Development in Agricultural Ecosystems’ Carbon Emissions Research: A Visual Analysis Using CiteSpace
Abstract
:1. Introduction
2. Research Methods and Literature Statistics
2.1. Research Methods
2.2. Statistics of the Literature
3. Results and Analysis
3.1. Annual Publication Statistics
3.2. Major Country Analysis
3.3. Cooperative Network of Scientific Research Institutions
4. Research Hotspots and Development Trends Regarding Carbon Emissions in Farmland Ecosystems
4.1. Keywords Cluster Analysis
4.2. Analysis of Research Hotspots and Progress
5. Research Conclusions and Prospects
5.1. Research Conclusions
- (1)
- The research level is single, the research scope and object are relatively limited, and there is a lack of comprehensive, extensive and diversified research. As the most critical agroecosystem, farmland has great potential for carbon sequestration and is the main source of food in the world. Although the current research on the carbon emissions of farmland ecosystems is large, the cooperation among countries and research institutions is not close enough, mainly limited to the domestic scope.
- (2)
- The evolution of scholarly literature on carbon emissions from farmland ecosystems can be categorized into three distinct phases: an incipient phase (1991–1996), a phase of elementary exploration (1997–2012), and stage of fast development (2013 to the present). Analyzing research themes over different periods, we observed that the focal area has shifted from initial investigations into carbon emissions from agricultural cropland ecosystems to the early exploration and study of managing greenhouse gas emissions, management of soil carbon stocks, and the role of the soil in carbon sequestration. In the most recent decade, this interest has progressively deepened into a comprehensive examination of the mechanisms of carbon emissions in farmlands, the factors that influence them, and strategies for reducing carbon, as well as an advanced understanding of carbon sources and sinks within the agricultural ecosystem.
- (3)
- Current research on carbon emissions from farmland ecosystems is centered around four main themes: greenhouse gas emissions from farmland ecosystems, the modeling of carbon emissions, carbon sequestration and the role of sinks, and the sustainable development of agricultural ecology. There has been a noticeable shift in the primary focus of research from developed to developing nations, accompanied by a refinement in the emphasis from general carbon emissions to the specific mechanisms and determinants influencing the soil carbon reservoir in farmlands.
- (4)
- Researchers are now concentrating on the impact of agricultural inputs on carbon emissions from farmland ecosystems. The aim is to understand the influence of these inputs on the dynamics of soil carbon. At the same time, greater attention should be paid to the research on impact mechanisms, utilization efficiency, reducing emissions, and enhancing foreign exchange.
5.2. Prospects
- (1)
- The current research has often used a single method, necessitating an expansion to a more comprehensive, inclusive, and diverse research agenda. Farmlands are not only a critical component of agricultural ecosystems with significant potential for carbon sequestration but are also the cornerstone of global food security. Although research on carbon emissions is extensive, there is a clear need for enhanced international collaboration. To fully understand the underlying dynamics, establishing a more integrated and collaborative global effort is crucial. Governments and international organizations should promote the establishment of cross-border research collaboration networks on farmland carbon emissions and low-carbon development.
- (2)
- A global research network focused on carbon emissions in agricultural landscapes is crucial for creating and disseminating broader assessment tools for carbon emissions. Researchers must keep abreast of the latest scientific developments and establish strong international partnerships to effectively identify key drivers of carbon emissions and develop mitigation strategies.
