Genetic Diversity and Genome-Wide Association in Cowpeas (Vigna unguiculata L. Walp)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction and Genotyping by Sequencing (GBS)
2.3. Phenotyping of Plant Traits
2.4. SNP Identification
2.5. Population Structure and Genetic Diversity
2.6. Population Stratification and Kinship
2.7. Genome-Wide Association (GWAS) Mapping
3. Results
3.1. SNP Diversity, Population Structure, and Genetic Diversity of Cowpea Panel
3.2. Genetic Diversity among Yardlong Types, Grain Cowpeas, and Their Wild Relatives
3.3. Genome-Wide Association Studies
3.4. Antioxidant Level
3.5. Dry Pod and Flower Color
3.6. Growth Habit and Maturity
3.7. Pod Length
3.8. Response Low P
3.9. Rock Phosphate Response
3.10. Seed Weight
3.11. QTN Co-Localizations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fatokun, C.A.; Boukar, O.; Muranaka, S. Evaluation of Cowpea (Vigna unguiculata (L.) Walp.) Germplasm Lines for Tolerance to Drought. Plant Genet. Resour. 2012, 10, 171–176. [Google Scholar] [CrossRef]
- Goufo, P.; Moutinho-Pereira, J.M.; Jorge, T.F.; Correia, C.M.; Oliveira, M.R.; Rosa, E.A.S.; António, C.; Trindade, H. Cowpea (Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield. Front. Plant Sci. 2017, 8, 586. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, D.; Denwar, N.; Blair, M.W. Effects of Moisture Deficit on the Yield of Cowpea Genotypes in the Guinea Savannah of Northern Ghana. Agric. Sci. 2019, 10, 577–595. [Google Scholar] [CrossRef]
- Yahaya, D.; Denwar, N.; Mohammed, M.; Blair, M.W. Screening Cowpea (Vigna unguiculata (L.) Walp.) Genotypes for Enhanced N2 Fixation and Water Use Efficiency under Field Conditions in Ghana. Am. J. Plant Sci. 2019, 10, 640–658. [Google Scholar] [CrossRef]
- Veeranagappa, P.; Manu, B.; Prasad, G.; Blair, M.W.; Hickok, D.; Naveena, N.L.; Manjunath, L.; Tripathi, K. Advanced Breeding Strategies for Abiotic Stress Tolerance in Cowpea. In Genomic Designing for Abiotic Stress Resistant Pulse Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 115–144. ISBN 978-3-030-91038-9. [Google Scholar]
- Pratap, A.; Kumar, S.; Polowick, P.L.; Blair, M.W.; Baum, M. Editorial: Accelerating Genetic Gains in Pulses. Front. Plant Sci. 2022, 13, 879377. [Google Scholar] [CrossRef] [PubMed]
- Mahesha, H.S.; Keerthi, M.C.; Shivakumar, K.V.; Bhargavi, H.A.; Saini, R.P.; Manjunatha, L.; Hickok, D.; Blair, M.W. Development of Biotic Stress Resistant Cowpea. In Genomic Designing for Biotic Stress Resistant Pulse Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 213–251. ISBN 978-3-030-91042-6. [Google Scholar]
- Xiong, H.; Shi, A.; Mou, B.; Qin, J.; Motes, D.; Lu, W.; Ma, J.; Weng, Y.; Yang, W.; Wu, D. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp). PLoS ONE 2016, 11, e0160941. [Google Scholar] [CrossRef]
- Wu, X.; Cortés, A.J.; Blair, M.W. Genetic Differentiation of Grain, Fodder and Pod Vegetable Type Cowpeas (Vigna unguiculata L.) Identified through Single Nucleotide Polymorphisms from Genotyping-by-Sequencing. Mol. Hortic. 2022, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, V.; Ng, Q.; Lawson, M.; Ortiz, R. Cowpea [Vigna unguiculata (L.) Walp.] Core Collection Defined by Geographical, Agronomical and Botanical Descriptors. Plant Genet. Resour. Charact. Util. 2007, 5, 113–119. [Google Scholar] [CrossRef]
- Fatokun, C.; Girma, G.; Abberton, M.; Gedil, M.; Unachukwu, N.; Oyatomi, O.; Yusuf, M.; Rabbi, I.; Boukar, O. Genetic Diversity and Population Structure of a Mini-Core Subset from the World Cowpea (Vigna unguiculata (L.) Walp.) Germplasm Collection. Sci. Rep. 2018, 8, 16035. [Google Scholar] [CrossRef]
