Effects of Combination of Water-Retaining Agent and Nitrogen Fertilizer on Soil Characteristics and Growth of Winter Wheat under Subsoiling Tillage in South Loess Plateau of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Design
2.2. Test Methods
2.2.1. Winter Wheat Growth Indicators and Yield Determination
2.2.2. Bacterial Analysis of Wheat Roots and Rhizosphere Soil Sample Collection
2.2.3. Determination of Soil Physicochemical Properties
2.2.4. Soil Microbial DNA Extraction and PCR Amplification and Sequencing
2.3. Sequencing Data Processing
2.4. Statistical Analysis
3. Results
3.1. Effects of Different Treatments of Fertilization and Water-Retaining Agents on the Growth and Yield of Winter Wheat
3.2. Effects of Different Treatments of Fertilization and Water-Retaining Agents on Root Length Density
3.3. Effects of Different Treatments of Fertilization and Water-Retaining Agents on Soil Physicochemical Properties
3.4. Effects of Different Treatments of Fertilization and Water-Retaining Agents on Soil Microbial Communities
3.4.1. Soil Bacterial Diversity Index in the Cultivated Layer (0~20 cm) under Different Treatments
3.4.2. Composition of Bacterial Communities in Different Treatment Layers (0~20 cm)
3.5. Relationship between Bacterial Community Structure and Soil Physicochemical Properties, Root Length Density, and Yield in Different Treatments (0~20 cm)
4. Discussion
4.1. Effects of Fertilization and Water-Retaining Agent on Growth and Yield of Winter Wheat under Different Treatments
4.2. Effects of Different Treatments of Fertilization and Water-Retaining Agents on Root Length Density of Winter Wheat
4.3. Effects of Different Treatments of Fertilization and Water-Retaining Agents on Soil Physicochemical Properties
4.4. Effects of Different Treatments of Fertilization and Water-Retaining Agents on Soil Microbial Communities
5. Conclusions
- (1)
- Improvement of soil nutrients and physical properties: water-retaining agents significantly enhanced the content of ammonium nitrogen and facilitated nitrate nitrogen uptake and utilization in shallow soil, improved soil physical structure, increased soil water content, and created good conditions for the accumulation of available phosphorus and potassium.
- (2)
- Improvement of winter wheat productivity: water-retaining agents significantly enhanced the total production of winter wheat by increasing the seedling emergence rate, spike rate, grain number per spike, and thousand-grain weight, showing its key role in optimizing crop growth environment and improving productivity.
- (3)
- Promotion of root development: the combined use of water-retaining agents and fertilizer significantly increased root length density under subsoiling tillage conditions, particularly in the soil layer below 30 cm at the jointing stage and above 70 cm at the booting stage, which enhanced the utilization ability of roots to deep soil resources.