- (3)
- In order to ensure the applicability and relevance of research, researchers must consider a wide range of global environmental conditions and national contexts. Simultaneously, adjusting agricultural practices to maintain crop yields while minimizing carbon emissions is essential, balancing agricultural productivity with environmental sustainability. We need to encourage the adoption of precision agriculture and sustainable farming practices, such as crop rotation, organic farming, and improved soil management, to reduce the carbon footprint and enhance the ecosystem’s capabilities for carbon sequestration.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guan, Y.R.; Shan, Y.L.; Huang, Q.; Chen, H.L.; Wang, D.; Hubacek, K. Assessment to China’s Recent Emission Pattern Shifts. Earths Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202, 183–191. [Google Scholar] [CrossRef]
- Lal, R. Soils and the greenhouse effect. In Proceedings of the Symposium on Soil Carbon Sequestration and the Greenhouse Effect held at the 90th Annual Meeting of the Soil-Science-Society-of-America, Baltimore, MD, USA, 18–22 October 1998; pp. 1–8. [Google Scholar]
- O’Neill, B.C.; Oppenheimer, M.; Warren, R.; Hallegatte, S.; Kopp, R.E.; Pörtner, H.O.; Scholes, R.; Birkmann, J.; Foden, W.; Licker, R.; et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Chang. 2017, 7, 28–37. [Google Scholar] [CrossRef]
- Bradford, M.A.; Wieder, W.R.; Bonan, G.B.; Fierer, N.; Raymond, P.A.; Crowther, T.W. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 2016, 6, 751–758. [Google Scholar] [CrossRef]
- Nelson, D.N. Dangerous assumptions. Bull. At. Sci. 2000, 56, 24–27. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Raich, J.W.; Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, Y.; Zhang, X. A review of research advances on carbon sinks in farmland ecosystems. Acta Ecol. Sin. 2022, 42, 9405–9416. [Google Scholar]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J.; Liu, S.; Han, J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Jacobs, J.D. Climate Change 1995-Impacts, adaptations and mitigation of Climate Change: Scientific-technical analyses: Contribution of Working Group II to the second assessment report of the intergovernmental Panel on Climate Change. Can. Geogr.-Geogr. Can. 1998, 42, 105–106. [Google Scholar]
- Lu, F.; Wang, X.K.; Han, B.; Ouyang, Z.Y.; Duan, X.N.; Zheng, H.; Miao, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob. Chang. Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, H.; Miao, J.; Song, M.W.; Zeng, Y.Q. Greenhouse gas emission characteristics and source/sink analysis of farmland ecosystem in Hubei Province. J. Agric. Resour. Environ. 2021, 38, 839–848. [Google Scholar]
- Tan, M.Q.; Cui, Y.P.; Ma, X.Z.; Liu, P.; Fan, L.; Lu, Y.Y.; Wen, W.; Chen, Z. Study on Carbon Sink Estimation of Cropland Ecosystem in Henan Province. J. Ecol. Rural. Environ. 2022, 38, 1129–1137. [Google Scholar]
- Sun, X.; Zhang, H.; Yu, Y. Spatial and temporal dynamics in carbon source/sink and equity of the farmland ecosystem in jiangsu coastal area, china. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 56–64. [Google Scholar]
- Tian, Z.; Liu, R. Study on the Internatianal Variability of Carbon Sink and Oxygen Release Function of Farmland Ecosystem in Beijing. Ecol. Econ. 2016, 32, 68–71. [Google Scholar]
- Xu, P.; Zhao, Y.; Chen, H.; Duan, X.; Chen, F.; Wang, C. Dynamic Change of Carbon Source/Sink and Carbon Footprint of Farmland Ecosystem in Jiangsu Province. Bull. Soil Water Conserv. 2018, 38, 238–243. [Google Scholar]
- Wang, L.; Zhao, J.; Chen, S.Y. Analysis of ecosystem carbon sources/sinks and carbon footprint in farmland ecosystem of Shandong Province. J. China Agric. Univ. 2016, 21, 133–141. [Google Scholar]