- Dareus, R.; Acharya, J.P.; Paudel, D.R.; Lopes De Souza, C.H.; Tome Gouveia, B.; Chase, C.A.; DiGennaro, P.; Mulvaney, M.J.; Koenig, R.; Rios, E.F. Phenotypic Diversity for Phenological and Agronomic Traits in the UC-Riverside Cowpea (Vigna unguiculata L. Walp) Mini-core Collection. Crop Sci. 2021, 61, 3551–3563. [Google Scholar] [CrossRef]
- Muñoz-Amatriaín, M.; Lo, S.; Herniter, I.A.; Boukar, O.; Fatokun, C.; Carvalho, M.; Castro, I.; Guo, Y.; Huynh, B.; Roberts, P.A.; et al. The UCR Minicore: A Resource for Cowpea Research and Breeding. Legume Sci. 2021, 3, e95. [Google Scholar] [CrossRef]
- Blair, M.W.; Miller, M.C., II; Yahaya, D.; Hickok, D.; Wu, X. Allele Mining in Cowpea (Vigna unguiculata) Sub-Species and Close Relatives. In Allele Mining in Pulses; Springer Inc.: Berlin/Heidelberg, Germany, 2024; in press. [Google Scholar]
- Muñoz-Amatriaín, M.; Mirebrahim, H.; Xu, P.; Wanamaker, S.I.; Luo, M.; Alhakami, H.; Alpert, M.; Atokple, I.; Batieno, B.J.; Boukar, O.; et al. Genome Resources for Climate-resilient Cowpea, an Essential Crop for Food Security. Plant J. 2017, 89, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.; Muñoz-Amatriaín, M.; Hokin, S.A.; Cisse, N.; Roberts, P.A.; Farmer, A.D.; Xu, S.; Close, T.J. A Genome-Wide Association and Meta-Analysis Reveal Regions Associated with Seed Size in Cowpea [Vigna unguiculata (L.) Walp]. Theor. Appl. Genet. 2019, 132, 3079–3087. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Song, Y.; Wang, B.; Wu, X.; Wang, Y.; Wang, J.; Lu, Z.; Zhang, Y.; Li, G.; Wu, X.; et al. Identification of Genomic Regions Associated with Fusarium Wilt Resistance in Cowpea. Appl. Sci. 2022, 12, 6889. [Google Scholar] [CrossRef]
- Xu, P.; Wu, X.; Muñoz-Amatriaín, M.; Wang, B.; Wu, X.; Hu, Y.; Huynh, B.; Close, T.J.; Roberts, P.A.; Zhou, W.; et al. Genomic Regions, Cellular Components and Gene Regulatory Basis Underlying Pod Length Variations in Cowpea (V. Unguiculata L. Walp). Plant Biotechnol. J. 2017, 15, 547–557. [Google Scholar] [CrossRef]
- Steinbrenner, A.D.; Muñoz-Amatriaín, M.; Chaparro, A.F.; Aguilar-Venegas, J.M.; Lo, S.; Okuda, S.; Glauser, G.; Dongiovanni, J.; Shi, D.; Hall, M.; et al. A Receptor-like Protein Mediates Plant Immune Responses to Herbivore-Associated Molecular Patterns. Proc. Natl. Acad. Sci. USA 2020, 117, 31510–31518. [Google Scholar] [CrossRef] [PubMed]
- Ravelombola, W.; Shi, A.; Huynh, B.-L. Loci Discovery, Network-Guided Approach, and Genomic Prediction for Drought Tolerance Index in a Multi-Parent Advanced Generation Intercross (MAGIC) Cowpea Population. Hortic. Res. 2021, 8, 24. [Google Scholar] [CrossRef]
- Ravelombola, W.; Shi, A.; Huynh, B.-L.; Qin, J.; Xiong, H.; Manley, A.; Dong, L.; Olaoye, D.; Bhattarai, G.; Zia, B.; et al. Genetic Architecture of Salt Tolerance in a Multi-Parent Advanced Generation Inter-Cross (MAGIC) Cowpea Population. BMC Genom. 2022, 23, 100. [Google Scholar] [CrossRef]
- Ongom, P.O.; Togola, A.; Fatokun, C.; Boukar, O. A Genome-Wide Scan Divulges Key Loci Involved in Resistance to Aphids (Aphis Craccivora) in Cowpea (Vigna unguiculata). Genes 2022, 13, 2002. [Google Scholar] [CrossRef]
- Paudel, D.; Dareus, R.; Rosenwald, J.; Muñoz-Amatriaín, M.; Rios, E.F. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time in Cowpea (Vigna unguiculata [L.] Walp.). Front. Genet. 2021, 12, 667038. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Buckley, B.; Mou, B.; Motes, D.; Morris, J.B.; Ma, J.; Xiong, H.; Qin, J.; Yang, W.; Chitwood, J.; et al. Association Analysis of Cowpea Bacterial Blight Resistance in USDA Cowpea Germplasm. Euphytica 2016, 208, 143–155. [Google Scholar] [CrossRef]