- (4)
- The impact of microbial diversity: the application of water-retaining agents significantly enhanced the abundance and diversity of bacteria in the 10~20 cm soil layer, revealing its important potential in improving microbial habitats. In contrast, fertilization alone resulted in a marked decline in bacterial abundance and diversity in the 0~10 cm surface soil.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, L.; Peng, X.-L.; Li, J.-Y.; Li, D.-X.; Yu, C.-Z.; Huang, K. Application and yield-increasing effect of trace element fertilizer in loess area. Sci. Agric. Sin. 1978, 3, 65–67. [Google Scholar]
- Shi, J.-L.; Li, X.-S.; Wang, S.-J.; Li, S.; Li, Y.-B.; Tian, X.-H. Effect of long-term shallow tillage and straw returning on soil potassium content and stratification ratio in winter wheat-summer maize rotation system in Guanzhong Plain, Northwest China. Chin. J. Appl. Ecol. 2015, 26, 3322–3328. [Google Scholar]
- Mikkelsen, L. Using hydrophilic polymers to control nutrient release. Fertil. Res. 1994, 38, 53–59. [Google Scholar] [CrossRef]
- Dong, G.-P. Discussion on Models of Rain-fed Dry-land High-yield Cultivation Techniques in North Part of China. Sci-Tech Inf. Dev. Econ. 2011, 21, 124–127. [Google Scholar]
- Bai, W.; Sun, Z.-X.; Zheng, J.-M.; Liu, Y.; Hou, Z.-Y.; Feng, L.-S.; Yang, N. Soil Plough Layers and Soil Nutrients in Western Liaoning. Soils 2011, 43, 714–719. [Google Scholar]
- Lin, J.; Wang, L.; Li, B.-F.; Tian, Y.; Bo, H.-M.; Ma, T. Design and test of 2ZZ-3 type deep scarification-terrace ridge-fertilization combine intertill machine. Trans. Chin. Soc. Agric. Eng. 2016, 32, 9–17. [Google Scholar]
- Li, G.-Q.; Zhou, J.; Lu, X.-F.; Cao, Z.-Y.; Yang, Y.-Q.; Xu, P.; Zhang, Z.-B. Study on the Relationship between Ear Leaf and Yield of Maize in Rainfed Condition. Crops 2013, 3, 25–28. [Google Scholar]
- Li, F.-R.; Seth, C.; Geballe, G.W., Jr. Rainwater Harvesting Agriculture: An Integrated System for Water Management on Rainfed Land in China’s Semiarid Areas. AMBIO-A J. Hum. Environ. 2000, 29, 477–483. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Hübner, R.; Barthold, F.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Lützow, M.; Kögel-Knabner, I. Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agric. Ecosyst. Environ. 2013, 176, 39–52. [Google Scholar] [CrossRef]
- Kautz, T.; Amelung, W.; Ewert, F.; Gaiser, T.; Horn, R.; Jahn, R.; Javaux, M.; Kemna, A.; Kuzyakov, Y.; Munch, J.; et al. Nutrient acquisition from arable subsoils in temperate climates: A review. Soil Biol. Biochem. 2013, 57, 1003–1022. [Google Scholar] [CrossRef]
- Qiang, X.; Sun, J.; Ning, H. Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain. Agriculture 2022, 12, 236. [Google Scholar] [CrossRef]
- Wang, H.-B.; Bai, W.-B.; Han, W.; Song, J.-Q.; Lv, G.-H. Effect of subsoiling on soil properties and winter wheat grain yield. Soil Use Manag. 2019, 35, 643–652. [Google Scholar] [CrossRef]
- Liu, P.-Q.; Zhang, M.-X.; Wang, L.-G.; Wang, Y.-C. Effects of subsoiling and straw return on soil respiration and soil organic carbon balance in black soil of northeast China. J. Agro-Environ. Sci. 2020, 39, 1150–1160. [Google Scholar]
- Wang, R.-L.; Mo, Y.; Wang, F.-G.; Gao, S.-H.; Ren, S.-H. Research Progress on Main Characteristics of Super Absorbent Polymers and its Effects on Soil and Crops. Water Sav. Irrig. 2021, 12, 75–80. [Google Scholar]
