Investigation of Sample Size Estimation for Measuring Quantitative Characteristics in DUS Testing of Shiitake Mushrooms
Abstract
:1. Introduction
2. Material and Methods
2.1. Time of the Test and Station
2.2. Materials and Substrate
2.3. Shiitake Incubating Method
2.4. Measurement of Quantitative Characteristics
2.5. Data Analysis
3. Results
3.1. Statistical Description and Test of the Normal Distribution of the Measurement Data
3.2. Minimum Sample Size Calculation Results
3.3. Random Sampling Results
3.4. Effect of Sample Size on Combined Over-Years Criteria for Distinctness
3.5. Effect of Sample Size on Combined Over-Years Uniformity Criterion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hibberts, M.; Burke, J.R.; Hudson, K. Common Survey Sampling Techniques. In Handbook of Survey Methodology for the Social Sciences; Gideon, L., Ed.; Springer: New York, NY, USA, 2012; pp. 53–74. [Google Scholar]
- Dattalo, P. Determining Sample Size: Balancing Power, Precision, and Practicality, Pocket Guides to Social Work Research Methods; Oxford University Press: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 1, 010502. [Google Scholar] [CrossRef] [PubMed]
- Zodpey, S.P. Sample size and power analysis in medical research. Indian J. Dermatol. Venereol. Leprol. 2004, 70, 123–128. [Google Scholar] [PubMed]
- Singh, A.S.; Masuku, M.B. Sampling techniques and determination of sample size in applied statistics research: An overview. Int. J. Econ. Commer. Manag. 2014, 2, 1–22. [Google Scholar]
- Mukhopadhyay, K.; Haque, I.; Bandopadhyay, R.; Covert, S.; Porter, D. AFLP based assessment of genetic relationships among shiitake (Lentinula ssp.) mushrooms. Mol. Biol. Rep. 2012, 39, 6059–6065. [Google Scholar] [CrossRef] [PubMed]
- Boer, C.G.; Obici, L.; Souza, C.G.M.; Peralta, R.M. Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Bioresour. Technol. 2004, 94, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T. Mushrooms as human food. Bioscience 1980, 30, 399–401. [Google Scholar] [CrossRef]
- Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection, and Use; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006; pp. 56, 242–243. [Google Scholar]
- Rao, Z.L.; Dong, Y.T.; Zheng, X.J.; Tang, K.Y.; Liu, J. Extraction, purification, bioactivities and prospect of lentinan: A review. Biocatal. Agric. Biotechnol. 2021, 37, 102163. [Google Scholar] [CrossRef]
- Fernandes, T.; Garrine, C.; Ferrão, J.; Bell, V.; Varzakas, T. Mushroom nutrition as preventative healthcare in Sub-Saharan Africa. Appl. Sci. 2021, 11, 4221. [Google Scholar] [CrossRef]
- Thakur, M.P. Advances in mushroom production: Key to food, nutritional and employment security: A review. Indian Phytopathol. 2020, 73, 377–395. [Google Scholar] [CrossRef]
- Silva, E.M.; Machuca, A.; Milagres, A.M. Effect of cereal brans on Lentinula edodes growth and enzyme activities during cultivation on forestry waste. Lett. Appl. Microbiol. 2005, 40, 283–288. [Google Scholar] [CrossRef]
- Luo, X.C. Progress of Xiang-Gu (Shiitake) cultivation in China. In Mushroom Science XV, Science and Cultivation of Edible and Medicinal Fungi; Romaine, C.P., Keil, C.B., Rinker, D.L., Royse, D.J., Eds.; The Pennsylvania State University Press: University Park, PA, USA, 2004; pp. 317–322. [Google Scholar]
- Annepu, S.K.; Sharma, V.P.; Kumar, S.; Barh, A. Cultivation Techniques of Shiitake (a Medicinal Mushroom with Culinary Delight); Technical Bulletin; ICAR-Directorate of Mushroom Research: Solan, India, 2019. [Google Scholar]