- Ravelombola, W.; Shi, A.; Weng, Y.; Mou, B.; Motes, D.; Clark, J.; Chen, P.; Srivastava, V.; Qin, J.; Dong, L.; et al. Association Analysis of Salt Tolerance in Cowpea (Vigna unguiculata (L.) Walp) at Germination and Seedling Stages. Theor. Appl. Genet. 2018, 131, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Ravelombola, W.; Qin, J.; Shi, A.; Weng, Y.; Bhattarai, G.; Dong, L.; Morris, J.B. A SNP-Based Association Analysis for Plant Growth Habit in Worldwide Cowpea (Vigna unguiculata (L.) Walp) Germplasm. Euphytica 2017, 213, 284. [Google Scholar] [CrossRef]
- Qin, J.; Shi, A.; Mou, B.; Bhattarai, G.; Yang, W.; Weng, Y.; Motes, D. Association Mapping of Aphid Resistance in USDA Cowpea (Vigna unguiculata L. Walp.) Core Collection Using SNPs. Euphytica 2017, 213, 36. [Google Scholar] [CrossRef]
- Bhattarai, G.; Shi, A.; Qin, J.; Weng, Y.; Bradley Morris, J.; Pinnow, D.L.; Buckley, B.; Ravelombola, W.; Yang, W.; Dong, L. Association Analysis of Cowpea Mosaic Virus (CPMV) Resistance in the USDA Cowpea Germplasm Collection. Euphytica 2017, 213, 230. [Google Scholar] [CrossRef]
- Angira, B.; Zhang, Y.; Zhang, Y.; Scheuring, C.F.; Masor, L.; Coleman, J.; Singh, B.B.; Zhang, H.-B.; Hays, D.B.; Zhang, M.; et al. Genetic Dissection of Iron Deficiency Chlorosis by QTL Analysis in Cowpea. Euphytica 2022, 218, 38. [Google Scholar] [CrossRef]
- Qin, J.; Shi, A.; Xiong, H.; Mou, B.; Motes, D.R.; Lu, W.; Miller, C., Jr.; Scheuring, D.C.; Nzaramba, M.N.; Weng, Y.; et al. Population Structure Analysis and Association Mapping of Seed Antioxidant Content in USDA Cowpea (Vigna unguiculata L. Walp.) Core Collection Using SNPs. Can. J. Plant Sci. 2016, 96, 1026–1036. [Google Scholar] [CrossRef]
- Herniter, I.A.; Muñoz-Amatriaín, M.; Lo, S.; Guo, Y.-N.; Close, T.J. Identification of Candidate Genes Controlling Black Seed Coat and Pod Tip Color in Cowpea (Vigna unguiculata [L.] Walp). G3 GenesGenomesGenetics 2018, 8, 3347–3355. [Google Scholar] [CrossRef]
- Lo, S.; Muñoz-Amatriaín, M.; Boukar, O.; Herniter, I.; Cisse, N.; Guo, Y.-N.; Roberts, P.A.; Xu, S.; Fatokun, C.; Close, T.J. Identification of QTL Controlling Domestication-Related Traits in Cowpea (Vigna unguiculata L. Walp). Sci. Rep. 2018, 8, 6261. [Google Scholar] [CrossRef]
- Huynh, B.; Ehlers, J.D.; Huang, B.E.; Muñoz-Amatriaín, M.; Lonardi, S.; Santos, J.R.P.; Ndeve, A.; Batieno, B.J.; Boukar, O.; Cisse, N.; et al. A Multi-parent Advanced Generation Inter-cross (MAGIC) Population for Genetic Analysis and Improvement of Cowpea (Vigna unguiculata L. Walp.). Plant J. 2018, 93, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Ravelombola, W.; Qin, J.; Shi, A.; Lu, W.; Weng, Y.; Xiong, H.; Yang, W.; Bhattarai, G.; Mahamane, S.; Payne, W.A.; et al. Association Mapping Revealed SNP Markers for Adaptation to Low Phosphorus Conditions and Rock Phosphate Response in USDA Cowpea (Vigna unguiculata (L.) Walp.) Germplasm. Euphytica 2017, 213, 183. [Google Scholar] [CrossRef]
- International Board for Plant Genetic Resources. Descriptors for Cowpeas; AGPG: IBPGR/82/80; IPGRI: Rome, Italy, 1983. [Google Scholar]
- Koleva, I.; Beek, T.; Linssen, J.; Groot, A.; Evstatieva, L. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Haney, R.; Haney, E.; Harmel, R.; Smith, D.; White, M. Evaluation of H3A for determination of plant available P vs. FeAlO strips. Open Soil Sci. 2016, 6, 175–187. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.; et al. The Genome of Cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Chatre, V.E.; Emerson, K.J. StrAuto: Automation and Parallelization of STRUCTURE Analysis. BMC Bioinform. 2017, 18, 192. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software Structure: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A Cluster Matching and Permutation Program for Dealing with Label Switching and Multimodality in Analysis of Population Structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Perrier, X.; Jacquemoud-Collet, J.-P. DARwin Software. Available online: http://darwin.cirad.fr (accessed on 14 February 2024).