- Ji, B.-Y. Analysis and Discussion on the Present Situation of the Development of Agricultural Water Retaining Agent. Agric. Econ. 2022, 4, 21–23. [Google Scholar]
- Zhang, L.; Mao, L.-L.; Yan, X.-Y.; Liu, C.-M.; Song, X.-L.; Sun, X.-Z. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil. Ind. Crops Prod. 2022, 177, 114472. [Google Scholar] [CrossRef]
- Wang, C.; Liu, D.-W.; Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 2018, 120, 126–133. [Google Scholar] [CrossRef]
- Li, X.; He, J.-Z.; Hughes, J.; Liu, Y.-R.; Zheng, Y.-M. Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Appl. Soil Ecol. 2014, 73, 58–63. [Google Scholar] [CrossRef]
- Relleve, L.; Aranilla, C.; Barba, B.; Gallardo, A.; Cruz, V.; Ledesma, C.; Nagasawa, N.; Abad, L. Radiation-synthesized polysaccharides/polyacrylate super water absorbents and their biodegradabilities. Radiat. Phys. Chem. 2020, 170, 108618. [Google Scholar] [CrossRef]
- Su, A.-Y.; Niu, S.-Q.; Liu, Y.-Z.; He, A.-L.; Zhao, Q.; Paul, W.P.; Li, M.-F.; Han, Q.-Q.; Khan, S.A.; Zhang, J.-L. Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass. Int. J. Mol. Sci. 2017, 18, 2651. [Google Scholar] [CrossRef]
- Li, Y.-S.; Gou, C.-L.; Du, J.-J.; Wang, X.-A. Interaction Between Water Retaining Agent and Phosphate Fertilizers and the Effect of Water and Fertilizer Conservation. Res. Soil Water Conserv. 2014, 21, 67–71. [Google Scholar]
- Zhai, Y.-M.; Wei, L.-P.; Yang, Q. Effects of regulatory measures on characters of greenhouse saline soil and tomato yield and quality. Jiangsu J. Agric. Sci. 2015, 31, 871–876. [Google Scholar]
- Liu, S.-J.; Feng, Y.-Z.; Zheng, G.-X. Application and Research Progress of Water Retaining Agent in Soil and Water Conservation. Henan Water Conserv. South-North Water Divers. 2016, 3, 22–23. [Google Scholar]
- Hou, X.-Q.; Li, R.; He, W.-S.; Dai, X.-H.; Ma, K.; Liang, Y. Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region. J. Soils Sediments 2018, 18, 816–826. [Google Scholar] [CrossRef]
- Xu, Y.-S.; Gao, Y.; Li, W.-B.; Chen, S.; Li, Y.-J.; Shi, Y. Effects of compound water retention agent on soil nutrients and soil microbial diversity of winter wheat in saline-alkali land. Chem. Biol. Technol. Agric. 2023, 10, 2. [Google Scholar] [CrossRef]
- Faroughi, S.; Huber, C. A theoretical hydrodynamic modification on the soil texture analyses obtained from the hydrometer test. Géotechnique 2016, 66, 378–385. [Google Scholar] [CrossRef]
- Wang, H.-B. Effects of Tillage Methods and Super Absorbent Polymers on Loessal Soil Characteristics, Winter Wheat Yield, Water and Nitrogen Use. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. [Google Scholar]
- Zheng, C.-H.; Kang, Y.-H.; Yao, S.-M.; Yan, C.-Z.; Sun, Z.-Q. Method of root analysis using GIS technology. Trans. Chin. Soc. Agric. Eng. 2004, 1, 181–183. [Google Scholar]
- Lin, K.-N.; Li, P.-C.; Wu, Q.-L.; Feng, S.-C.; Ma, J.; Yuan, D.-X. Automated determination of ammonium in natural waters with reverse flow injection analysis based on the indophenol blue method with o-phenylphenol. Microchem. J. 2018, 138, 519–525. [Google Scholar] [CrossRef]
- Bao, S.-D. Soil and Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 23–106. [Google Scholar]
