QTL Mapping for Agronomic Important Traits in Well-Adapted Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Evaluation of Agronomic Traits
2.3. Statistical Analysis
2.4. SNP Genotyping
2.5. Linkage Analysis and QTL Mapping
2.6. Marker Development and QTL Validation in RIL Population
3. Results
3.1. Phenotypic Variation
3.2. Genetic Linkage Map Construction
3.3. QTL Analysis
3.3.1. PH and SN
3.3.2. Spike Traits
3.3.3. Grain Traits
3.4. Validation of the Major QTL in the RIL Population
4. Discussion
4.1. Consistent QTL with Previous Studies
4.2. Novel QTL Mapped in this Study
4.3. Beneficial Alleles from Both Parents
4.4. Pleiotropic QTLs
4.5. Use of the Developed KASP Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.E.; Cui, J.M.; Su, Y.Q.; Zhang, C.M.; Ma, J.; Zhang, Z.W.; Yuan, M.; Liu, W.J.; Zhang, H.Y.; Yuan, S. Comparison of Phosphorylation and Assembly of Photosystem Complexes and Redox Homeostasis in Two Wheat Cultivars with Different Drought Resistance. Sci. Rep. 2017, 7, 12718. [Google Scholar] [CrossRef]
- Mwadzingeni, L.; Shimelis, H.; Tesfay, S.; Tsilo, T.J. Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses. Front Plant Sci. 2016, 25, 1276. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, X.; Zhang, G.; Jiang, P.; Chen, W.; Hao, Y.; Ma, X.; Xu, S.; Jia, J.; Kong, L.; et al. QTL Mapping for Yield-Related Traits in Wheat Based on Four RIL Populations. Theor. Appl. Genet. 2020, 133, 917–933. [Google Scholar] [CrossRef]
- Kennedy, G.; Matsuzaki, H.; Dong, S.L.; Liu, W.M.; Huang, J.; Liu, G.Y.; Su, X.; Cao, M.Q.; Chen, W.W.; Zhang, J.; et al. Large-scale genotyping of complex DNA. Nat Biotechnol. 2003, 21, 1233–1237. [Google Scholar] [CrossRef]
- Bonin, A.; Bellemain, E.; Bronken, E.P.; Pompanon, F.; Brochmann, C.; Taberlet, P. How to track and assess genotyping errors in population genetics studies. Mol Ecol. 2004, 13, 3261–3273. [Google Scholar] [CrossRef]
- Anderson, E.C.; Garza, J.C. The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 2006, 172, 2567–2582. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Hu, W.; Li, Z.; Li, J.; Xie, G.; Wang, J.; Wang, L. Appraising the Genetic Architecture of Kernel Traits in Hexaploid Wheat Using GWAS. Int. J. Mol. Sci. 2020, 21, 5649. [Google Scholar] [CrossRef]
- Luo, Q.; Zheng, Q.; Hu, P.; Liu, L.; Yang, G.; Li, H.; Li, B.; Li, Z. Mapping QTL for Agronomic Traits under Two Levels of Salt Stress in a New Constructed RIL Wheat Population. Theor. Appl. Genet. 2020, 134, 171–189. [Google Scholar] [CrossRef]
- Bennani, S.; Birouk, A.; Jlibene, M.; Sanchez-Garcia, M.; Nsarellah, N.; Gaboun, F.; Tadesse, W. Drought-Tolerance QTLs Associated with Grain Yield and Related Traits in Spring Bread Wheat. Plants 2022, 11, 986. [Google Scholar] [CrossRef]
- Liu, J.; Luo, W.; Qin, N.; Ding, P.; Zhang, H.; Yang, C.; Mu, Y.; Tang, H.; Liu, Y.; Li, W.; et al. A 55 K SNP Array-Based Genetic Map and Its Utilization in QTL Mapping for Productive Tiller Number in Common Wheat. Theor. Appl. Genet. 2018, 131, 2439–2450. [Google Scholar] [CrossRef]