- Excoffier, L.; Llischer, H.E.L. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- R-Core, T. R: A Language and Environment for Statistical Computing. Available online: http://www.r-project.org (accessed on 14 February 2024).
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLOS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Hao, Z.; Lv, D.; Ge, Y.; Shi, J.; Weijers, D.; Yu, G.; Chen, J. RIdeogram: Drawing SVG Graphics to Visualize and Map Genome-Wide Data on the Idiograms. PeerJ Comput. Sci. 2020, 6, e251. [Google Scholar] [CrossRef]
- Herniter, I.A.; Muñoz-Amatriaín, M.; Close, T.J. Genetic, Textual, and Archeological Evidence of the Historical Global Spread of Cowpea (Vigna unguiculata [L.] Walp.). Legume Sci. 2020, 2, e57. [Google Scholar] [CrossRef]
- Kongjaimun, A.; Kaga, A.; Tomooka, N.; Somta, P.; Shimizu, T.; Shu, Y.; Isemura, T.; Vaughan, D.A.; Srinives, P. An SSR-Based Linkage Map of Yardlong Bean (Vigna unguiculata (L.) Walp. Subsp. unguiculata Sesquipedalis Group) and QTL Analysis of Pod Length. Genome 2012, 55, 81–92. [Google Scholar] [CrossRef]
- Pan, L.; Liu, M.; Kang, Y.; Mei, X.; Hu, G.; Bao, C.; Zheng, Y.; Zhao, H.; Chen, C.; Wang, N. Comprehensive Genomic Analyses of Vigna unguiculata Provide Insights into Population Differentiation and the Genetic Basis of Key Agricultural Traits. Plant Biotechnol. J. 2023, 21, 1426–1439. [Google Scholar] [CrossRef]
- Mustapha, Y.; Singh, B.B. Inheritance of Pod Colour in Cowpea (Vigna unguiculata (L.) Walp). Sci. World J. 2010, 3, 39–42. [Google Scholar] [CrossRef]
- Lazaridi, E.; Suso, M.J.; Ortiz-Sánchez, F.J.; Bebeli, P.J. Investigation of Cowpea (Vigna unguiculata (L.) Walp.)–Insect Pollinator Interactions Aiming to Increase Cowpea Yield and Define New Breeding Tools. Ecologies 2023, 4, 124–140. [Google Scholar] [CrossRef]
- Jiang, W.; Yin, Q.; Wu, R.; Zheng, G.; Liu, J.; Dixon, R.A.; Pang, Y. Role of a Chalcone Isomerase-like Protein in Flavonoid Biosynthesis in Arabidopsis Thaliana. J. Exp. Bot. 2015, 66, 7165–7179. [Google Scholar] [CrossRef] [PubMed]
- Stavenga, D.G.; Leertouwer, H.L.; Dudek, B.; Van Der Kooi, C.J. Coloration of Flowers by Flavonoids and Consequences of pH Dependent Absorption. Front. Plant Sci. 2021, 11, 600124. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, R.S.; Lodhi, G.P. Inheritance of flower and pod colour in cowpea (Vigna unguiculata L. Walp.). Euphytica 1998, 102, 191–193. [Google Scholar] [CrossRef]
- Wang, S.; Chang, Y.; Guo, J.; Chen, J. Arabidopsis Ovate Family Protein 1 Is a Transcriptional Repressor That Suppresses Cell Elongation. Plant J. 2007, 50, 858–872. [Google Scholar] [CrossRef] [PubMed]
- Monforte, A.J.; Diaz, A.; Caño-Delgado, A.; Van Der Knaap, E. The Genetic Basis of Fruit Morphology in Horticultural Crops: Lessons from Tomato and Melon. J. Exp. Bot. 2013, 65, 4625–4637. [Google Scholar] [CrossRef]