- Sakamoto, Y.; Sato, S.; Nakade, K.; Ito, M.; Yamauchi, T.; Eda, K.; Goto, F.; Mizuno, M.; Konno, N. Screening of a Lentinula edodes mutant that retains Lentinan contents long after being harvested using TILLING. ACS. Agric. Sci. Technol. 2021, 1, 143–149. [Google Scholar] [CrossRef]
- Royse, D.J.; Baars, J.J.P.; Tan, Q. Current overview of mushroom production in the world, technology and applications. In Edible and Medicinal Mushrooms; Diego, C.Z., Pardo-Giménez, A., Eds.; Wiley: New York, NY, USA, 2017; pp. 5–13. [Google Scholar]
- Li, C.T.; Xu, S. Edible mushroom industry in China: Current state and perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 3949–3955. [Google Scholar] [CrossRef]
- Zou, H.; Li, W.; Liu, J.; Buyukada, M.; Evrendilek, F. Catalytic combustion performances, kinetics, reaction mechanisms and gas emissions of Lentinus edodes. Bioresour. Technol. 2020, 300, 122630. [Google Scholar] [CrossRef]
- Okuda, Y. Sustainability perspectives for future continuity of mushroom production: The bright and dark sides. Front. Sustain. Food Syst. 2022, 6, 1026508. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.R.; Li, C.; Bian, Y.B.; Xiao, Y. Evaluating genetic diversity and constructing core collections of Chinese Lentinula edodes cultivars using ISSR and SRAP markers. J. Basic Microbiol. 2015, 55, 749–760. [Google Scholar] [CrossRef]
- Yang, C.J.; Russell, J.; Ramsay, L.; Thomas, W.; Mackay, I. Overcoming barriers to the registration of new plant varieties under the DUS system. Commun. Biol. 2021, 4, 302. [Google Scholar] [CrossRef]
- Debsharma, S.K.; Roy, P.R.; Begum, R.A.; Iftekharuddaula, K.M.; Roy, K.K.; Hossain, M.Z. Distinctness, uniformity and stability(DUS) characterization for BRRI developed rice varieties of Bangladesh. Int. J. Sustain. Crop Prod. (IJSCP) 2020, 15, 13–19. [Google Scholar]
- International Union for the Protection of New Varieties of Plants (UPOV). General Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants. 2002. Available online: https://www.upov.int/export/sites/upov/resource/en/tg_1_3.pdf (accessed on 7 March 2024).
- Conroy, R.M. The RCSI Sample Size Handbook: A Rough Guide; RCSI: Dublin, Ireland, 2016; pp. 59–61. Available online: https://www.researchgate.net/publication/324571619_The_RCSI_Sample_size_handbook (accessed on 7 March 2024).
- Dell, R.B.; Holleran, S.; Ramakrishnan, R. Sample size determination. ILAR J. 2002, 43, 207–213. [Google Scholar] [CrossRef]
- Twisk, J.W.R. Sample Size Calculations. In Analysis of Data from Randomized Controlled Trials; Springer: Cham, Switzerland, 2021; pp. 151–155. [Google Scholar]
- NY/T 2560-2014; Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability Xianggu (Lentinull edodes (Berk.) Pegler). Ministry of Agriculture, the People’s Republic of China: Beijing, China, 2014.
- International Union for the Protection of New Varieties of Plants (UPOV). Guides for the Conduct of Tests for Distinctness Uniformity and Stability Shiitake (Lentinus edodes) (TG/282/1 Rev.). 2015. Available online: https://www.upov.int/edocs/tgdocs/en/tg282.pdf (accessed on 7 March 2024).
- NY/T 3627-2020; Technical Code of Practice for the Intensive Production of Xianggu (Lentinula edodes) Artificial Bed-Log. Ministry of Agriculture, the People’s Republic of China: Beijing, China, 2020.
- Fox, N.; Hunn, A.; Mathers, N. Sampling and sample size calculation. In Statistical Analysis in Primary Care; Radcliffe Medical Press: Abingdon, UK, 2007. [Google Scholar]
- International Union for the Protection of New Varieties of Plants (UPOV). Rail Design and Techniques Used in the Examination of Distinctness, Uniformity and Stability (TGP/8). 2022. Available online: https://upov.int/edocs/tgpdocs/en/tgp_8.pdf (accessed on 7 March 2024).