- Huang, S.; Wu, J.; Wang, X.; Mu, J.; Xu, Z.; Zeng, Q.; Liu, S.; Wang, Q.; Kang, Z.; Han, D. Utilization of the Genomewide Wheat 55K SNP Array for Genetic Analysis of Stripe Rust Resistance in Common Wheat Line P9936. Phytopathology 2019, 109, 819–827. [Google Scholar] [CrossRef]
- Ren, T.; Hu, Y.; Tang, Y.; Li, C.; Yan, B.; Ren, Z.; Tan, F.; Tang, Z.; Fu, S.; Li, Z. Utilization of a Wheat 55K SNP Array for Mapping of Major QTL for Temporal Expression of the Tiller Number. Front. Plant Sci. 2018, 9, 333. [Google Scholar]
- Zhou, C.Y.; Xiong, H.C.; Li, Y.T.; Gou, H.J.; Xie, Y.D.; Zhao, L.S.; Gu, J.Y.; Zhao, S.R.; Ding, Y.P.; Song, X.Y.; et al. Genetic Analysis and QTL Mapping of a Novel Reduced Height Gene in Common Wheat (Triticum aestivum L.). J. Integr. Agric. 2020, 19, 1721–1730. [Google Scholar] [CrossRef]
- Russo, M.A.; Ficco, D.B.M.; Laidò, G.; Marone, D.; Papa, R.; Blanco, A.; Gadaleta, A.; De Vita, P.; Mastrangelo, A.M. A Dense Durum Wheat × T. Dicoccum Linkage Map Based on SNP Markers for the Study of Seed Morphology. Mol. Breed. 2014, 34, 1579–1597. [Google Scholar] [CrossRef]
- Echeverry-Solarte, M.; Kumar, A.; Kianian, S.; Simsek, S.; Alamri, M.S.; Mantovani, E.E.; McClean, P.E.; Deckard, E.L.; Elias, E.; Schatz, B.; et al. New QTL Alleles for Quality-Related Traits in Spring Wheat Revealed by RIL Population Derived from Supernumerary × Non-Supernumerary Spikelet Genotypes. Theor. Appl. Genet. 2015, 128, 893–912. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, J.; Zhang, L.; Rong, C.; Zhao, F.; Peng, T.; Li, H.; Cheng, D.; Liu, X.; Qin, H.; et al. Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS ONE. 2013, 8, e57853. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Fan, X.; Zhou, Q.; Cao, J.; Wang, F.; Ji, G.; Yang, L.; Feng, B.; Wang, T. A Genome-Wide Association Study of Wheat Spike Related Traits in China. Front. Plant Sci. 2018, 871, 1584. [Google Scholar]
- Li, F.; Wen, W.; He, Z.; Liu, J.; Jin, H.; Cao, S.; Geng, H.; Yan, J.; Zhang, P.; Wan, Y.; et al. Genome-Wide Linkage Mapping of Yield-Related Traits in Three Chinese Bread Wheat Populations Using High-Density SNP Markers. Theor. Appl. Genet. 2018, 131, 1903–1924. [Google Scholar] [CrossRef] [PubMed]
- Wolde, G.M.; Trautewig, C.; Mascher, M.; Schnurbusch, T. Genetic Insights into Morphometric Inflorescence Traits of Wheat. Theor. Appl. Genet. 2019, 132, 1661–1676. [Google Scholar] [CrossRef]
- Yao, H.; Xie, Q.; Xue, S.; Luo, J.; Lu, J.; Kong, Z.; Wang, Y.; Zhai, W.; Lu, N.; Wei, R.; et al. HL2 on Chromosome 7D of Wheat (Triticum aestivum L.) Regulates Both Head Length and Spikelet Number. Theor. Appl. Genet. 2019, 132, 1789–1797. [Google Scholar] [CrossRef]