- Nassourou, M.A.; Njintang, Y.N.; Noubissié, T.J.-B.; Nguimbou, R.M.; Bell, J.M. Genetics of Seed Flavonoid Content and Antioxidant Activity in Cowpea (Vigna unguiculata L. Walp.). Crop J. 2016, 4, 391–397. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; Da Silva, J.A.T.; Fujita, M. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. In Crop Stress and Its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 261–315. ISBN 978-94-007-2219-4. [Google Scholar]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, Y.; Li, Q.; Zhu, B. Pectinolytic Lyases: A Comprehensive Review of Sources, Category, Property, Structure, and Catalytic Mechanism of Pectate Lyases and Pectin Lyases. Bioresour. Bioprocess. 2021, 8, 79. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, H.; Ravelombola, W.; Bhattarai, G.; Barickman, C.; Alatawi, I.; Phiri, T.M.; Chiwina, K.; Mou, B.; Tallury, S.; et al. A Genome-Wide Association Study Reveals Region Associated with Seed Protein Content in Cowpea. Plants 2023, 12, 2705. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.H.M.L.; Ferreira, R.C.U.; Filho, C.C.F.; Sipowicz, P.; Rios, E.F. Single and Multi-trait Genome-wide Association Studies Identify Genomic Regions Associated with Phenological Traits in Cowpea. Crop Sci. 2023, 63, 3443–3456. [Google Scholar] [CrossRef]
- Checa, O.E.; Blair, M.W. Mapping QTL for Climbing Ability and Component Traits in Common Bean (Phaseolus Vulgaris L.). Mol. Breed. 2008, 22, 201–215. [Google Scholar] [CrossRef]
- Cichy, K.A.; Snapp, S.S.; Blair, M.W. Plant Growth Habit, Root Architecture Traits and Tolerance to Low Soil Phosphorus in an Andean Bean Population. Euphytica 2009, 165, 257–268. [Google Scholar] [CrossRef]
- Pao, S.S.; Paulsen, I.T.; Saier, M.H. Major Facilitator Superfamily. Microbiol. Mol. Biol. Rev. 1998, 62, 1–34. [Google Scholar] [CrossRef]
- Drew, D.; North, R.A.; Nagarathinam, K.; Tanabe, M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem. Rev. 2021, 121, 5289–5335. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.R.; Huynh, B.-L.; Da Silva Vinholes, P.; Cisse, N.; Drabo, I.; Ehlers, J.D.; Roberts, P.A.; Close, T.J. Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata. Front. Plant Sci. 2013, 4, 95. [Google Scholar] [CrossRef]
- Amin, N.; Ahmad, N.; Khalifa, M.A.S.; Du, Y.; Mandozai, A.; Khattak, A.N.; Piwu, W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes 2023, 14, 369. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Liu, G.; Lu, X.; Chen, K.; Tian, J.; Liang, C. A Berberine Bridge Enzyme-Like Protein, GmBBE-Like43, Confers Soybean’s Coordinated Adaptation to Aluminum Toxicity and Phosphorus Deficiency. Front. Plant Sci. 2022, 13, 947986. [Google Scholar] [CrossRef]
Source of Variation | Degrees of Freedom | Sum of Squares | Variance Components | Percentage of Variation |