- Zhang, J.; Fang, Y.; Wei, J.; Lin, J.; Chen, P.; Zhu, C. Carbon Footprint-based Temporal and Spatial Analysis on Carbon Sources/Sinks at Farmlands in Anhui Province. Fujian J. Agric. Sci. 2021, 36, 78–90. [Google Scholar]
- Wang, L.; Liu, Y.; Zhang, Y.; Dong, S. Spatial and temporal distribution of carbon source/sink and decomposition of influencing factors in farmland ecosystem in Henan Province. Acta Sci. Circumstantiae 2022, 42, 410–422. [Google Scholar]
- Lin, X.; Ge, Y. Temporal-spatial variation of carbon source-sink of farmland ecosystem in the Southwestern China. Jiangsu. J. Agric. Sci. 2016, 32, 1088–1093. [Google Scholar]
- Wang, L.; Zhao, J.; Qin, L.; Guo, N.; An, J.; Jiang, Y. Spatial-temporal Variation and lmpact Factors of Carbon Source and Sink of Farmland Ecosystem in Linyi. J. Soil Water Conserv. 2015, 29, 183–187+237. [Google Scholar]
- Tang, H.; Li, C.; Xiao, X.; Pan, X.; Cheng, K.; Dong, C.; Shi, L.; Lou, Z. Influences of Different Tillage on Net Carbon Sink and Economic Benefit of Paddy Ecosystem under Double-cropping Rice Field. Ecol. Environ. 2020, 29, 215–222. [Google Scholar]
- Liu, J.J.; Zhang, A.F.; Feng, H.; Zou, X.Y.; Chen, H.X. Influences of different irrigation amounts on carbon sequestration in wheat-maize rotation system. J. Appl. Ecol. 2017, 28, 169–179. [Google Scholar]
- Chen, C.; Chen, Y.; Hou, J.; Liang, Y. CiteSpace I: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. China Soc. Sci. Technol. Inf. 2009, 28, 401–421. [Google Scholar] [CrossRef]
- Singh, J.S.; Gupta, S.R. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev. 1977, 43, 499–528. [Google Scholar] [CrossRef]
- Bouwman, A.F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In Proceedings of the International Conf on Soils and the Greenhouse Effect, Wageningen, The Netherlands, 14–18 August 1989; pp. 61–127. [Google Scholar]
- Kowalchuk, G.A.; Stephen, J.R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 2001, 55, 485–529. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Kumar, S.; Jones, M.; Burke, J.; Williams, M. Testing DNDC model for simulating soil respiration and assessing the effects of climate change on the CO2 gas flux from Irish agriculture. Glob. Planet. Chang. 2011, 78, 106–115. [Google Scholar] [CrossRef]
- Hutchinson, J.J.; Grant, B.B.; Smith, W.N.; Desjardins, R.L.; Campbell, C.A.; Worth, D.E.; Vergé, X.R. Estimates of direct nitrous oxide emissions from Canadian agroecosystems and their uncertainties. Can. J. Soil Sci. 2007, 87, 141–152. [Google Scholar] [CrossRef]
- Li, C.S.; Zhuang, Y.H.; Cao, M.Q.; Crill, P.; Dai, Z.H.; Frolking, S.; Moore, B., III; Salas, W.; Song, W.Z.; Wang, X.K. Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutr. Cycl. Agroecosyst. 2001, 60, 159–175. [Google Scholar] [CrossRef]
- Li, C.S. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl. Agroecosyst. 2000, 58, 259–276. [Google Scholar] [CrossRef]
- van Amstel, A.R.; Kroeze, C.; van Aardenne, J.; Mosier, A.R. Good practice in greenhouse gas emission inventories Agricultural emissions of methane and nitrous oxide. In Proceedings of the 2nd International Symposium on Non-CO2 Greenhouse Gases-Scientific Understanding, Control and Implementation, Noordwijkerhout, The Netherlands, 8–10 September 1999; pp. 507–514. [Google Scholar]
- Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Worth, D.; Li, C.; Boles, S.H.; Huffman, E.C. A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agric. Ecosyst. Environ. 2010, 136, 301–309. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, X.F.; Zhang, Y.H.; Tian, J.; Gao, Y.; Ostle, A.J.; Niu, S.L.; Chen, S.P.; Sun, X.M.; He, N.P. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Sci. Total Environ. 2018, 635, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, D.S.; Adams, D.E.; Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 1991, 351, 304–306. [Google Scholar] [CrossRef]