- Chai, L.; Chen, Z.; Bian, R.; Zhai, H.; Cheng, X.; Peng, H.; Yao, Y.; Hu, Z.; Xin, M.; Guo, W.; et al. Dissection of Two Quantitative Trait Loci with Pleiotropic Effects on Plant Height and Spike Length Linked in Coupling Phase on the Short Arm of Chromosome 2D of Common Wheat (Triticum aestivum L.). Theor. Appl. Genet. 2018, 131, 2621–2637. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, X.; Chai, L.; Wang, Z.; Bian, R.; Li, J.; Zhao, A.; Xin, M.; Guo, W.; Hu, Z.; et al. Dissection of Genetic Factors Underlying Grain Size and Fine Mapping of QTgw.Cau-7D in Common Wheat (Triticum aestivum L.). Theor. Appl. Genet. 2020, 133, 149–162. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, H.; Li, S.; Zou, Y.; Li, T.; Liu, J.; Ding, P.; Mu, Y.; Tang, H.; Deng, M.; et al. Identification of Quantitative Trait Loci for Kernel Traits in a Wheat Cultivar Chuannong16. BMC Genet. 2019, 20, 77. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, D.; Meng, Z.; Xu, K.; Yan, J.; Xia, X.; Cao, S.; Tian, Y.; He, Z.; Zhang, Y. QTL Mapping for Grain Yield-Related Traits in Bread Wheat via SNP-Based Selective Genotyping. Theor. Appl. Genet. 2020, 133, 857–872. [Google Scholar] [CrossRef]
- Xu, D.; Wen, W.; Fu, L.; Li, F.; Li, J.; Xie, L.; Xia, X.; Ni, Z.; He, Z.; Cao, S. Genetic Dissection of a Major QTL for Kernel Weight Spanning the Rht-B1 Locus in Bread Wheat. Theor. Appl. Genet. 2019, 132, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, F.; Yan, X.; Zhang, X.; Dong, Z.; Cui, D.; Chen, F. Genome-Wide Association Study for 13 Agronomic Traits Reveals Distribution of Superior Alleles in Bread Wheat from the Yellow and Huai Valley of China. Plant Biotechnol. J. 2017, 15, 953–969. [Google Scholar] [CrossRef]
- Xin, F.; Zhu, T.; Wei, S.; Han, Y.C.; Zhao, Y.; Zhang, D.Z.; Ma, L.J. QTL Mapping of Kernel Traits and Validation of a Major QTL for Kernel Length-Width Ratio Using SNP and Bulked Segregant Analysis in Wheat. Sci. Rep. 2020, 10, 25. [Google Scholar] [CrossRef]
- Rasheed, A.; Xia, X.; Ogbonnaya, F.; Mahmood, T.; Zhang, Z.; Mujeeb-Kazi, A.; He, Z. Genome-Wide Association for Grain Morphology in Synthetic Hexaploid Wheats Using Digital Imaging Analysis. BMC Plant Biol. 2014, 14, 128. [Google Scholar] [CrossRef]
- Winfield, M.O.; Allen, A.M.; Burridge, A.J.; Barker, G.L.A.; Benbow, H.R.; Wilkinson, P.A.; Coghill, J.; Waterfall, C.; Davassi, A.; Scopes, G.; et al. High-Density SNP Genotyping Array for Hexaploid Wheat and Its Secondary and Tertiary Gene Pool. Plant Biotechnol. J. 2016, 14, 1195–1206. [Google Scholar] [CrossRef]
- Bariana, H.; Forrest, K.; Qureshi, N.; Miah, H.; Hayden, M.; Bansal, U. Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat. Mol. Breeding. 2016, 36, 98. [Google Scholar] [CrossRef]
- Ding, P.Y.; Mo, Z.Q.; Tang, H.P.; Mu, Y.; Deng, M.; Jiang, Q.T.; Liu, Y.X.; Chen, G.D.; Chen, G.Y.; Wang, J.R.; et al. A Major and Stable QTL for Wheat Spikelet Number per Spike Validated in Different Genetic Backgrounds. J. Integr. Agric. 2022, 21, 1551–1562. [Google Scholar]
- Heidari, B.; Sayed-Tabatabaei, B.E.; Saeidi, G.; Kearsey, M.; Suenaga, K. Mapping QTL for Grain Yield, Yield Components, and Spike Features in a Doubled Haploid Population of Bread Wheat. Genome 2011, 54, 517–527. [Google Scholar] [CrossRef]
- Sidhu, G.; Mohan, A.; Zheng, P.; Dhaliwal, A.K.; Main, D.; Kulvinder, S. Sequencing-based high throughput mutation detection in bread wheat. BMC Genom. 2015, 16, 962. [Google Scholar] [CrossRef]