- Li, C.; Gong, W.B.; Zhang, L.; Yang, Z.Q.; Nong, W.Y.; Bian, Y.B.; Kwan, H.S.; Cheung, M.K.; Xiao, Y. Association mapping reveals genetic loci associated with important agronomic traits in Lentinula edodes, shiitake mushroomront. Front. Microbiol. 2017, 8, 237. [Google Scholar] [CrossRef]
- Chiu, S.W.; Ma, A.M.; Lin, F.C.; Moore, D. Genetic homogeneity of cultivated strains of shiitake (Lentinula edodes) used in China as revealed by the polymerase chain reaction. Mycol. Res. 1996, 100, 1393–1399. [Google Scholar] [CrossRef]
- Gong, W.B.; Li, L.; Zhou, Y.; Bian, Y.B.; Kwan, H.S.; Cheung, M.K.; Xiao, Y. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Appl. Genet. Mol. Biotechnol. 2016, 100, 5437–5452. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.L.; Gong, W.; Li, C.; Zhang, L.; Bian, Y.; Kwan, H.S.; Cheung, M.K.; Xiao, Y. Comprehensive evaluation of shiitake strains (Lentinus edodes, Agaricomycetes) based on polysaccharide content and agronomic traits. Int. J. Med. Mushrooms 2019, 21, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.L.; Zhang, A.W. A study of sample size for estimating means of tests plant of some field crops. J. Beijing Agric. Coll. 1993, 8, 32–39. [Google Scholar]
- International Union for the Protection of New Varieties of Plants (UPOV). Guides for the Conduct of Tests for Distinctness Uniformity and Stability Blue Honeysuckle, Honeyberry (Lonicera caerulea L.) (TG/277/1 Corr.). 2020. Available online: https://www.upov.int/edocs/tgdocs/en/tg277.pdf (accessed on 7 March 2024).
- International Union for the Protection of New Varieties of Plants (UPOV). Guides for the Conduct of Tests for Distinctness Uniformity and Stability Oyster Mushroom; King Oyster Mushroom; Lung Oyster Mushroom (Pleurotus ostreatus (Jacq.) P. Kumm.; Pleurotus eryngii (DC.) Quél.; Pleurotus pulmonarius (Fr.) Quél.) (TG/291/1). 2013. Available online: https://www.upov.int/edocs/tgdocs/en/tg291.pdf (accessed on 7 March 2024).
- Jo, E.Y.; Choi, J.Y.; Choi, J.W.; Ahn, J.H. Influence of food waste compost on the yield and mineral content of Ganoderma lucidum, Lentinula edodes, and Pholiota adipose fruiting bodies. Mycobiology 2013, 41, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Philippoussis, A.; Diamantopoulou, P.; Zervakis, G. Correlation of the properties of several lignocellulosic substrates to the crop performance of the shiitake mushroom Lentinula edodes. World J. Microbiol. Biotechnol. 2003, 19, 551–557. [Google Scholar] [CrossRef]
