The Impact of Different Phosphorus Fertilizers Varieties on Yield under Wheat–Maize Rotation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection and Determination
2.3. Data Calculation and Analysis
3. Results
3.1. Crop Yields and Biomass Accumulation
3.2. Grain Yield Components
3.3. Plant N and P Uptake in Wheat and Maize
3.4. Phosphorus and Nitrogen Efficiency
3.5. Soil Olsen-P and TP
3.6. Relationships among Soil Properties, Plant Accumulation P Uptake (PPU), Plant Accumulation N Uptake (PNU), Growth Indicators, and Yield Components
3.7. Principal Component Analysis
4. Discussion
4.1. Effects of Different P Fertilizer Varieties on Crop Growth and Yield
4.2. Long-Term Effects of Total P and Olsen-P on Soil
4.3. Mechanism of Different P Fertilizers on Increasing Crop Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring Phosphorus Fertilizers and Fertilization Strategies for Improved Human and Environmental Health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef]
- Van Kauwenbergh, S.J. World Phosphate Rock Reserves and Resources; IFDC: Muscle Shoals, AL, USA, 2010. [Google Scholar]
- Elser, J.; Bennett, E. A Broken Biogeochemical Cycle. Nature 2011, 478, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Van Kauwenbergh, S.; Stewart, M.; Mikkelsen, R. World Reserves of Phosphate Rock… A Dynamic and Unfolding Story; bettercrops 2013. Available online: http://www.ipni.net/publication/bettercrops.nsf/0/C3AB0523A890EBC685257BD50055E09A/$FILE/BC3%202013%20-%20p18.pdf (accessed on 30 May 2024).
- Chien, S.H.; Prochnow, L.I.; Tu, S.; Snyder, C.S. Agronomic and Environmental Aspects of Phosphate Fertilizers Varying in Source and Solubility: An Update Review. Nutr. Cycl. Agroecosyst. 2011, 89, 229–255. [Google Scholar] [CrossRef]
- Qiao, Y.; Martin, F.; Cook, S.; He, X.; Halberg, N.; Scott, S.; Pan, X. Certified Organic Agriculture as an Alternative Livelihood Strategy for Small-Scale Farmers in China: A Case Study in Wanzai County, Jiangxi Province. Ecol. Econ. 2018, 145, 301–307. [Google Scholar] [CrossRef]
- Shams, S.; Newaz, S.H.S.; Karri, R.R. Information and Communication Technology for Small-Scale Farmers: Challenges and Opportunities. In Smart Village Technology; Patnaik, S., Sen, S., Mahmoud, M.S., Eds.; Modeling and Optimization in Science and Technologies; Springer International Publishing: Cham, Germany, 2020; Volume 17, pp. 159–179. ISBN 978-3-030-37793-9. [Google Scholar]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy Distortions, Farm Size, and the Overuse of Agricultural Chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Lu, G.; Ayaz, M.; Zhang, H.; Wang, R.; Lv, F.; Yang, X.; Sun, B.; Zhang, S. Phosphorus Efficiency, Soil Phosphorus Dynamics and Critical Phosphorus Level under Long-Term Fertilization for Single and Double Cropping Systems. Agric. Ecosyst. Environ. 2018, 256, 1–11. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H. More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture; FAO: Rome, Italy; International Water Management: Colombo, Sri Lanka, 2018. [Google Scholar]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers, Volume 2; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Germany, 2021; pp. 1–20. ISBN 978-3-030-61009-8. [Google Scholar]