- Xiong, H.; Zhou, C.; Fu, M.; Guo, H.; Xie, Y.; Zhao, L.; Gu, J.; Zhao, S.; Ding, Y.; Li, Y.; et al. Cloning and Functional Characterization of Rht8, a “Green Revolution” Replacement Gene in Wheat. Mol. Plant. 2022, 15, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Liu, C.; Wang, D.; St. Amand, P.; Bernardo, A.; Li, W.; He, F.; Li, L.; Wang, L.; Yuan, X.; et al. High-Resolution Genome-Wide Association Study Identifies Genomic Regions and Candidate Genes for Important Agronomic Traits in Wheat. Mol. Plant. 2020, 13, 1311–1327. [Google Scholar] [CrossRef]
- Gao, F.; Wen, W.; Liu, J.; Rasheed, A.; Yin, G.; Xia, X.; Wu, X.; He, Z. Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring. Front. Plant Sci. 2015, 6, 1099. [Google Scholar] [CrossRef]
- Hu, W.; Gao, D.; Liao, S.; Cheng, S.; Jia, J.; Xu, W. Identification of a Pleiotropic QTL Cluster for Fusarium Head Blight Resistance, Spikelet Compactness, Grain Number per Spike and Thousand-Grain Weight in Common Wheat. Crop J. 2023, 11, 672–677. [Google Scholar] [CrossRef]
- Mérida-García, R.; Bentley, A.R.; Gálvez, S.; Dorado, G.; Solís, I.; Ammar, K.; Hernandez, P. Mapping Agronomic and Quality Traits in Elite Durum Wheat Lines under Differing Water Regimes. Agronomy 2020, 10, 144. [Google Scholar] [CrossRef]
- Li, C.; Bai, G.; Carver, B.F.; Chao, S.; Wang, Z. Mapping Quantitative Trait Loci for Plant Adaptation and Morphology Traits in Wheat Using Single Nucleotide Polymorphisms. Euphytica 2016, 208, 299–312. [Google Scholar] [CrossRef]
- Mo, Z.; Zhu, J.; Wei, J.; Zhou, J.; Xu, Q.; Tang, H.; Mu, Y.; Deng, M.; Jiang, Q.; Liu, Y.; et al. The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild Emmer. Front. Plant Sci. 2021, 12, 732837. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, X.; Chai, L.; Wang, Z.; Du, D.; Wang, Z.; Bian, R.; Zhao, A.; Xin, M.; Guo, W.; et al. Pleiotropic QTL Influencing Spikelet Number and Heading Date in Common Wheat (Triticum aestivum L.). Theor. Appl. Genet. 2020, 133, 1825–1838. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Wu, X.; Wu, Y.; Zhou, R.; Wang, H.; Jia, J.; Liu, S. Characterization and Precise Mapping of a QTL Increasing Spike Number with Pleiotropic Effects in Wheat. Theor. Appl. Genet. 2011, 122, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lan, C.; Asad, M.A.; Gebrewahid, T.W.; Xia, X.; He, Z.; Li, Z.; Liu, D. QTL Mapping of Adult-Plant Resistance to Leaf Rust in the Chinese Landraces Pingyuan 50/Mingxian 169 Using the Wheat 55K SNP Array. Mol. Breed. 2019, 39, 98. [Google Scholar] [CrossRef]