---|---|---|---|---|
Variation partition (Among three sub-species groups) | ||||
Among groups | 2 | 18,782.60 | 160.48 | 12.75 |
Among individuals within groups | 75 | 126,940.08 | 594.23 | 47.21 |
Within individuals | 78 | 39,318.50 | 504.08 | 40.05 |
Total | 155 | 185,041.17 | 1258.79 | |
Variation partition (Among Vigna unguiculata ssp. unguiculata and V. unguiculata ssp. sesquipedalis) | ||||
Among groups | 1 | 15,703.60 | 219.09 | 15.36 |
Among individuals within groups | 63 | 117,856.43 | 663.40 | 46.51 |
Within individuals | 65 | 35,356.50 | 543.95 | 38.13 |
Total | 129 | 168,916.55 | 1426.43 | |
Variation partition (Among Vigna unguiculata ssp. unguiculata and V. unguiculata ssp. cylindrica) | ||||
Among groups | 1 | 4654.56 | 72.87 | 5.94 |
Among individuals within groups | 49 | 89,727.87 | 677.62 | 55.25 |
Within individuals | 51 | 24,273.50 | 475.95 | 38.81 |
Total | 101 | 118,655.93 | 1226.44 | |
Variation partition (Among Vigna unguiculata ssp. cylindrica and V. unguiculata ssp. sesquipedalis) | ||||
Among groups | 1 | 7524.12 | 174.74 | 15.52 |
Among individuals within groups | 38 | 52,841.96 | 439.11 | 38.99 |
Within individuals | 40 | 20,494.00 | 512.35 | 45.49 |
Total | 79 | 80,860.08 | 1126.21 |
Trait | SNP | Chr | Position | p-Value | FDR-Adjusted p-Values | Model | SNP Effect |
---|---|---|---|---|---|---|---|
Antioxidant | CONTIG_3_347132 | n/a | 347,132 | 9.2 × 10−6 | 2.1 × 10−2 | FarmCPU | 176.81 |
Antioxidant | SVU02_25844432 | VU02 | 25,844,432 | 2.8 × 10−9 | 9.6 × 10−6 | BLINK | |
Antioxidant | SVU04_24674908 | VU04 | 24,674,908 | 1.3 × 10−5 | 2.3 × 10−2 | FarmCPU | 101.15 |
Antioxidant | SVU04_39821223 | VU04 | 39,821,223 | 5.0 × 10−7 | 1.7 × 10−3 | FarmCPU | −142.33 |
Antioxidant | SVU08_36638094 * | VU08 | 36,638,094 | 2.8 × 10−8 | 6.3 × 10−5 | BLINK | |
Antioxidant | SVU08_36638094 * | VU08 | 36,638,094 | 1.8 × 10−12 | 1.2 × 10−8 | FarmCPU | −257.05 |
Antioxidant | SVU09_41120416 | VU09 | 41,120,416 | 8.5 × 10−6 | 1.5 × 10−2 | BLINK | |
Antioxidant | SVU10_20951283 | VU10 | 20,951,283 | 2.6 × 10−9 | 9.6 × 10−6 | BLINK | |
Dry pod color | SVU03_61354189 * | VU03 | 61,354,189 | 3.8 × 10−10 | 1.3 × 10−6 | BLINK | |
Dry pod color | SVU03_61354189 * | VU03 | 61,354,189 | 1.5 × 10−6 | 4.2 × 10−3 | FarmCPU | −0.46 |
Dry pod color | SVU03_9536356 * | VU03 | 9,536,356 | 8.4 × 10−7 | 9.5 × 10−4 | BLINK | |
Dry pod color | SVU03_9536356 * | VU03 | 9,536,356 | 4.1 × 10−6 | 7.0 × 10−3 | FarmCPU | −0.37 |
Dry pod color | SVU05_6973585 * | VU05 | 6,973,585 | 2.3 × 10−13 | 1.6 × 10−9 | BLINK | |
Dry pod color | SVU05_6973585 * | VU05 | 6,973,585 | 4.9 × 10−8 | 3.4 × 10−4 | FarmCPU | 0.74 |
Dry pod color | SVU06_33534718 * | VU06 | 33,534,718 | 1.1 × 10−9 | 2.4 × 10−6 | BLINK | |
Dry pod color | SVU06_33534718 * | VU06 | 33,534,718 | 1.9 × 10−6 | 4.2 × 10−3 | FarmCPU | 0.50 |