- Song, Y.; Liu, N.; Yang, R.H.; Lv, L.T.; Zhang, S.Y.; Deng, H.C.; Li, Y.; Zhang, M. Comparison of agronomic traits and nutrient components of Lentinus edodes at different flushes. Hortic. Seeds 2022, 42, 1–3. [Google Scholar]
Year | Characteristic | Max | Min | Mean | Mean SD | CV/% |
---|---|---|---|---|---|---|
Year 1 | Pileus height/mm | 22.00 | 13.31 | 18.30 | 2.88 | 15.71 |
Stipe length/mm | 46.74 | 30.28 | 39.30 | 6.24 | 15.89 | |
Stipe diameter/mm | 23.12 | 11.54 | 16.81 | 2.86 | 17.01 | |
Ratio of pileus diameter to stipe length | 1.75 | 0.92 | 1.46 | 0.23 | 16.04 | |
Ratio of pileus diameter to stipe diameter | 4.14 | 2.75 | 3.45 | 0.58 | 16.91 | |
Year 2 | Pileus height/mm | 22.33 | 9.43 | 16.64 | 2.70 | 16.24 |
Stipe length/mm | 44.71 | 26.88 | 38.21 | 5.87 | 15.36 | |
Stipe diameter/mm | 22.95 | 10.63 | 17.31 | 2.77 | 16.00 | |
Ratio of pileus diameter to stipe length | 1.74 | 1.15 | 1.50 | 0.23 | 15.59 | |
Ratio of pileus diameter to stipe diameter | 2.97 | 1.10 | 1.93 | 0.31 | 16.09 |
Characteristic | Year 1 | Year 2 |
---|---|---|
Pileus height | 9/19 | 17/11 |
Stipe length | 4/24 | 5/23 |
Stipe diameter | 16/12 | 14/14 |
Ratio of pileus diameter to stipe length | 9/19 | 15/13 |
Ratio of pileus diameter to stipe diameter | 11/17 | 7/21 |
Sample Size | Mean | Label |
---|---|---|
all | 3.337 | a,b |
50-3 | 3.345 | a,b |
50-2 | 3.329 | a,b |
50-1 | 3.387 | a,b |
40-3 | 3.310 | a,b |
40-2 | 3.308 | a,b |
40-1 | 3.278 | a,b |
30-3 | 3.363 | a,b |
30-2 | 3.373 | a,b |
30-1 | 3.441 | a |
20-3 | 3.155 | a,b |
20-2 | 3.403 | a,b |
20-1 | 3.357 | a,b |
10-3 | 3.361 | a,b |
10-2 | 3.111 | a,b |
10-1 | 3.286 | a,b |
05-3 | 3.402 | a,b |
05-2 | 2.652 | b |
05-1 | 3.404 | a,b |
Characteristic | All | 05-1 | 05-2 | 05-3 | 10-1 | 10-2 | 10-3 | 20-1 | 20-2 | 20-3 | 30-1 | 30-2 | 30-3 | 40-1 | 40-2 | 40-3 | 50-1 | 50-2 | 50-3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pileus height | UCp | 1.74 | 1.78 | 2.25 | 1.88 | 2.14 | 2.23 | 2.15 | 2.07 | 1.77 | 1.83 | 1.97 | 1.98 | 1.86 | 1.94 | 1.95 | 1.94 | 1.75 | 1.93 | 1.92 |
Sh1 | 1.2 | 1.4 | 1.17 | 1.43 | 1.58 | 1.56 | 1.41 | 1.51 | 1.26 | 1.2 | 1.41 | 1.42 | 1.35 | 1.41 | 1.44 | 1.34 | 1.26 | 1.42 | 1.41 | |
Sh2 | 1.36 | 1.56 | 1.36 | 1.55 | 1.58 | 1.69 | 1.62 | 1.71 | 1.47 | 1.48 | 1.7 | 1.63 | 1.5 | 1.65 | 1.59 | 1.51 | 1.43 | 1.59 | 1.58 | |
Sh3 | 1.06 | 1.21 | 1.41 | 1.32 | 1.2 | 1.43 | 1.35 | 1.4 | 1.14 | 1.16 | 1.34 | 1.31 | 1.18 | 1.22 | 1.28 | 1.19 | 1.11 | 1.26 | 1.26 | |