- Smith, P.; Powlson, D.S.; Smith, J.U.; Falloon, P.; Coleman, K. Meeting the UK’s climate change commitments: Options for carbon mitigation on agricultural land. Soil Use Manag. 2000, 16, 1–11. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, L.P.; Wang, W.Y.; Liu, Q. Organic carbon losses by eroded sediments from sloping vegetable fields in South China. J. Mt. Sci. 2017, 14, 539–548. [Google Scholar] [CrossRef]
- Jia, B.; Jia, L.; Mou, X.M.; Chen, J.; Li, F.C.; Ma, Q.J.; Li, X.G. Shrubification decreases soil organic carbon mineralization and its temperature sensitivity in alpine meadow soils. Soil Biol. Biochem. 2022, 168, 108651. [Google Scholar] [CrossRef]
- Littke, K.M.; Harrington, T.B.; Slesak, R.A.; Holub, S.M.; Hatten, J.A.; Gallo, A.C.; Littke, W.R.; Harrison, R.B.; Turnblom, E.C. Impacts of organic matter removal and vegetation control on nutrition and growth of Douglas-fir at three Pacific Northwestern Long-Term Soil Productivity sites. For. Ecol. Manag. 2020, 468, 118176. [Google Scholar] [CrossRef]
- Yamada, N.; Katoh, M. Feature of lead complexed with dissolved organic matter on lead immobilization by hydroxyapatite in aqueous solutions and soils. Chemosphere 2020, 249, 126122. [Google Scholar] [CrossRef]
- Mehmood, I.; Qiao, L.; Chen, H.Q.; Tang, Q.Y.; Woolf, D.; Fan, M.S. Biochar addition leads to more soil organic carbon sequestration under a maize-rice cropping system than continuous flooded rice. Agric. Ecosyst. Environ. 2020, 298, 106965. [Google Scholar] [CrossRef]
- Di, S.; Zong, M.M.; Li, S.Y.; Li, H.X.; Duan, C.Q.; Peng, C.H.; Zhao, Y.G.; Bai, J.Y.; Lin, C.; Feng, Y.; et al. The effects of the soil environment on soil organic carbon in tea plantations in Xishuangbanna, southwestern China. Agric. Ecosyst. Environ. 2020, 297, 106951. [Google Scholar] [CrossRef]
- Yan, S.; Niu, Z.Y.; Yan, H.T.; Zhang, A.G.; Liu, G.S. Influence of Soil Organic Carbon on the Aroma of Tobacco Leaves and the Structure of Microbial Communities. Curr. Microbiol. 2020, 77, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [PubMed]
- Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy 2009, 34, 313–322. [Google Scholar] [CrossRef]
- Keairns, D.L.; Darton, R.C.; Irabien, A. The Energy-Water-Food Nexus. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 239–262. [Google Scholar] [CrossRef]
- Pastor, A.V.; Palazzo, A.; Havlik, P.; Biemans, H.; Wada, Y.; Obersteiner, M.; Kabat, P.; Ludwig, F. The global nexus of food-trade-water sustaining environmental flows by 2050. Nat. Sustain. 2019, 2, 499–507. [Google Scholar] [CrossRef]
- Liu, J.G.; Hull, V.; Godfray, H.C.J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.C.; Chung, M.G.; Sun, J.; et al. Nexus approaches to global sustainable development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar] [CrossRef]
- Duan, W.L.; Chen, Y.N.; Zou, S.; Nover, D. Managing the water-climate- food nexus for sustainable development in Turkmenistan. J. Clean. Prod. 2019, 220, 212–224. [Google Scholar] [CrossRef]
- Williams, P.A.; Crespo, O.; Abu, M.; Simpson, N.P. A systematic review of how vulnerability of smallholder agricultural systems to changing climate is assessed in Africa. Environ. Res. Lett. 2018, 13, 103004. [Google Scholar] [CrossRef]
- Sieber, S.; Jha, S.; Tharayil Shereef, A.B.; Bringe, F.; Crewett, W.; Uckert, G.; Polreich, S.; Ndah, T.; Graef, F.; Mueller, K. Integrated assessment of sustainable agricultural practices to enhance climate resilience in Morogoro, Tanzania. Reg. Environ. Chang. 2015, 15, 1281–1292. [Google Scholar] [CrossRef]
- Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaij, A.; et al. Bioenergy and climate change mitigation: An assessment. Glob. Chang. Biol. Bioenergy 2015, 7, 916–944. [Google Scholar] [CrossRef]
- Heck, V.; Hoff, H.; Wirsenius, S.; Meyer, C.; Kreft, H. Land use options for staying within the Planetary Boundaries-Synergies and trade-offs between global and local sustainability goals. Glob. Environ. Chang.-Hum. Policy Dimens. 2018, 49, 73–84. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H. Making the Paris agreement climate targets consistent with food security objectives. Glob. Food Secur.-Agric. Policy Econ. Environ. 2019, 23, 93–103. [Google Scholar] [CrossRef]
- Huang, F.; Kang, M.; Zhang, X. The Economic Compensation Strategy in the Process of Turning Cultivated Land Back Into Forests and Grasslands (TCFG). Acta Ecol. Sin. 2002, 22, 471–478. [Google Scholar]
- van der Gon, H.; Kropff, M.J.; van Breemen, N.; Wassmann, R.; Lantin, R.S.; Aduna, E.; Corton, T.M.; van Laar, H.H. Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc. Natl. Acad. Sci. USA 2002, 99, 12021–12024. [Google Scholar] [CrossRef]
- Ramlow, M.; Foster, E.J.; Del Grosso, S.J.; Cotrufo, M.F. Broadcast woody biochar provides limited benefits to deficit irrigation maize in Colorado. Agric. Ecosyst. Environ. 2019, 269, 71–81. [Google Scholar] [CrossRef]
- Renner, R. Rethinking biochar. Environ. Sci. Technol. 2007, 41, 5932–5933. [Google Scholar] [CrossRef]
- Zhang, L.H.; Chen, Y.N.; Zhao, R.F.; Li, W.H. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China. J. Arid. Environ. 2010, 74, 1200–1211. [Google Scholar] [CrossRef]
- De Tender, C.A.; Debode, J.; Vandecasteele, B.; D’Hose, T.; Cremelie, P.; Haegeman, A.; Ruttink, T.; Dawyndt, P.; Maes, M. Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl. Soil Ecol. 2016, 107, 1–12. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.W.; Wang, S.Q.; Xing, G.X. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant Soil 2014, 378, 279–294. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology-: II.: The application to N fertilizer use in winter wheat production systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Walling, E.; Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Luo, Y.Q.; Li, J.W.; Zhou, X.H.; Cao, J.J.; Wang, R.W.; Wang, Y.Q.; Shelton, S.; Jin, Z.; Walker, L.M.; et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Glob. Chang. Biol. 2017, 23, 1328–1337. [Google Scholar] [CrossRef]
- Onyango, C.M.; Nyaga, J.M.; Wetterlind, J.; Söderström, M.; Piikki, K. Precision Agriculture for Resource Use Efficiency in Smallholder Farming Systems in Sub-Saharan Africa: A Systematic Review. Sustainability 2021, 13, 1158. [Google Scholar] [CrossRef]
Ranking | Country/Region | Number of Documents/Articles | Intermediary Centrality |
---|---|---|---|
1 | USA | 814 | 0.23 |
2 | People’s R. China | 805 | 0.08 |
3 | Germany | 306 | 0.13 |
4 | England | 219 | 0.09 |
5 | Australia | 180 | 0.08 |
6 | Canada | 161 | 0.02 |
7 | France | 146 | 0.13 |
8 | Netherlands | 140 | 0.07 |
9 | Italy | 137 | 0.05 |
10 | Spain | 102 | 0.02 |
Ranking | Institution | Number of Documents/Articles | Intermediary Centrality |
---|---|---|---|
1 | Chinese Acad Sci | 277 | 0.22 |
2 | Univ Chinese Acad Sci | 95 | 0.02 |
3 | Northwest A&F Univ | 72 | 0.01 |
4 | Colorado State Univ | 65 | 0.11 |
5 | China Agr Univ | 59 | 0.04 |
6 | U.S. Department of Agriculture—ARS | 42 | 0.04 |
7 | Aarhus Univ | 35 | 0.04 |
8 | Univ Calif Berkeley | 34 | 0.05 |
9 | Michigan State Univ | 33 | 0.03 |