Dry pod color | SVU08_36154680 | VU08 | 36,154,680 | 3.2 × 10−7 | 4.3 × 10−4 | BLINK | |
Dry pod color | SVU09_16383249 | VU09 | 16,383,249 | 8.0 × 10−6 | 1.1 × 10−2 | FarmCPU | 0.80 |
Dry pod color | SVU09_25649823 | VU09 | 25,649,823 | 2.0 × 10−9 | 3.4 × 10−6 | BLINK | |
Flower color | CONTIG_3_248443 | n/a | 248,443 | 5.5 × 10−6 | 9.0 × 10−3 | BLINK | |
Flower color | SVU01_35872139 | VU01 | 35,872,139 | 6.6 × 10−6 | 9.0 × 10−3 | BLINK | |
Flower color | SVU03_31090324 | VU03 | 31,090,324 | 1.0 × 10−6 | 3.5 × 10−3 | BLINK | |
Flower color | SVU08_3874640 | VU08 | 3,874,640 | 4.5 × 10−6 | 9.0 × 10−3 | BLINK | |
Flower color | SVU09_5475451 | VU09 | 5,475,451 | 7.5 × 10−7 | 3.5 × 10−3 | BLINK | |
Growth habit | SVU04_32873146 | VU04 | 32,873,146 | 2.8 × 10−8 | 1.9 × 10−4 | BLINK | |
Maturity | SVU03_47710713 | VU03 | 47,710,713 | 6.3 × 10−6 | 2.1 × 10−2 | BLINK | |
Maturity | SVU04_7507872 | VU04 | 7,507,872 | 3.3 × 10−6 | 2.1 × 10−2 | BLINK | |
Maturity | SVU05_16327515 | VU05 | 16,327,515 | 3.5 × 10−7 | 8.1 × 10−4 | FarmCPU | 8.96 |
Maturity | SVU09_12400987 | VU09 | 12,400,987 | 1.2 × 10−9 | 8.5 × 10−6 | FarmCPU | −11.55 |
Maturity | SVU09_16383398 | VU09 | 16,383,398 | 3.5 × 10−7 | 8.1 × 10−4 | FarmCPU | 8.61 |
Pod length | CONTIG_3_141951 | n/a | 141,951 | 1.2 × 10−6 | 6.7 × 10−4 | FarmCPU | 4.74 |
Pod length | CONTIG_3_495433 | n/a | 495,433 | 9.6 × 10−8 | 4.1 × 10−5 | BLINK | |
Pod length | SVU01_3813516 * | VU01 | 3,813,516 | 9.4 × 10−19 | 6.4 × 10−15 | BLINK | |
Pod length | SVU01_3813516 * | VU01 | 3,813,516 | 5.3 × 10−14 | 3.6 × 10−10 | FarmCPU | −5.62 |
Pod length | SVU01_3814443 * | VU01 | 3,814,443 | 8.3 × 10−8 | 3.8 × 10−5 | BLINK | |
Pod length | SVU01_3814443 * | VU01 | 3,814,443 | 5.1 × 10−11 | 5.8 × 10−8 | FarmCPU | −28.15 |
Pod length | SVU01_3814444 * | VU01 | 3,814,444 | 8.3 × 10−8 | 3.8 × 10−5 | BLINK | |
Pod length | SVU01_3814444 * | VU01 | 3,814,444 | 5.1 × 10−11 | 5.8 × 10−8 | FarmCPU | −28.15 |
Pod length | SVU01_3814447 * | VU01 | 3,814,447 | 8.3 × 10−8 | 3.8 × 10−5 | BLINK | |
Pod length | SVU01_3814447 * | VU01 | 3,814,447 | 5.1 × 10−11 | 5.8 × 10−8 | FarmCPU | −28.15 |
Pod length | SVU01_3814467 * | VU01 | 3,814,467 | 8.3 × 10−8 | 3.8 × 10−5 | BLINK | |
Pod length | SVU01_3814467 * | VU01 | 3,814,467 | 5.1 × 10−11 | 5.8 × 10−8 | FarmCPU | −28.15 |
Pod length | SVU02_22876112 | VU02 | 22,876,112 | 8.9 × 10−9 | 7.6 × 10−6 | BLINK | |
Pod length | SVU03_37127830 | VU03 | 37,127,830 | 1.9 × 10−6 | 1.0 × 10−3 | FarmCPU | −6.59 |
Pod length | SVU05_40768813 * | VU05 | 40,768,813 | 1.2 × 10−8 | 8.8 × 10−6 | BLINK | |
Pod length | SVU05_40768813 * | VU05 | 40,768,813 | 2.0 × 10−8 | 1.5 × 10−5 | FarmCPU | 3.95 |
Pod length | SVU06_26010349 | VU06 | 26,010,349 | 7.8 × 10−16 | 2.7 × 10−12 | BLINK | |
Pod length | SVU06_563046 | VU06 | 563,046 | 2.0 × 10−10 | 1.7 × 10−7 | FarmCPU | −25.52 |