Sh27 | 1.56 | 1.62 | 1.85 | 1.72 | 1.65 | 1.85 | 1.87 | 1.89 | 1.61 | 1.64 | 1.9 | 1.81 | 1.73 | 1.8 | 1.83 | 1.7 | 1.61 | 1.79 | 1.76 | |
Sh28 | 1.25 | 1.22 | 1.49 | 1.25 | 1.46 | 1.58 | 1.45 | 1.55 | 1.38 | 1.34 | 1.46 | 1.46 | 1.4 | 1.55 | 1.49 | 1.4 | 1.32 | 1.48 | 1.44 | |
Stipe length | UCp | 2.47 | 2.62 | 2.77 | 3.13 | 2.6 | 2.71 | 2.82 | 2.67 | 2.62 | 2.64 | 2.64 | 2.67 | 2.67 | 2.62 | 2.51 | 2.65 | 2.62 | 2.62 | 2.63 |
Sh1 | 1.95 | 2.25 | 1.85 | 2.58 | 1.82 | 2.14 | 2.09 | 2.04 | 2.03 | 2.16 | 2.03 | 2.04 | 2.08 | 2.02 | 1.96 | 2.2 | 2.11 | 2.11 | 2.08 | |
Sh2 | 2.01 | 1.85 | 2.16 | 2.23 | 1.91 | 2.17 | 2.48 | 1.99 | 2.14 | 2.03 | 2.2 | 2.03 | 2.15 | 2.11 | 1.96 | 2.2 | 2.08 | 2.12 | 2.13 | |
Sh3 | 1.79 | 1.66 | 1.77 | 1.86 | 1.97 | 1.92 | 2.16 | 2.07 | 1.87 | 1.99 | 1.93 | 1.92 | 1.94 | 1.99 | 1.81 | 2.01 | 1.9 | 1.91 | 1.98 | |
Sh27 | 2.19 | 2.15 | 2.2 | 2.22 | 2.3 | 2.31 | 2.45 | 1.96 | 2.48 | 2.22 | 2.26 | 2.35 | 2.26 | 2.21 | 2.23 | 2.36 | 2.31 | 2.25 | 2.34 | |
Sh28 | 2.07 | 2.14 | 2.32 | 2.41 | 2.11 | 2.02 | 2.39 | 1.9 | 2.11 | 2.11 | 2.27 | 2.31 | 2.17 | 2.19 | 2.1 | 2.27 | 2.23 | 2.2 | 2.21 | |
Stipe diameter | UCp | 2.13 | 1.7 | 1.83 | 2.02 | 2.05 | 1.91 | 1.9 | 1.89 | 1.96 | 1.96 | 1.76 | 1.82 | 1.85 | 1.91 | 1.89 | 1.88 | 1.9 | 1.89 | 1.91 |
Sh1 | 1.24 | 0.87 | 1.08 | 1.29 | 1.57 | 1.5 | 1.61 | 1.47 | 1.52 | 1.52 | 1.45 | 1.47 | 1.48 | 1.51 | 1.55 | 1.49 | 1.52 | 1.54 | 1.52 | |
Sh2 | 1.22 | 1.13 | 1.28 | 1.63 | 1.52 | 1.43 | 1.52 | 1.6 | 1.52 | 1.67 | 1.45 | 1.51 | 1.52 | 1.51 | 1.58 | 1.52 | 1.55 | 1.56 | 1.59 | |
Sh3 | 1.09 | 0.96 | 1.23 | 1.17 | 1.34 | 1.44 | 1.44 | 1.32 | 1.37 | 1.43 | 1.26 | 1.24 | 1.43 | 1.37 | 1.38 | 1.38 | 1.39 | 1.4 | 1.42 | |
Sh27 | 1.43 | 1.57 | 1.34 | 1.61 | 1.75 | 1.68 | 1.69 | 1.7 | 1.75 | 1.62 | 1.51 | 1.54 | 1.52 | 1.62 | 1.54 | 1.58 | 1.63 | 1.29 | 1.65 | |
Sh28 | 1.32 | 1.05 | 1.49 | 1.23 | 1.78 | 1.45 | 1.65 | 1.61 | 1.58 | 1.61 | 1.43 | 1.56 | 1.6 | 1.61 | 1.64 | 1.51 | 1.6 | 1.62 | 1.59 | |
Ratio of pileus diameter to stipe length | UCp | 0.29 | 0.31 | 0.34 | 0.4 | 0.36 | 0.29 | 0.33 | 0.36 | 0.31 | 0.34 | 0.3 | 0.3 | 0.32 | 0.32 | 0.31 | 0.29 | 0.31 | 0.31 | 0.31 |
Sh1 | 0.16 | 0.13 | 0.13 | 0.24 | 0.18 | 0.12 | 0.21 | 0.22 | 0.18 | 0.19 | 0.16 | 0.17 | 0.19 | 0.2 | 0.18 | 0.16 | 0.19 | 0.18 | 0.18 | |
Sh2 | 0.19 | 0.12 | 0.14 | 0.21 | 0.25 | 0.1 | 0.22 | 0.26 | 0.18 | 0.24 | 0.2 | 0.2 | 0.21 | 0.2 | 0.22 | 0.21 | 0.21 | 0.22 | 0.22 | |