- Shepherd, J.G.; Kleemann, R.; Bahri-Esfahani, J.; Hudek, L.; Suriyagoda, L.; Vandamme, E.; Van Dijk, K.C. The Future of Phosphorus in Our Hands. Nutr. Cycl. Agroecosyst. 2016, 104, 281–287. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Chang. Hum. Policy Dimens. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Bakhshandeh, S.; Corneo, P.E.; Mariotte, P.; Kertesz, M.A.; Dijkstra, F.A. Effect of Crop Rotation on Mycorrhizal Colonization and Wheat Yield under Different Fertilizer Treatments. Agric. Ecosyst. Environ. 2017, 247, 130–136. [Google Scholar] [CrossRef]
- Gallet, A.; Flisch, R.; Ryser, J.; Frossard, E.; Sinaj, S. Effect of Phosphate Fertilization on Crop Yield and Soil Phosphorus Status. Z. Pflanzenernähr. Bodenk. 2003, 166, 568–578. [Google Scholar] [CrossRef]
- Sucunza, F.A.; Gutierrez Boem, F.H.; Garcia, F.O.; Boxler, M.; Rubio, G. Long-Term Phosphorus Fertilization of Wheat, Soybean and Maize on Mollisols: Soil Test Trends, Critical Levels and Balances. Eur. J. Agron. 2018, 96, 87–95. [Google Scholar] [CrossRef]
- Bornø, M.L.; Eduah, J.O.; Müller-Stöver, D.S.; Liu, F. Effect of Different Biochars on Phosphorus (P) Dynamics in the Rhizosphere of Zea Mays L. (Maize). Plant Soil. 2018, 431, 257–272. [Google Scholar] [CrossRef]
- Fei, C.; Zhang, S.; Wei, W.; Liang, B.; Li, J.; Ding, X. Straw and Optimized Nitrogen Fertilizer Decreases Phosphorus Leaching Risks in a Long-Term Greenhouse Soil. J. Soils Sediments 2020, 20, 1199–1207. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, B.; Wu, S.; Feng, H.; Gao, M.; Zhang, B.; Liu, Y. After-Effects of Straw and Straw-Derived Biochar Application on Crop Growth, Yield, and Soil Properties in Wheat (Triticum Aestivum L.) -Maize (Zea Mays L.) Rotations: A Four-Year Field Experiment. Sci. Total Environ. 2021, 780, 146560. [Google Scholar] [CrossRef] [PubMed]
- Izhar Shafi, M.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafar-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum Aestivum L.) in Calcareous Soil. Agronomy 2020, 10, 1224. [Google Scholar] [CrossRef]
- Purwanto, B.H.; Wulandari, P.; Sulistyaningsih, E.; Utami, S.N.H.; Handayani, S. Improved Corn Yields When Humic Acid Extracted from Composted Manure Is Applied to Acid Soils with Phosphorus Fertilizer. Appl. Environ. Soil. Sci. 2021, 2021, 8838420. [Google Scholar] [CrossRef]
