9.16 | 13.83 |
Document Average Age | 24.6 | 15.6 | 5.59 | 9.56 |
Average Citations Per Doc | 157.9 | 84.74 | 32.89 | 55.01 |
References | 1064 | 5993 | 16,513 | 21,598 |
Publications/Year | 4.62 | 18.8 | 42.5 | 23.2 |
Document contents | ||||
Keywords Plus (ID) | 198 | 765 | 1348 | 1754 |
Author Keywords (DE) | 125 | 503 | 1118 | 1468 |
Authors | ||||
Authors | 126 | 666 | 1876 | 2493 |
Authors of Single-Authored Docs | 0 | 3 | 0 | 3 |
Author Collaboration | ||||
Single-Authored Docs | 0 | 3 | 0 | 3 |
Co-Authors Per Doc | 3.84 | 4.71 | 6.44 | 5.79 |
International Co-Authorships (%) | 8.11 | 28.19 | 37.65 | 33.23 |
Ranking | Source | Publication | h_Index | Total Citations | Co-Citation Cluster |
---|---|---|---|---|---|
1 | Soil and Tillage Research | 192 | 70 | 13,335 | 2 |
2 | Agriculture Ecosystems & Environment | 83 | 44 | 6322 | 2 |
3 | Science of The Total Environment | 38 | 20 | 1083 | 1 |
4 | Geoderma | 35 | 20 | 991 | 2 |
5 | Journal of Cleaner Production | 21 | 18 | 875 | 1 |
6 | Global Change Biology | 14 | 14 | 2355 | 2 |
7 | Plant And Soil | 14 | 13 | 695 | 2 |
8 | Soil Biology and Biochemistry | 13 | 12 | 759 | 2 |
9 | Catena | 14 | 10 | 535 | 2 |
10 | Land Degradation & Development | 13 | 10 | 581 | 2 |
Document | Total Citations | Total Citations/ Year | Local Citations | Source | Year |
---|---|---|---|---|---|
Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere [29]. | 971 | 40.45 | 42 | Science | 2000 |
A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States [30]. | 893 | 40.59 | 43 | Agriculture ecosystems & Environment | 2002 |
The potential to mitigate global warming with no-tillage management is only realised when practised in the long term [31]. | 611 | 30.55 | 82 | Global change biology | 2004 |
Limited potential of no-till agriculture for climate change mitigation [32]. | 501 | 50.10 | 50 | Nature climate change | 2014 |
Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments [33]. | 494 | 35.28 | 60 | Agriculture ecosystems & Environment | 2010 |
Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland [34]. | 327 | 21.80 | 14 | Global change biology | 2009 |
Land-use intensity effects on soil organic carbon accumulation rates and mechanisms [35]. | 294 | 17.29 | 3 | Ecosystems | 2007 |
Managing soil carbon for climate change mitigation and adaptation in mediterranean cropping systems: a meta-analysis [36]. | 293 | 26.64 | 17 | Agriculture ecosystems & Environment | 2013 |
Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage [37]. | 263 | 12.52 | 41 | Plant and soil | 2003 |
Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions [38]. | 258 | 14.33 | 16 | Soil and Tillage Research | 2006 |
Author Keywords | Occurrences | Keywords Plus | Occurrences |
---|---|---|---|
no-tillage | 99 | management | 158 |
soil organic carbon | 96 | sequestration | 128 |
carbon sequestration | 93 | no-tillage | 125 |
tillage | 83 | nitrogen | 115 |
no-till | 50 | carbon sequestration | 113 |
conservation tillage | 49 | tillage | 91 |
conservation agriculture | 47 | nitrous-oxide emissions | 90 |
nitrous oxide | 46 | systems | 89 |
soil organic matter | 35 | agriculture | 86 |
conventional tillage | 34 | no-till | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Román-Vázquez, J.; Carbonell-Bojollo, R.M.; Veroz-González, Ó.; Maraschi da Silva Piletti, L.M.; Márquez-García, F.; Cabeza-Ramírez, L.J.; González-Sánchez, E.J. Global Trends in Conservation Agriculture and Climate Change Research: A Bibliometric Analysis. Agronomy 2025, 15, 249. https://doi.org/10.3390/agronomy15010249
Román-Vázquez J, Carbonell-Bojollo RM, Veroz-González Ó, Maraschi da Silva Piletti LM, Márquez-García F, Cabeza-Ramírez LJ, González-Sánchez EJ. Global Trends in Conservation Agriculture and Climate Change Research: A Bibliometric Analysis. Agronomy. 2025; 15(1):249. https://doi.org/10.3390/agronomy15010249
Chicago/Turabian StyleRomán-Vázquez, Julio, Rosa M. Carbonell-Bojollo, Óscar Veroz-González, Ligia Maria Maraschi da Silva Piletti, Francisco Márquez-García, L. Javier Cabeza-Ramírez, and Emilio J. González-Sánchez. 2025. "Global Trends in Conservation Agriculture and Climate Change Research: A Bibliometric Analysis" Agronomy 15, no. 1: 249. https://doi.org/10.3390/agronomy15010249
APA StyleRomán-Vázquez, J., Carbonell-Bojollo, R. M., Veroz-González, Ó., Maraschi da Silva Piletti, L. M., Márquez-García, F., Cabeza-Ramírez, L. J., & González-Sánchez, E. J. (2025). Global Trends in Conservation Agriculture and Climate Change Research: A Bibliometric Analysis. Agronomy, 15(1), 249. https://doi.org/10.3390/agronomy15010249