Sh3 | 0.19 | 0.16 | 0.09 | 0.25 | 0.2 | 0.17 | 0.23 | 0.23 | 0.21 | 0.25 | 0.19 | 0.19 | 0.22 | 0.22 | 0.22 | 0.18 | 0.22 | 0.22 | 0.21 | |
Sh27 | 0.25 | 0.16 | 0.16 | 0.22 | 0.19 | 0.25 | 0.15 | 0.24 | 0.19 | 0.22 | 0.19 | 0.25 | 0.26 | 0.27 | 0.27 | 0.22 | 0.25 | 0.27 | 0.28 | |
Sh28 | 0.21 | 0.09 | 0.21 | 0.2 | 0.21 | 0.2 | 0.25 | 0.25 | 0.21 | 0.23 | 0.23 | 0.23 | 0.24 | 0.23 | 0.24 | 0.2 | 0.23 | 0.21 | 0.23 | |
Ratio of pileus diameter to stipe diameter | UCp | 0.58 | 0.75 | 0.62 | 0.71 | 0.7 | 0.66 | 0.63 | 0.61 | 0.63 | 0.59 | 0.64 | 0.64 | 0.61 | 0.63 | 0.56 | 0.58 | 0.6 | 0.58 | 0.63 |
Sh1 | 0.33 | 0.39 | 0.39 | 0.35 | 0.43 | 0.42 | 0.22 | 0.28 | 0.41 | 0.36 | 0.42 | 0.33 | 0.37 | 0.38 | 0.31 | 0.33 | 0.34 | 0.34 | 0.38 | |
Sh2 | 0.45 | 0.62 | 0.55 | 0.44 | 0.55 | 0.52 | 0.48 | 0.49 | 0.42 | 0.4 | 0.47 | 0.43 | 0.45 | 0.46 | 0.43 | 0.43 | 0.49 | 0.46 | 0.49 | |
Sh3 | 0.45 | 0.33 | 0.3 | 0.46 | 0.4 | 0.45 | 0.81 | 0.44 | 0.46 | 0.4 | 0.48 | 0.44 | 0.43 | 0.48 | 0.46 | 0.42 | 0.48 | 0.43 | 0.48 | |
Sh27 | 0.45 | 0.33 | 0.29 | 0.56 | 0.51 | 0.47 | 0.51 | 0.42 | 0.5 | 0.47 | 0.5 | 0.49 | 0.45 | 0.53 | 0.45 | 0.46 | 0.48 | 0.43 | 0.46 | |
Sh28 | 0.49 | 0.22 | 0.43 | 0.5 | 0.53 | 0.45 | 0.47 | 0.55 | 0.53 | 0.51 | 0.56 | 0.52 | 0.49 | 0.54 | 0.43 | 0.45 | 0.52 | 0.51 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Zhang, M.; Li, A.; Ren, L.; Zhang, Y.; Zhao, H.; Zhang, Y.; Song, C.; Han, R.; Tan, Q.; et al. Investigation of Sample Size Estimation for Measuring Quantitative Characteristics in DUS Testing of Shiitake Mushrooms. Agronomy 2024, 14, 1130. https://doi.org/10.3390/agronomy14061130
Deng S, Zhang M, Li A, Ren L, Zhang Y, Zhao H, Zhang Y, Song C, Han R, Tan Q, et al. Investigation of Sample Size Estimation for Measuring Quantitative Characteristics in DUS Testing of Shiitake Mushrooms. Agronomy. 2024; 14(6):1130. https://doi.org/10.3390/agronomy14061130
Chicago/Turabian StyleDeng, Shan, Meiyan Zhang, Aiai Li, Li Ren, Yiying Zhang, Hong Zhao, Yu Zhang, Chunyan Song, Ruixi Han, Qi Tan, and et al. 2024. "Investigation of Sample Size Estimation for Measuring Quantitative Characteristics in DUS Testing of Shiitake Mushrooms" Agronomy 14, no. 6: 1130. https://doi.org/10.3390/agronomy14061130
APA StyleDeng, S., Zhang, M., Li, A., Ren, L., Zhang, Y., Zhao, H., Zhang, Y., Song, C., Han, R., Tan, Q., Chu, Y., & Chen, H. (2024). Investigation of Sample Size Estimation for Measuring Quantitative Characteristics in DUS Testing of Shiitake Mushrooms. Agronomy, 14(6), 1130. https://doi.org/10.3390/agronomy14061130