- Bi, Q.-F.; Li, K.-J.; Zheng, B.-X.; Liu, X.-P.; Li, H.-Z.; Jin, B.-J.; Ding, K.; Yang, X.-R.; Lin, X.-Y.; Zhu, Y.-G. Partial Replacement of Inorganic Phosphorus (P) by Organic Manure Reshapes Phosphate Mobilizing Bacterial Community and Promotes P Bioavailability in a Paddy Soil. Sci. Total Environ. 2020, 703, 134977. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, Phosphorus Use Efficiency and Balance Response to Substituting Long-Term Chemical Fertilizer Use with Organic Manure in a Wheat-Maize System. Field Crops Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Conijn, J.G.; Bindraban, P.S.; Schröder, J.J.; Jongschaap, R.E.E. Can Our Global Food System Meet Food Demand within Planetary Boundaries? Agric. Ecosyst. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Barrow, N.J. The Effects of pH on Phosphate Uptake from the Soil. Plant Soil. 2017, 410, 401–410. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Zhang, A.; Chen, J.; Cheng, G.; Sun, B.; Pi, X.; Dyck, M.; Si, B.; Zhao, Y.; et al. Effects of Straw and Plastic Film Mulching on Greenhouse Gas Emissions in Loess Plateau, China: A Field Study of 2 Consecutive Wheat-Maize Rotation Cycles. Sci. Total Environ. 2017, 579, 814–824. [Google Scholar] [CrossRef]
- Ding, D.; Feng, H.; Zhao, Y.; Hill, R.L.; Yan, H.; Chen, H.; Hou, H.; Chu, X.; Liu, J.; Wang, N.; et al. Effects of Continuous Plastic Mulching on Crop Growth in a Winter Wheat-Summer Maize Rotation System on the Loess Plateau of China. Agric. For. Meteorol. 2019, 271, 385–397. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in Soil Enzymes, Soil Properties, and Maize Crop Productivity under Wheat Straw Mulching in Guanzhong, China. Soil. Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Kirk, P.L. Kjeldahl Method for Total Nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Li, Y. Analytical Methods of Soil and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1983. [Google Scholar]
- Chikowo, R.; Corbeels, M.; Mapfumo, P.; Tittonell, P.; Vanlauwe, B.; Giller, K.E. Nitrogen and Phosphorus Capture and Recovery Efficiencies, and Crop Responses to a Range of Soil Fertility Management Strategies in Sub-Saharan Africa. In Innovations as Key to the Green Revolution in Africa; Bationo, A., Waswa, B., Okeyo, J.M., Maina, F., Kihara, J.M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 571–589. ISBN 978-90-481-2541-8. [Google Scholar]
- Yan, X.; Chen, X.; Ma, C.; Cai, Y.; Cui, Z.; Chen, X.; Wu, L.; Zhang, F. What Are the Key Factors Affecting Maize Yield Response to and Agronomic Efficiency of Phosphorus Fertilizer in China? Field Crops Res. 2021, 270, 108221. [Google Scholar] [CrossRef]
- Zhu, X.; Li, C.; Jiang, Z.; Huang, L.; Feng, C.; Guo, W.; Peng, Y. Responses of Phosphorus Use Efficiency, Grain Yield, and Quality to Phosphorus Application Amount of Weak-Gluten Wheat. J. Integr. Agric. 2012, 11, 1103–1110. [Google Scholar] [CrossRef]