- Terracciano, I.; Maccaferri, M.; Bassi, F.; Mantovani, P.; Sanguineti, M.C.; Salvi, S.; Šimková, H.; Doležel, J.; Massi, A.; Ammar, K.; et al. Development of COS-SNP and HRM Markers for High-Throughput and Reliable Haplotype-Based Detection of Lr14a in Durum Wheat (Triticum durum Desf.). Theor. Appl. Genet. 2013, 126, 1077–1101. [Google Scholar] [CrossRef] [PubMed]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single Nucleotide Polymorphism Genotyping Using Kompetitive Allele Specific PCR (KASP): Overview of the Technology and Its Application in Crop Improvement. Mol. Breed. 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Allen, A.M.; Barker, G.L.A.; Berry, S.T.; Coghill, J.A.; Gwilliam, R.; Kirby, S.; Robinson, P.; Brenchley, R.C.; D’Amore, R.; Mckenzie, N.; et al. Transcript-Specific, Single-Nucleotide Polymorphism Discovery and Linkage Analysis in Hexaploid Bread Wheat (Triticum aestivum L.). Plant Biotechnol. J. 2011, 9, 1086–1099. [Google Scholar] [CrossRef]
Traits | Env. | Parents | RIL | ||||||
---|---|---|---|---|---|---|---|---|---|
XN822 | YN999 | Min | Max | Mean | SD | CV (%) | Heritability (%) | ||
PH | 2020TA | 87.26 | 83.59 | 63.13 | 107.50 | 84.10 a | 7.19 | 8.55 | 89.0 |
2021TA | 60.50 | 59.25 | 48.00 | 85.00 | 64.29 c | 5.13 | 7.97 | ||
2021ZK | 83.90 | 77.10 | 57.50 | 94.88 | 78.56 b | 6.33 | 8.06 | ||
SL | 2020TA | 10.26 | 11.16 | 8.00 | 14.44 | 10.76 a | 1.07 | 9.98 | 72.2 |
2021TA | 8.06 | 8.76 | 6.38 | 10.38 | 8.42 b | 0.83 | 9.85 | ||
2021ZK | 8.36 | 7.78 | 5.90 | 11.68 | 8.53 b | 1.09 | 12.78 | ||
GNS | 2020TA | 70.56 | 65.21 | 53.38 | 104.20 | 69.68 a | 8.18 | 11.74 | 80.3 |
2021TA | 53.63 | 55.88 | 39.25 | 79.13 | 58.61 b | 6.34 | 10.82 | ||
2021ZK | 58.43 | 49.72 | 24.80 | 59.60 | 47.01 c | 8.57 | 18.23 | ||
SNS | 2020TA | 20.596 | 22.34 | 19.25 | 24.80 | 22.23 a | 0.94 | 4.25 | 49.4 |
2021TA | 17.13 | 18.88 | 17.13 | 20.88 | 18.94 b | 0.83 | 4.37 | ||
2021ZK | 19.56 | 18.33 | 14.20 | 22.20 | 18.91 b | 1.52 | 8.03 | ||
SN | 2020TA | 8.41 | 8.56 | 6.88 | 16.00 | 10.90 a | 1.61 | 14.82 | 48.6 |
2021TA | 4.13 | 4.25 | 3.13 | 7.63 | 4.99 c | 0.63 | 12.65 | ||
2021ZK | 6.76 | 5.33 | 2.60 | 17.20 | 8.15 b | 2.67 | 32.76 | ||
TGW | 2020TA | 52.65 | 46.78 | 25.22 | 61.07 | 47.40 a | 6.66 | 14.05 | 61.6 |
2021TA | 53.61 | 49.56 | 35.85 | 60.31 | 49.54 a | 4.90 | 9.88 | ||
GL | 2020TA | 5.54 | 5.27 | 4.97 | 6.63 | 5.66 b | 0.30 | 5.23 | 84.6 |
2021TA | 6.32 | 6.12 | 5.65 | 7.60 | 6.61 a | 0.33 | 5.01 | ||
GW | 2020TA | 3.05 | 2.61 | 2.29 | 3.27 | 2.82 b | 0.21 | 7.35 | 48.8 |
2021TA | 3.45 | 3.24 | 2.97 | 3.70 | 3.36 a | 0.15 | 4.36 | ||
GL/GW | 2020TA | 1.96 | 2.13 | 1.70 | 2.45 | 2.02 a | 0.14 | 7.05 | 73.9 |
2021TA | 1.85 | 2.00 | 1.70 | 2.39 | 1.98 a | 0.11 | 5.51 | ||
Sur | 2020TA | 12.35 | 11.45 | 9.46 | 16.03 | 12.67 b | 1.37 | 10.85 | 59.2 |
2021TA | 17.11 | 16.12 | 13.63 | 21.50 | 17.54 a | 1.38 | 7.84 | ||
Peri | 2020TA | 15.37 | 14.23 | 12.77 | 16.10 | 14.31 b | 0.71 | 4.97 | 72.5 |
2021TA | 17.25 | 15.72 | 14.58 | 18.87 | 16.86 a | 0.74 | 4.36 |
Chromosome | Number of SNP Markers | Length (cM) | Max Interval (cM) |
---|---|---|---|
1A | 883 | 93.47 | 10.66 |
1B | 383 | 88.71 | 18.86 |
1D | 743 | 229.05 | 36.79 |
2A | 552 | 165.63 | 37.29 |
2B | 747 | 160.04 | 62.12 |
2D | 905 | 331.58 | 52.76 |
3A | 527 | 152.47 | 15.47 |
3B | 861 | 170.13 | 36.06 |
3D | 103 | 118.09 | 15.87 |
4A | 665 | 99.06 | 10.88 |
4B | 425 | 98.23 | 9.97 |
4D | 163 | 65.59 | 13.95 |
5A | 875 | 75.54 | 7.6 |
5B | 436 | 116.16 | 25.01 |