- Kuczynski, J.; Lauber, C.; Walters, W.; Parfrey, L.; Clemente, J.; Gevers, D.; Knight, R. Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet. 2012, 13, 47–58. [Google Scholar]
- Peiffer, J.; Spor, A.; Koren, O.; Zhao, J.; Tringe, S.; Dangl, J.; Buckler, E.; Ley, R. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Haas, B.; Clemente, J.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Edgar, R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.; Subramanian, S.; Faith, J.; Gevers, D.; Gordon, J.; Knight, R.; Mills, D.; Caporaso, J. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 11–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.; Tiedje, J.; Cole, J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.; Westcott, S.; Ryabin, T.; Hall, J.; Hartmann, M.; Hollister, E.; Lesniewski, R.; Oakley, B.; Parks, D.; Robinson, C.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-H.; Zhang, Z.-W.; Li, D.-S.; Luo, Z.-M.; Xia, Y.-H.; Wang, S.-M.; Zhang, G.-Z.; Yu, H.-T.; Song, S.; Wang, T.-Q. Effects of Water Retaining Agent on Growth and Yield of Winter Wheat in Dryland. J. Anhui Agric. Sci. 2023, 51, 33–35. [Google Scholar]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S. The effect of deep tillage on crop yield–What do we really know. Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Hernandez-Espinoza, L.; Barrios-Masias, F. Physiological and anatomical changes in tomato roots in response to low water stress. Sci. Hortic. 2020, 265, 109208. [Google Scholar] [CrossRef]
- Pang, H.-Y. Effect of Application of Water Retaining Agent on Root Physiological Characteristics of Kernel Apricot Seedlings. Liaoning For. Sci. Technol. 2022, 4, 33–37. [Google Scholar]
- Zhang, J.-F.; Zhao, T.-N.; Sun, B.-P.; Song, S.-S.; Guo, H.-B.; Shen, H.-J.; Wu, Y. Effects of biofertilizers and super absorbent polymers on plant growth and soil fertility in the arid mining area of Inner Mongolia, China. J. Mt. Sci. 2018, 15, 1920–1935. [Google Scholar] [CrossRef]
- Yang, M.-M.; Wu, J.-H.; Graham, G.; Lin, J.-M.; Huang, M.-L. Hotspots, Frontiers, and Emerging Trends of Superabsorbent Polymer Research: A Comprehensive Review. Front. Chem. 2021, 9, 688127. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.-J.; Zhang, P.-P. Application of super absorbent polymer in the research of water-retaining and slow-release fertilizer. IOP Conf. Ser. Earth Environ. Sci. 2021, 651, 042066. [Google Scholar] [CrossRef]
- Wei, N.-N. Effects of Super Absorbent Polumer and Film Mulching on Soil Properties and the Growth of Tree in Young Apple Orchard. Master’s Thesis, Northwest A&F University, Xianyang, China, 2016. [Google Scholar]
- Zhou, J.-T.; Cheng, C.-G.; Yan, S.; Zhao, D.-Y. Effect of Composite Mulching Patterns on Mineral Element Contents of Leaves and Fruit Quality of Apple in Dryland. North. Hortic. 2020, 5, 46–50. [Google Scholar]
- Tian, L.; Liu, J.-H.; Zhao, B.-P.; Mi, J.-Z.; Li, Y.-H.; Wang, Y.-H.; Wang, Y.; Fei, N. Effects of Combination of Super Absorbent Polymer and Microbial Fertilizer on Soil Microbial Biomass Carbon, Nitrogen and Enzymes Activities of Oat Farmland in Dry Area. J. Soil Water Conserv. 2020, 3, 361–368. [Google Scholar]