- Morris, C. Multivariate Analysis of Ecological Data Using Canoco 5, 2nd Edition. Afr. J. Range Forage Sci. 2015, 32, 289–290. [Google Scholar] [CrossRef]
- Bedada, W.; Karltun, E.; Lemenih, M.; Tolera, M. Long-Term Addition of Compost and NP Fertilizer Increases Crop Yield and Improves Soil Quality in Experiments on Smallholder Farms. Agric. Ecosyst. Environ. 2014, 195, 193–201. [Google Scholar] [CrossRef]
- Stout, W.; Belesky, D.; Jung, G.; Adams, R.; Moser, B. A Survey of Pennsylvania Forage Mineral Levels with Respect to Dairy and Beef Cow Nutrition; Pennsylvania State University: College Park, MD, USA, 1977. [Google Scholar]
- Amanullah; Khattak, R.A.; Khalil, S.K. Plant Density and Nitrogen Effects on Maize Phenology and Grain Yield. J. Plant Nutr. 2009, 32, 246–260. [Google Scholar] [CrossRef]
- Johnston, A.M.; Bruulsema, T.W. 4R Nutrient Stewardship for Improved Nutrient Use Efficiency. Procedia Eng. 2014, 83, 365–370. [Google Scholar] [CrossRef]
- Zhou, L.; Su, L.; Zhang, L.; Zhang, L.; Zheng, Y.; Tang, L. Effect of Different Types of Phosphate Fertilizer on Phosphorus Absorption and Desorption in Acidic Red Soil of Southwest China. Sustainability 2022, 14, 9973. [Google Scholar] [CrossRef]
- Yuan, T.; Chen, S.; Zhang, Y.; Ji, L.; Dari, B.; Sihi, D.; Xu, D.; Zhang, Z.; Yan, Z.; Wang, X. Mechanism of Increased Soil Phosphorus Availability in a Calcareous Soil by Ammonium Polyphosphate. Biol. Fertil. Soils 2022, 58, 649–665. [Google Scholar] [CrossRef]
- Azeez, M.O.; Rubaek, G.H.; Pedersen, I.F.; Christensen, B.T. Depletion, Accumulation and Availability of Soil Phosphorus in the Askov Long-Term Field Experiment. Soil. Res. 2020, 58, 117–124. [Google Scholar] [CrossRef]
- Lu, W.; Hao, Z.; Ma, X.; Gao, J.; Fan, X.; Guo, J.; Li, J.; Lin, M.; Zhou, Y. Effects of Different Proportions of Organic Fertilizer Replacing Chemical Fertilizer on Soil Nutrients and Fertilizer Utilization in Gray Desert Soil. Agronomy 2024, 14, 228. [Google Scholar] [CrossRef]
pH (Soil:Water 1:2.5) | Organic Carbon (OC) (g·kg−1) | Total Nitrogen (TN) (g·kg−1) | Total Phosphorus (TP) (g·kg−1) | CaCO3 (g·kg−1) | Available Phosphorous (AP) (mg·kg−1) | Available Potassium (AK) (mg·kg−1) | The Percentage of Sand % | The Percentage of Silt % | The Percentage of Clay % |
---|---|---|---|---|---|---|---|---|---|
8.21 | 10.5 | 0.92 | 0.84 | 59.7 | 20.7 | 148.6 | 2.9 | 71.42 | 25.68 |
P Fertilizers | Acid-Base Properties | Solubility | P2O5 (%) | P Fertilizer (kg ha−1)-Wheat Season | P Fertilizer (kg ha−1)-Maize Season |
---|---|---|---|---|---|
SSP | Alkaline | Water-soluble | 45 | 255.56 | 200 |
AP | Alkaline | Water-soluble | 60.5 | 190.08 | 148.76 |
DAP | Acidic | Water-soluble | 53.8 | 213.75 | 167.26 |
Poly P | neutral | Water-soluble | 58 | 198.27 | 155.17 |
Ca-Mg P | Alkaline | Weakly acid soluble | 18 | 638.89 | 500 |
Wheat Grain Yield (kg ha−1) | |||||||
---|---|---|---|---|---|---|---|