5D | 503 | 205.56 | 13.96 |
6A | 458 | 148.31 | 43.63 |
6B | 501 | 97.61 | 8.54 |
6D | 176 | 102.98 | 31.58 |
7A | 715 | 121.28 | 10.5 |
7B | 1163 | 122.83 | 20.92 |
7D | 357 | 263.75 | 51.2 |
A genome | 4675 | 855.76 | 43.63 |
B genome | 4516 | 853.71 | 62.12 |
D genome | 2950 | 1316.6 | 52.76 |
Whole genome | 12141 | 3026.07 | 62.12 |
Traits | QTL | Environment | Chromosome | Position (cM) | Left Marker | Right Marker | LOD | PVE (%) | Add |
---|---|---|---|---|---|---|---|---|---|
PH | QPh-1A | 2020TA | 1A | 49.44–64.54 | AX-111149806 | AX-111456614 | 4.00 | 4.31 | 1.50 |
QPh-2B | 2021TA | 2B | 74.97–75.26 | AX-111667781 | AX-109974562 | 3.67 | 3.16 | 0.92 | |
QPh-2D.1 | 2020TA | 2D | 54.33–68.32 | AX-109403444 | AX-110836537 | 21.33 | 28.88 | 3.89 | |
2021TA | 2D | 53.47–57.06 | AX-108988107 | AX-110647062 | 29.40 | 37.81 | 3.18 | ||
2021ZK | 2D | 54.33–68.32 | AX-109403444 | AX-110836537 | 11.34 | 21.32 | 2.94 | ||
QPh-2D.2 | 2021TA | 2D | 110.54–111.72 | AX-111780198 | AX-110515536 | 3.88 | 3.36 | −0.96 | |
QPh-3B.1 | 2021ZK | 3B | 14–14.29 | AX-111011119 | AX-109478402 | 4.20 | 6.97 | −1.69 | |
QPh-3B.2 | 2021TA | 3B | 34.07–35.59 | AX-109915590 | AX-110956452 | 2.54 | 2.24 | −0.77 | |
QPh-4A | 2021TA | 4A | 64.25–67.82 | AX-109305727 | AX-111032494 | 6.20 | 5.54 | −1.21 | |
QPh-6B | 2020TA | 6B | 16.57–17.15 | AX-108823992 | AX-109458406 | 6.46 | 7.15 | −1.95 | |
QPh-6D | 2021TA | 6D | 56.9–60.54 | AX-109847629 | AX-109346183 | 6.75 | 6.26 | −1.30 | |
QPh-7A | 2020TA | 7A | 64.8–68.08 | AX-109420524 | AX-108857319 | 3.68 | 3.88 | −1.42 | |
QPh-7D.1 | 2021TA | 7D | 142.56–150.32 | AX-108999245 | AX-89703036 | 2.99 | 3.10 | −0.90 | |
2021ZK | 7D | 151.77–152.37 | AX-94571320 | AX-109561428 | 3.28 | 5.36 | −1.46 | ||
QPh-7D.2 | 2020TA | 7D | 254.98–255.27 | AX-110271452 | AX-109112266 | 9.48 | 10.76 | 2.37 | |
2021TA | 7D | 254.98–255.27 | AX-110271452 | AX-109112266 | 10.32 | 9.73 | 1.61 | ||
2021ZK | 7D | 254.98–255.27 | AX-110271452 | AX-109112266 | 5.49 | 9.18 | 1.93 | ||
SL | QSl-2A | 2020TA | 2A | 9.77–2.52 | AX-110685697 | AX-110907781 | 2.61 | 3.03 | 0.19 |
2021TA | 2A | 9.77–2.52 | AX-110685697 | AX-110907781 | 6.73 | 7.66 | 0.23 | ||
2021ZK | 2A | 9.77–2.52 | AX-110685697 | AX-110907781 | 4.38 | 10.98 | 0.36 | ||
QSl-2D | 2020TA | 2D | 54.33–68.32 | AX-109403444 | AX-110836537 | 25.44 | 38.24 | 0.67 | |
2021TA | 2D | 54.33–68.32 | AX-109403444 | AX-110836537 | 24.01 | 33.25 | 0.48 | ||
SL | QSl-3D | 2021ZK | 3D | 18.68–33.57 | AX-89666287 | AX-111183309 | 3.01 | 7.69 | −0.30 |
QSl-4A | 2020TA | 4A | 27.47–32.16 | AX-109017673 | AX-109278499 | 7.80 | 9.49 | −0.33 | |
QSl-4B | 2021TA | 4B | 52.14–60.74 | AX-109376424 | AX-110445790 | 5.28 | 5.59 | −0.20 | |
QSl-5D | 2020TA | 5D | 156.91–164.41 | AX-111008575 | AX-109820798 | 6.80 | 8.64 | −0.32 | |
QSl-6D | 2021TA | 6D | 90.63–102.98 | AX-109532654 | AX-109471603 | 3.33 | 3.95 | 0.17 | |
QSl-7B | 2020TA | 7B | 5.86–11.22 | AX-94902381 | AX-112287959 | 4.70 | 5.34 | −0.25 | |
QSl-7D | 2020TA | 7D | 161.04–214.66 | AX-111479908 | AX-111077348 | 3.48 | 7.99 | −0.30 | |