- Li, G.-C.; Niu, W.-Q.; Sun, J.; Zhang, W.-Q.; Zhang, E.-X.; Wang, J. Soil moisture and nitrogen content influence wheat yield through their effects on the root system and soil bacterial diversity under drip irrigation. Land Degrad. Dev. 2021, 32, 3062–3076. [Google Scholar] [CrossRef]
- Martikainen, P.; Aarnio, T.; Taavitsainen, V.; Päivinen, L.; Salonen, K. Mineralization of carbon and nitrogen in soil samples taken from three fertilized pine stands: Long-term effects. Plant Soil 1989, 114, 99–106. [Google Scholar] [CrossRef]
- Wang, J.-K.; An, F.; Zhou, L.-J.; Peng, W.-T.; Cheng, L.-L.; Xie, G.-S. Effects of Super Absorbent Polymers Dosages on Soil Microorganism, Soil Enzyme Activities and Yield in Rubber Plantations. Southwest China J. Agric. Sci. 2023, 36, 1424–1431. [Google Scholar]
- Zavaleta, E.; Shaw, M.; Chiariello, N.; Thomas, B.; Cleland, E.; Field, C.; Mooney, H.A. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 2003, 73, 585–604. [Google Scholar] [CrossRef]
- Fierer, N.; Lauber, C.; Ramirez, K.; Zaneveld, J.; Bradford, M.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
Year | Treatment | Emergence Rate (%) | Maximum Tiller Number (104 hm−2) | Panicle (×104 hm−2) | 1000-Grain Weight (g) | Yield (kg·hm−2) |
---|---|---|---|---|---|---|
2016 | CK | 62.8 ± 2.3 c | 635.3 ± 52.7 c | 387.3 ± 22.1 c | 34.2 ± 1.3 c | 3390.7 ± 110.5 d |
U | 80.4 ± 2.9 ab | 1344.3 ± 83.5 a | 628.7 ± 35.2 b | 44.9 ± 1.6 a | 5790.4 ± 225.8 b | |
S | 76.1 ± 2.7 b | 1143.2 ± 71.7 b | 630.0 ± 32.6 b | 40.5 ± 2.2 b | 5107.5 ± 192.5 c | |
US | 83.3 ± 3.3 a | 1455.6 ± 62.8 a | 694.5 ± 26.1 a | 45.7 ± 2.1 a | 6619.2 ± 311.3 a | |
2017 | CK | 59.4 ± 3.6 c | 462.2 ± 41.7 d | 347.0 ± 20.3 c | 37.3 ± 1.8 b | 4683.9 ± 171.7 c |
U | 80.3 ± 3.4 ab | 1248.1 ± 71.5 b | 659.2 ± 22.6 ab | 44.1 ± 1.4 a | 7783.9 ± 251.3 a | |
S | 76.3 ± 2.2 b | 1023.4 ± 55.3 c | 638.7 ± 10.2 b | 41.5 ± 1.6 a | 7117.7 ± 156.8 b | |
US | 84.5 ± 2.8 a | 1425.3 ± 82.6 a | 673.1 ± 13.5 a | 45.0 ± 1.3 a | 8002.4 ± 336.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Huo, Q.; Wang, T.; Lv, G.; Li, W.; Ren, J.; Zhang, S.; Li, J. Effects of Combination of Water-Retaining Agent and Nitrogen Fertilizer on Soil Characteristics and Growth of Winter Wheat under Subsoiling Tillage in South Loess Plateau of China. Agronomy 2024, 14, 1287. https://doi.org/10.3390/agronomy14061287
Wang H, Huo Q, Wang T, Lv G, Li W, Ren J, Zhang S, Li J. Effects of Combination of Water-Retaining Agent and Nitrogen Fertilizer on Soil Characteristics and Growth of Winter Wheat under Subsoiling Tillage in South Loess Plateau of China. Agronomy. 2024; 14(6):1287. https://doi.org/10.3390/agronomy14061287
Chicago/Turabian StyleWang, Hanbo, Qiuyan Huo, Tieqiang Wang, Guohua Lv, Weidong Li, Jiameng Ren, Shuantang Zhang, and Jiusheng Li. 2024. "Effects of Combination of Water-Retaining Agent and Nitrogen Fertilizer on Soil Characteristics and Growth of Winter Wheat under Subsoiling Tillage in South Loess Plateau of China" Agronomy 14, no. 6: 1287. https://doi.org/10.3390/agronomy14061287
APA StyleWang, H., Huo, Q., Wang, T., Lv, G., Li, W., Ren, J., Zhang, S., & Li, J. (2024). Effects of Combination of Water-Retaining Agent and Nitrogen Fertilizer on Soil Characteristics and Growth of Winter Wheat under Subsoiling Tillage in South Loess Plateau of China. Agronomy, 14(6), 1287. https://doi.org/10.3390/agronomy14061287