Treatment | CK | Zero P | Poly P | MAP | Ca-Mg P | SSP | DAP |
2017–2018 | 5537 d 1 | 6249 c | 7995 a | 7913 a | 6933 b | 7811 a | 6967 b |
2018–2019 | 5081 e | 5956 d | 8029 ab | 8164 a | 7079 c | 7840 b | 7111 c |
2019–2020 | 4840 d | 5745 c | 8067 a | 8017 a | 7189 b | 7898 a | 7135 b |
2020–2021 | 4296 e | 5415 d | 8158 a | 8097 ab | 7110 c | 7901 b | 7118 c |
Mean yield (kg·ha−1) | 4939 | 5841 | 8062 | 8048 | 7078 | 7863 | 7083 |
Change to CK (%) | 0 | 18.3 | 63.2 | 62.9 | 43.3 | 59.2 | 43.4 |
Change to Zero P (%) | −18.3 | 0 | 38 | 37.8 | 21.2 | 34.6 | 21.2 |
Maize Grain Yield (kg ha−1) | |||||||
Treatment | CK | Zero P | Poly P | MAP | Ca-Mg P | SSP | DAP |
2018 | 5045 e | 5840 d | 6295 b | 6382 ab | 6052 c | 6458 a | 6088 c |
2019 | 4825 d | 5678 c | 6311 a | 6368 a | 6081 b | 6230 a | 5998 b |
2020 | 4665 d | 5482 c | 6459 a | 6398 a | 6005 b | 6277 ab | 6040 b |
2021 | 4431 e | 5028 d | 6548 a | 6432 a | 6071 c | 6269 b | 6099 c |
Mean yield (kg·ha−1) | 4742 | 5507 | 6403 | 6395 | 6052 | 6309 | 6056 |
Change to CK (%) | 0 | 16.1 | 35 | 34.9 | 27.6 | 33 | 27.7 |
Change to Zero P (%) | −16.1 | 0 | 16.3 | 16.1 | 9.9 | 14.6 | 10 |
Year | CK | Zore P | Poly P | MAP | MDP | SSP | Ca-Mg P | ||
---|---|---|---|---|---|---|---|---|---|
wheat | aboveground biomass (kg ha−1) | 2017–2018 | 11,237.00 Ae | 14,474.00 Ad | 16,598.33 Aab | 16,346.00 Ac | 16,201.00 Ac | 16,372.00 Abc | 16,064.33 Ac |
2018–2019 | 10,192.67 Ac | 13,974.00 Ab | 16,553.33 Aa | 16,517.33 Aa | 16,236.00 Aa | 16,382.67 Aa | 16,153.33 Aab | ||
2019–2020 | 9936.33 Bd | 13,293.33 Bc | 16,829.33 Aa | 16,870.33 Aa | 16,356.00 Ab | 16,397.33 Ab | 16,273.00 Ab | ||
2020–2021 | 9714.67 Ce | 11,654.33 Cd | 17,109.00 Aa | 16,926.67 Ab | 16,372.00 Ac | 16,448.00 Ac | 16,273.33 AAc | ||
grains per spike | 2017–2018 | 21.67 Ac | 26.33 Ab | 33.33 Aa | 34.33 Aa | 35.33 Aa | 37.00 Aa | 33.33 Aa | |
2018–2019 | 20.33 Ae | 25.00 Ad | 33.67 Ac | 37.33 Aa | 36.67 Aab | 37.00 Aa | 35.00 Abc | ||
2019–2020 | 18.33 Bc | 23.67 Bb | 38.00 Aa | 38.33 Aa | 37.33 Aa | 37.67 Aa | 36.00 Aa | ||
2020–2021 | 17.67 Bd | 22.67 Bc | 40.00 Aa | 38.67 Ab | 38.00 Ab | 38.67 Ab | 37.00 Ab | ||
1000-grain weight (g) | 2017–2018 | 22.00 Ae | 26.00 Ad | 38.00 Ca | 37.67 Ba | 35.33 Ab | 38.67 Aa | 32.67 Cc | |
2018–2019 | 20.33 Ad | 23.67 Ac | 37.67 Cb | 36.00 Bb | 35.33 Ab | 39.33 Aa | 35.67 BCb | ||
2019–2020 | 18.33 Bd | 22.00 Bc | 41.00 Ba | 39.67 Ab | 38.00 Ab | 38.67 Ab | 37.00 Bb | ||
2020–2021 | 18.67 Be | 19.67 Cd | 43.00 Aa | 40.33 Ab | 39.67 Abc | 39.33 Abc | 38.67 Ac | ||
maize | aboveground biomass (kg ha−1) | 2018 | 7110.00 Ae | 9024.33 Ad | 14,645.00 Ac | 150,00.00 Ab | 16,416.33 Aa | 15,314.67 Ab | 14,536.00 Bc |
2019 | 6933.67 Ae | 8902.00 Bd | 15,132.33 Abc | 154,91.33 Ab | 16,157.00 Aa | 14,883.33 Bc | 15,039.00 Abc | ||