SNS | QSns-1A.1 | 2021TA | 1A | 25–28.11 | AX-108957758 | AX-110050825 | 5.46 | 10.00 | −0.26 |
QSns-1A.2 | 2020TA | 1A | 91.4–92.89 | AX-111799412 | AX-109109679 | 3.84 | 6.82 | 0.25 | |
2021TA | 1A | 91.4–92.89 | AX-111799412 | AX-109109679 | 2.59 | 4.59 | 0.18 | ||
QSns-1B | 2021TA | 1B | 77.6–79.3 | AX-108942270 | AX-108964977 | 3.36 | 5.89 | −0.20 | |
QSns-2B | 2020TA | 2B | 123.15–126.3 | AX-111069661 | AX-109980364 | 3.32 | 5.96 | −0.23 | |
QSns-2D.1 | 2021TA | 2D | 86.4–91.46 | AX-109382452 | AX-111593514 | 4.51 | 8.15 | 0.24 | |
QSns-2D.2 | 2020TA | 2D | 240.23–254.85 | AX-109361861 | AX-94502054 | 3.41 | 6.10 | −0.23 | |
QSns-6A.1 | 2020TA | 6A | 91.82–93.72 | AX-110365398 | AX-109896154 | 2.76 | 4.81 | −0.21 | |
QSns-6A.2 | 2021TA | 6A | 98.32–100.44 | AX-109321632 | AX-109910549 | 4.45 | 8.35 | −0.24 | |
GNS | QGns-2A.1 | 2020TA | 2A | 10.07–12.15 | AX-110530257 | AX-111018125 | 3.22 | 5.79 | 1.98 |
QGns-2A.2 | 2020TA | 2A | 50.27–51.84 | AX-111651930 | AX-111017366 | 6.43 | 12.05 | −2.85 | |
QGns-3B | 2021TA | 3B | 158.59–169.54 | AX-111145295 | AX-109391294 | 5.05 | 8.83 | −1.93 | |
QGns-4A | 2020TA | 4A | 88.73–91.78 | AX-111648542 | AX-110550799 | 3.16 | 4.65 | 1.76 | |
2021TA | 4A | 83.29–88.44 | AX-110540586 | AX-109987309 | 10.31 | 18.24 | 2.71 | ||
QGns-4D | 2020TA | 4D | 56.89–65.59 | AX-111024002 | AX-89578133 | 6.93 | 13.54 | −3.02 | |
2021TA | 4D | 56.89–65.59 | AX-111024002 | AX-111241478 | 6.61 | 12.16 | −2.22 | ||
QGns-6A | 2021ZK | 6A | 94.3–96.77 | AX-110423063 | AX-109333111 | 3.02 | 7.40 | −2.33 | |
SN | QSn-1B | 2021ZK | 1B | 72.24–75.09 | AX-109384977 | AX-109836324 | 2.64 | 6.68 | 0.69 |
QSn-6A | 2020TA | 6A | 3.4–11.81 | AX-109915394 | AX-111011118 | 3.06 | 7.78 | 0.45 | |
TGW | QTgw-1D | 2021TA | 1D | 110.93–114.31 | AX-109816030 | AX-109146253 | 3.76 | 5.26 | 1.13 |
QTgw-2A | 2021TA | 2A | 54.66–58.16 | AX-111581446 | AX-109303703 | 4.44 | 6.50 | 1.26 | |
QTgw-4A | 2021TA | 4A | 78.16–79.15 | AX-110440161 | AX-109924488 | 10.44 | 16.21 | −1.98 | |
QTgw-4B | 2021TA | 4B | 42.22–44.34 | AX-109931786 | AX-108813019 | 5.93 | 8.43 | −1.45 | |
2020TA | 4B | 43.38–45.22 | AX-110973841 | AX-110436318 | 4.05 | 8.78 | −1.99 | ||
QTgw-7B | 2021TA | 7B | 108.2–115.5 | AX-110676189 | AX-109902211 | 3.27 | 5.91 | 1.20 | |
GL | QGl-2A | 2021TA | 2A | 54.36–54.66 | AX-108822367 | AX-111576466 | 9.51 | 14.53 | 0.13 |
QGl-4A.1 | 2021TA | 4A | 34.61–35.65 | AX-109882402 | AX-108892678 | 7.55 | 11.09 | −0.11 | |
QGl-4A.2 | 2020TA | 4A | 79.73–83.01 | AX-111592727 | AX-109363749 | 4.96 | 10.19 | −0.10 | |
QGl-6A | 2021TA | 6A | 134.15–134.76 | AX-111680204 | AX-110433692 | 3.73 | 5.20 | 0.08 | |
QGl-6D | 2021TA | 6D | 90.63–102.98 | AX-109532654 | AX-109471603 | 3.15 | 4.22 | −0.07 | |
QGl-7A | 2021TA | 7A | 37.59–38.19 | AX-109334017 | AX-110536946 | 2.90 | 3.96 | 0.07 | |
QGl-7B | 2020TA | 7B | 42.57–45.17 | AX-111044151 | AX-89749267 | 2.89 | 5.72 | 0.07 | |
GW | QGw-2D | 2020TA | 2D | 292.51–292.86 | AX-108791923 | AX-109444904 | 3.00 | 6.92 | −0.05 |