10 | Ohio State Univ | 33 | 0.04 |
11 | Univ New Hampshire | 32 | 0.05 |
12 | Chinese Acad Agr Sci | 31 | 0.01 |
13 | Agr & Agri Food Canada | 30 | 0.03 |
14 | Univ Maryland | 30 | 0.03 |
15 | Nanjing Agr Univ | 28 | 0.04 |
Cluster Number | Cluster Name | Cluster Size | Silhouette | Mean Year | Cluster Label |
---|---|---|---|---|---|
#0 | Carbon dioxide | 49 | 0.874 | 2007 | Carbon dioxide; N2O emission; nitrous oxide; methane oxidation; greenhouse gas emissions |
#1 | Soil carbon | 47 | 0.855 | 2007 | Soil carbon; carbon balance; elevated CO2; face; carbon dioxide removal |
#2 | Eddy covariance | 45 | 0.755 | 2010 | Eddy covariance; ecosystem respiration; carbon dioxide exchange; winter wheat; land-use change |
#3 | Ecosystem services | 43 | 0.927 | 2013 | Ecosystem services; food security; dissolved organic matter; ecosystem service; sustainable agriculture |
#4 | Nitrous oxide | 42 | 0.949 | 2002 | Nitrous oxide; emission; climate; greenhouse gas; denitrification |
#5 | Soil temperature | 42 | 0.824 | 2008 | Soil temperature; soil moisture; net ecosystem carbon budget; sensitivity analysis; system |
#6 | Climate change | 40 | 0.956 | 2000 | Climate change; carbon sequestration; greenhouse gas emissions; eddy covariance; denitrification |
#7 | Soil organic carbon | 40 | 0.88 | 2014 | Soil organic carbon; carbon footprint; stock; bioenergy; carbon dioxide |
#8 | Life cycle assessment | 39 | 0.885 | 2012 | Life cycle assessment; climate change mitigation; environmental impact; environmental impacts; sustainability |
#9 | Greenhouse gases | 37 | 0.809 | 2010 | Greenhouse gases; water; land; sustainable agriculture; agricultural soils |
#10 | Land use change | 37 | 0.97 | 2004 | Land use change; forest; model; terrestrial ecosystem; sink |
#11 | Nitrous oxide emission | 36 | 0.962 | 2001 | Nitrous oxide emission; rice paddy; soil; rice-wheat rotation; methane emission |
#12 | Management | 34 | 0.893 | 2005 | Management; inventory;CO2 emissions; atmospheric ammonia; cropping system |
#13 | Soil organic matter | 32 | 0.866 | 2004 | Soil organic matter; microbial biomass; respiration; soil respiration; microbial biomas |
#14 | Environmental damage | 28 | 0.859 | 2016 | Environmental damage; nitrogen fertilization; water balance; recipe2016; paddy field |
#15 | Carbon storage | 28 | 0.867 | 2012 | Carbon storage; invest model; plus model; carbon cycle; carbon emissions |
#16 | Nitrous oxide | 27 | 0.807 | 2018 | Nitrous oxide; microbial community; carbon stock; legumes; microbial communities |
#17 | North Wyke farm platform | 17 | 0.907 | 2006 | North wyke farm platform; nitrate; ecosystem function; nitrogen fertilizer; oxide emission |
#18 | ARDL | 9 | 0.995 | 2020 | ARDL; ecological footprint; environmental degradation; economic growth; environmental kuznets curve |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Miao, H.; Liu, T. Development in Agricultural Ecosystems’ Carbon Emissions Research: A Visual Analysis Using CiteSpace. Agronomy 2024, 14, 1288. https://doi.org/10.3390/agronomy14061288
Wu L, Miao H, Liu T. Development in Agricultural Ecosystems’ Carbon Emissions Research: A Visual Analysis Using CiteSpace. Agronomy. 2024; 14(6):1288. https://doi.org/10.3390/agronomy14061288
Chicago/Turabian StyleWu, Linjing, Haiying Miao, and Taoze Liu. 2024. "Development in Agricultural Ecosystems’ Carbon Emissions Research: A Visual Analysis Using CiteSpace" Agronomy 14, no. 6: 1288. https://doi.org/10.3390/agronomy14061288
APA StyleWu, L., Miao, H., & Liu, T. (2024). Development in Agricultural Ecosystems’ Carbon Emissions Research: A Visual Analysis Using CiteSpace. Agronomy, 14(6), 1288. https://doi.org/10.3390/agronomy14061288