Pod length | SVU06_563048 | VU06 | 563,048 | 2.0 × 10−10 | 1.7 × 10−7 | FarmCPU | −25.52 |
Pod length | SVU07_32970747 | VU07 | 32,970,747 | 1.2 × 10−13 | 1.7 × 10−10 | BLINK | |
Pod length | SVU07_39887364 | VU07 | 39,887,364 | 1.6 × 10−12 | 5.5 × 10−9 | FarmCPU | −5.80 |
Pod length | SVU07_8419865 | VU07 | 8,419,865 | 6.6 × 10−8 | 4.5 × 10−5 | FarmCPU | 3.47 |
Pod length | SVU08_2723206 | VU08 | 2,723,206 | 4.5 × 10−6 | 2.0 × 10−3 | FarmCPU | −3.73 |
Pod length | SVU09_29209316 | VU09 | 29,209,316 | 1.8 × 10−9 | 1.7 × 10−6 | BLINK | |
Pod length | SVU10_1257951 | VU10 | 1,257,951 | 2.3 × 10−7 | 1.4 × 10−4 | FarmCPU | 4.29 |
Pod length | SVU10_32475355 | VU10 | 32,475,355 | 9.0 × 10−11 | 1.0 × 10−7 | BLINK | |
Pod length | SVU10_32507465 | VU10 | 32,507,465 | 1.8 × 10−8 | 1.2 × 10−5 | BLINK | |
Pod length | SVU10_33225256 | VU10 | 33,225,256 | 2.5 × 10−6 | 1.2 × 10−3 | FarmCPU | 3.97 |
Pod length | SVU10_33358174 | VU10 | 33,358,174 | 1.2 × 10−13 | 1.7 × 10−10 | BLINK | |
Pod length | SVU11_36410645 | VU11 | 36,410,645 | 3.8 × 10−8 | 2.4 × 10−5 | BLINK | |
Pod length | SVU11_971859 | VU11 | 971,859 | 6.8 × 10−14 | 1.6 × 10−10 | BLINK | |
ResponseLow P | SVU10_3706971 | VU10 | 3,706,971 | 9.9 × 10−8 | 6.8 × 10−4 | BLINK | |
Rock phosphate | SVU11_37561353 | VU11 | 37,561,353 | 2.7 × 10−6 | 1.9 × 10−2 | BLINK | |
Seed weight | SVU03_46623413 | VU03 | 46,623,413 | 2.6 × 10−7 | 8.9 × 10−4 | BLINK | |
Seed weight | SVU03_50505045 | VU03 | 50,505,045 | 7.7 × 10−6 | 1.3 × 10−2 | BLINK | |
Seed weight | SVU03_52946137 | VU03 | 52,946,137 | 2.9 × 10−10 | 2.0 × 10−6 | BLINK | |
Seed weight | SVU04_16299944 | VU04 | 16,299,944 | 1.6 × 10−6 | 3.6 × 10−3 | BLINK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Michael, V.N.; López-Hernández, F.; Cortés, A.J.; Morris, J.B.; Wang, M.; Tallury, S.; Miller II, M.C.; Blair, M.W. Genetic Diversity and Genome-Wide Association in Cowpeas (Vigna unguiculata L. Walp). Agronomy 2024, 14, 961. https://doi.org/10.3390/agronomy14050961
Wu X, Michael VN, López-Hernández F, Cortés AJ, Morris JB, Wang M, Tallury S, Miller II MC, Blair MW. Genetic Diversity and Genome-Wide Association in Cowpeas (Vigna unguiculata L. Walp). Agronomy. 2024; 14(5):961. https://doi.org/10.3390/agronomy14050961
Chicago/Turabian StyleWu, Xingbo, Vincent N. Michael, Felipe López-Hernández, Andrés J. Cortés, John B. Morris, Mingli Wang, Shyam Tallury, Max C. Miller II, and Matthew W. Blair. 2024. "Genetic Diversity and Genome-Wide Association in Cowpeas (Vigna unguiculata L. Walp)" Agronomy 14, no. 5: 961. https://doi.org/10.3390/agronomy14050961
APA StyleWu, X., Michael, V. N., López-Hernández, F., Cortés, A. J., Morris, J. B., Wang, M., Tallury, S., Miller II, M. C., & Blair, M. W. (2024). Genetic Diversity and Genome-Wide Association in Cowpeas (Vigna unguiculata L. Walp). Agronomy, 14(5), 961. https://doi.org/10.3390/agronomy14050961