QGw-4B | 2021TA | 4B | 36.03–37.18 | AX-111620391 | AX-109909153 | 2.72 | 6.14 | −0.04 | |
Peri | QPeri-1A | 2021TA | 1A | 30.16–31.09 | AX-110527733 | AX-109986286 | 3.71 | 3.91 | 0.15 |
QPeri-2A | 2021TA | 2A | 54.36–54.66 | AX-108822367 | AX-111576466 | 6.76 | 7.15 | 0.20 | |
QPeri-2B.1 | 2021TA | 2B | 0–1.18 | AX-111741075 | AX-94488983 | 7.02 | 7.30 | −0.20 | |
QPeri-2B.2 | 2021TA | 2B | 143.39–147.69 | AX-111680931 | AX-109477763 | 4.40 | 4.58 | 0.16 | |
QPeri-3D | 2021TA | 3D | 47.79–49.89 | AX-95634629 | AX-110040152 | 11.84 | 14.06 | 0.28 | |
QPeri-4A.1 | 2021TA | 4A | 34.61–35.65 | AX-109882402 | AX-108892678 | 7.00 | 7.27 | −0.20 | |
QPeri-4A.2 | 2020TA | 4A | 79.73–83.01 | AX-111592727 | AX-109363749 | 3.22 | 7.48 | −0.20 | |
Peri | QPeri-5B | 2020TA | 5B | 13.61–14.78 | AX-108913498 | AX-110446007 | 2.59 | 6.27 | 0.18 |
QPeri-5D.1 | 2021TA | 5D | 121.88–123.05 | AX-109924594 | AX-110035093 | 2.94 | 3.05 | −0.13 | |
QPeri-5D.2 | 2021TA | 5D | 192.55–192.85 | AX-111354812 | AX-108991233 | 7.21 | 7.55 | 0.20 | |
Sur | QSur-1A | 2021TA | 1A | 30.16–31.09 | AX-110527733 | AX-109986286 | 4.25 | 8.90 | 0.41 |
QSur-2A | 2021TA | 2A | 54.36–54.66 | AX-108822367 | AX-111576466 | 3.72 | 7.48 | 0.38 | |
QSur-5B | 2020TA | 5B | 13.61–14.78 | AX-108913498 | AX-110446007 | 3.15 | 7.10 | 0.37 |
QTL | Probe ID | Mutation Site | Forward Primer Sequence (5′-3′) | Reverse Primer Sequence (5′-3′) |
---|---|---|---|---|
QTgw-4B | AX-110935921 | T//G | GAAGGTGACCAAGTTCATGCTTGCATGTCTGGTGGTTACAG | CGCCAGACACCATTAGCCTT |
GAAGGTCGGAGTCAACGGATTTGCATGTCTGGTGGTTACCAT | ||||
QPh-2D.1/QSl-2D | AX-110836537 | T//C | GAAGGTGACCAAGTTCATGCTGCATTTTCCCATGGTTTTAGCTCT | CCCCGGTCATGCAATCAAGA |
GAAGGTCGGAGTCAACGGATTGCATTTTCCCATGGTTTTAGCTCC | ||||
QSns-1A.2 | AX-111567464 | T//C | GAAGGTGACCAAGTTCATGCTACCCTGCACTAAAATACTATTGTGC | GCGGAGGAGAGGAAGAGGTA |
GAAGGTCGGAGTCAACGGATTACCCTGCACTAAAATACTATTGTGT | ||||
QGns-4D | AX-111024002 | A//C | GAAGGTGACCAAGTTCATGCTTGTAAGATGGAACTGCTGGGTA | GCACATGCGTTTGAGGTCAT |
GAAGGTCGGAGTCAACGGATTTGTAAGATGGAACTGCTGGGTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, D.; Liu, M.; Jin, M.; Sun, X.; Pang, Y.; Yan, Q.; Liu, C.; Liu, S. QTL Mapping for Agronomic Important Traits in Well-Adapted Wheat Cultivars. Agronomy 2024, 14, 940. https://doi.org/10.3390/agronomy14050940
Liu J, Wang D, Liu M, Jin M, Sun X, Pang Y, Yan Q, Liu C, Liu S. QTL Mapping for Agronomic Important Traits in Well-Adapted Wheat Cultivars. Agronomy. 2024; 14(5):940. https://doi.org/10.3390/agronomy14050940
Chicago/Turabian StyleLiu, Jingxian, Danfeng Wang, Mingyu Liu, Meijin Jin, Xuecheng Sun, Yunlong Pang, Qiang Yan, Cunzhen Liu, and Shubing Liu. 2024. "QTL Mapping for Agronomic Important Traits in Well-Adapted Wheat Cultivars" Agronomy 14, no. 5: 940. https://doi.org/10.3390/agronomy14050940
APA StyleLiu, J., Wang, D., Liu, M., Jin, M., Sun, X., Pang, Y., Yan, Q., Liu, C., & Liu, S. (2024). QTL Mapping for Agronomic Important Traits in Well-Adapted Wheat Cultivars. Agronomy, 14(5), 940. https://doi.org/10.3390/agronomy14050940