2020 | 6560.67 Ad | 8616.33 Bc | 16,104.00 Aa | 156,13.33 Ab | 15,369.67 Ab | 15,225.67 Ab | 15,345.67 Ab | ||
2021 | 6281.33 Ad | 8077.00 Cc | 16,283.67 Aa | 161,53.00 Aa | 15,356.33 Ab | 15,254.33 Ab | 15,239.00 Ab | ||
grains per spike | 2018 | 403.00 Ab | 466.33 Aa | 475.33 Aa | 449.00 Aa | 446.33 Aa | 471.33 Aa | 451.67 Aa | |
2019 | 402.33 Ad | 450.33 Ac | 486.00 Aa | 468.33 Ab | 454.00 Ac | 460.67 Ab | 461.33 Ab | ||
2020 | 397.33 Be | 442.33 Bd | 485.00 Aa | 469.00 Ab | 467.00 Ab | 455.33 Ac | 470.33 Ab | ||
2021 | 385.33 Cd | 433.33 ABc | 463.00 Aa | 455.33 Ab | 468.00 Aa | 445.67 Ab | 452.33 Ab | ||
1000-grain weight (g) | 2018 | 215.67 Ad | 256.33 Ac | 277.67 Ab | 294.00 Aa | 270.67 Ab | 280.67 Ab | 259.00 Ac | |
2019 | 199.33 Ae | 250.67 Ad | 270.67 Ac | 305.00 Aa | 283.67 Ab | 295.67 Aa | 284.33 Ab | ||
2020 | 196.67 Ad | 234.33 Ac | 266.67 Ab | 293.00 Aa | 270.33 Ab | 269.00 Ab | 279.67 Ab | ||
2021 | 192.00 Ae | 242.00 Ad | 260.67 Ac | 286.00 Aab | 265.33 Ac | 295.33 Aa | 278.00 Ab |
Treatment | Wheat | |||||
---|---|---|---|---|---|---|
REP | PFPP | AEP | REN | PFPN | AEN | |
Zero P | - | - | - | 26.11 c | 48.68 c | 7.52 c |
Poly P | 36.49 a 1 | 70.1 a | 19.31 a | 34.20 a | 67.18 a | 26.03 a |
MAP | 37.12 a | 69.98 a | 19.19 a | 34.95 a | 67.07 a | 25.91 a |
Ca-Mg P | 33.51 b | 61.55 b | 10.76 c | 30.82 b | 58.98 b | 17.83 b |
SSP | 36.83 a | 68.37 a | 17.58 b | 33.65 a | 65.53 a | 24.37 a |
DAP | 33.71 b | 61.59 b | 10.8 c | 31.44 b | 59.03 b | 17.87 b |
Maize | ||||||
REP | PFPP | AEP | REN | PFPN | AEN | |
Zero P | - | - | - | 26.26 d | 30.59 c | 4.25 d |
Poly P | 35.42 a | 71.14 a | 9.96 a | 36.18 a | 35.57 a | 9.23 a |
MAP | 35.37 a | 71.06 a | 9.87 a | 35.96 a | 35.53 a | 9.18 a |
Ca-Mg P | 34.08 a | 67.24 b | 6.06 c | 31.99 c | 33.62 b | 7.28 c |
SSP | 35.42 a | 70.1 a | 8.91 b | 36.28 a | 35.05 a | 8.71 ab |
DAP | 33.99 b | 67.29 b | 6.1 c | 33.75 b | 33.64 b | 7.3 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Liu, X.; Lv, J.; Zhao, F.; Yu, Q. The Impact of Different Phosphorus Fertilizers Varieties on Yield under Wheat–Maize Rotation Conditions. Agronomy 2024, 14, 1317. https://doi.org/10.3390/agronomy14061317
Liang C, Liu X, Lv J, Zhao F, Yu Q. The Impact of Different Phosphorus Fertilizers Varieties on Yield under Wheat–Maize Rotation Conditions. Agronomy. 2024; 14(6):1317. https://doi.org/10.3390/agronomy14061317
Chicago/Turabian StyleLiang, Chutao, Xiaoqi Liu, Jialong Lv, Funian Zhao, and Qiang Yu. 2024. "The Impact of Different Phosphorus Fertilizers Varieties on Yield under Wheat–Maize Rotation Conditions" Agronomy 14, no. 6: 1317. https://doi.org/10.3390/agronomy14061317
APA StyleLiang, C., Liu, X., Lv, J., Zhao, F., & Yu, Q. (2024). The Impact of Different Phosphorus Fertilizers Varieties on Yield under Wheat–Maize Rotation Conditions. Agronomy, 14(6), 1317. https://doi.org/10.3390/agronomy14061317