High-Quality Complete Genome Resource for Dickeya dadantii Type Strain DSM 18020 via PacBio Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. D. dadantii Strain, Growth Conditions, and Genomic DNA Isolation
2.2. Genomic Sequencing, Assembly and Annotation
2.3. Phylogenetic Analysis and Genome Comparisons
2.4. Accession Number
3. Results
3.1. Genome Sequencing and Assembly Results
3.2. Genome Annotation
3.3. A High-Quality Genome
3.4. Phylogenetic Analysis of DSM 18020T Based on Whole-Genome Sequences
3.5. Comparative Analysis of DSM 18020T with Other Dickeya spp.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pérombelon, M.C.M. Potato Diseases Caused by Soft Rot Erwinias: An Overview of Pathogenesis. Plant Pathol. 2002, 51, 1–12. [Google Scholar] [CrossRef]
- Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror, L.; Elphinstone, J.G. Dickeya Species: An Emerging Problem for Potato Production in Europe. Plant Pathol. 2011, 60, 385–399. [Google Scholar] [CrossRef]
- Samson, R.; Legendre, J.B.; Christen, R.; Fischer-Le Saux, M.; Achouak, W.; Gardan, L. Transfer of Pectobacterium chrysanthemi (Burkholder et Al. 1953) Brenner et Al. 1973 and Brenneria paradisiaca to the Genus Dickeya Gen. Nov. as Dickeya chrysanthemi Comb. Nov. and Dickeya paradisiaca Comb. Nov. and Delineation of Four Novel Species, Dickeya dadantii Sp. Nov., Dickeya dianthicola Sp. Nov., Dickeya dieffenbachiae Sp. Nov. and Dickeya zeae Sp. Nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Hugouvieux-Cotte-Pattat, N.; Pédron, J.; Van Gijsegem, F. Insight into Biodiversity of the Recently Rearranged Genus Dickeya. Front. Plant Sci. 2023, 14, 1168480. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.A.X.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-Based Phylogeny and Taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales Ord. Nov. Divided into the Families Enterobacteriaceae, Erwiniaceae Fam. Nov., Pectobacteriaceae Fam. Nov., Yersiniaceae Fam. Nov., Hafniaceae Fam. Nov., Morganellaceae Fam. Nov., and Budviciaceae Fam. Nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef] [PubMed]
- Condemine, G.; Le Derout, B. Identification of New Dickeya dadantii Virulence Factors Secreted by the Type 2 Secretion System. PLoS ONE 2022, 17, e0265075. [Google Scholar] [CrossRef]
- Grenier, A.M.; Duport, G.; Pagès, S.; Condemine, G.; Rahbé, Y. The Phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) Is a Pathogen of the Pea Aphid. Appl. Environ. Microbiol. 2006, 72, 1956–1965. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Hibbing, M.E.; Kim, H.S.; Reedy, R.M.; Yedidia, I.; Breuer, J.; Breuer, J.; Glasner, J.D.; Perna, N.T.; Kelman, A.; et al. Host Range and Molecular Phylogenies of the Soft Rot Enterobacterial Genera Pectobacterium and Dickeya. Phytopathology 2007, 97, 1150–1163. [Google Scholar] [CrossRef]
- Reverchon, S.; Nasser, W. Dickeya Ecology, Environment Sensing and Regulation of Virulence Programme. Environ. Microbiol. Rep. 2013, 5, 622–636. [Google Scholar] [CrossRef]
- Jiang, X.; Zghidi-Abouzid, O.; Oger-Desfeux, C.; Hommais, F.; Greliche, N.; Muskhelishvili, G.; Nasser, W.; Reverchon, S. Global Transcriptional Response of Dickeya dadantii to Environmental Stimuli Relevant to the Plant Infection. Environ. Microbiol. 2016, 18, 3651–3672. [Google Scholar] [CrossRef] [PubMed]
- Laurila, J.; Ahola, V.; Lehtinen, A.; Joutsjoki, T.; Hannukkala, A.; Rahkonen, A.; Pirhonen, M. Characterization of Dickeya Strains Isolated from Potato and River Water Samples in Finland. Eur. J. Plant Pathol. 2008, 122, 213–225. [Google Scholar] [CrossRef]
- Palacio-Bielsa, A.; Mosquera, M.E.R.; Álvarez, M.A.C.; Rodríguez, I.M.B.; López-Solanilla, E.; Rodríguez-Palenzuela, P. Phenotypic Diversity, Host Range and Molecular Phylogeny of Dickeya Isolates from Spain. Eur. J. Plant Pathol. 2010, 127, 311–324. [Google Scholar] [CrossRef]
- Brady, C.L.; Cleenwerck, I.; Denman, S.; Venter, S.N.; Rodríguez-Palenzuela, P.; Coutinho, T.A.; De Vos, P. Proposal to Reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et Al. 1999 into a New Genus, Lonsdalea Gen. Nov., as Lonsdalea quercina Comb. Nov., Descriptions of Lonsdalea quercina Subsp. Quercina Comb. Nov., Lonsdalea quercina Subsp. Iberica Subsp. Nov. and Lonsdalea quercina Subsp. britannica Subsp. Nov., Emendation of the Description of the Genus Brenneria, Reclassification of Dickeya dieffenbachiae as Dickeya dadantii Subsp. Dieffenbachiae Comb. Nov., and Emendation of the Description of Dickeya dadantii. Int. J. Syst. Evol. Microbiol. 2012, 62, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Moraes, A.J.G.; dos Santos, G.R.; Gama, M.A.S.; Leite, R.C.; Castro, G.L.S.; Silva, G.B. First Report of Dickeya dadantii Causing Soft Rot in Cariru in Brazil. Plant Dis. 2023, 108, 778. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Lin, C.; Qian, J.; Qiu, Z.; Chen, J.; Sun, C.; Yi, J.; Lou, B. Characterization of Stem and Root Rot Symptoms of Sweet Potato and the Causal Pathogen of the Disease. Acta Phytopathol. Sin. 2018, 48, 25–34. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Q.; Loria, R. A Re-Evaluation of the Taxonomy of Phytopathogenic Genera Dickeya and Pectobacterium Using Whole-Genome Sequencing Data. Syst. Appl. Microbiol. 2016, 39, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; McCluskey, K.; Desmeth, P.; Liu, S.; Hideaki, S.; Yin, Y.; Moriya, O.; Itoh, T.; Kim, C.Y.; Lee, J.S.; et al. The Global Catalogue of Microorganisms 10K Type Strain Sequencing Project: Closing the Genomic Gaps for the Validly Published Prokaryotic and Fungi Species. GigaScience 2018, 7, giy026. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, N.M.; Gupta, V.K.; Dutta, C. BPGA-an Ultra-Fast Pan-Genome Analysis Pipeline. Sci. Rep. 2016, 6, 24373. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Pruitt, K.D.; Tatusova, T.; Brown, G.R.; Maglott, D.R. NCBI Reference Sequences (RefSeq): Current Status, New Features and Genome Annotation Policy. Nucleic Acids Res. 2012, 40, 130–135. [Google Scholar] [CrossRef]
- Yang, X.J.; Wang, S.; Cao, J.M.; Hou, J.H. Complete Genome Sequence of Human Pathogen Kosakonia cowanii Type Strain 888-76T. Braz. J. Microbiol. 2018, 49, 16–17. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG Database: A Tool for Genome-Scale Analysis of Protein Functions and Evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years On. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kim, Y.O.; Park, S.C.; Chun, J. OrthoANI: An Improved Algorithm and Software for Calculating Average Nucleotide Identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome Sequence-Based Species Delimitation with Confidence Intervals and Improved Distance Functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Bertels, F.; Silander, O.K.; Pachkov, M.; Rainey, P.B.; Van Nimwegen, E. Automated Reconstruction of Whole-Genome Phylogenies from Short-Sequence Reads. Mol. Biol. Evol. 2014, 31, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS Is an Automated High-Throughput Platform for State-of-the-Art Genome-Based Taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. AntiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical Structures and Visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Ziemert, N.; Podell, S.; Penn, K.; Badger, J.H.; Allen, E.; Jensen, P.R. The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity. PLoS ONE 2012, 7, e34064. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.T.; Ung, P.M.U.; Zajkowski, J.; Garneau, S.; Sherman, D.H. Automated Genome Mining for Natural Products. BMC Bioinform. 2009, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Van Heel, A.J.; De Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A User-Friendly Web Server to Thoroughly Mine RiPPs and Bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef]
- Skinnider, M.A.; Dejong, C.A.; Rees, P.N.; Johnston, C.W.; Li, H.; Webster, A.L.H.; Wyatt, M.A.; Magarvey, N.A. Genomes to Natural Products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res. 2015, 43, 9645–9662. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Cleary, D.W.; Laver, J.R.; Maiden, M.C.J.; Didelot, X.; Gorringe, A.; Read, R.C. Neisseria lactamica Y92-1009 Complete Genome Sequence. Stand. Genom. Sci. 2017, 12, 41. [Google Scholar] [CrossRef]
- Pritchard, L.; Humphris, S.; Saddler, G.S.; Elphinstone, J.G.; Pirhonen, M.; Toth, I.K. Draft Genome Sequences of 17 Isolates of the Plant Pathogenic Bacterium Dickeya. Genome Announc. 2013, 1, e00978-13. [Google Scholar] [CrossRef]
- Glasner, J.D.; Yang, C.H.; Reverchon, S.; Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Bohin, J.P.; van Gijsegem, F.; Yang, S.; Franza, T.; Expert, D.; et al. Genome Sequence of the Plant-Pathogenic Bacterium Dickeya dadantii 3937. J. Bacteriol. 2011, 193, 2076–2077. [Google Scholar] [CrossRef]
- Czajkowski, R.; Ozymko, Z.; Zwirowski, S.; Lojkowska, E. Complete Genome Sequence of a Broad-Host-Range Lytic Dickeya Spp. Bacteriophage ΦD5. Arch. Virol. 2014, 159, 3153–3155. [Google Scholar] [CrossRef]
- des Essarts, Y.R.; Cigna, J.; Quêtu-Laurent, A.; Caron, A.; Munier, E.; Beury-Cirou, A.; Hélias, V.; Faure, D. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola. Appl. Environ. Microbiol. 2016, 82, 268–278. [Google Scholar] [CrossRef]
- Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Gueguen, E.; Shevchik, V.E. Dickeya Plant Pathogens. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2020; pp. 1–10. ISBN 9780470015902. [Google Scholar]
- Charkowski, A.O. Decaying Signals: Will Understanding Bacterial-Plant Communications Lead to Control of Soft Rot? Curr. Opin. Biotechnol. 2009, 20, 178–184. [Google Scholar] [CrossRef]
- Cianciotto, N.P.; White, R.C. Expanding Role of Type II Secretion in Bacterial Pathogenesis and Beyond. Infect. Immun. 2017, 85, e00014-17. [Google Scholar] [CrossRef] [PubMed]
- Nasser, W.; Dorel, C.; Wawrzyniak, J.; Van Gijsegem, F.; Groleau, M.C.; Déziel, E.; Reverchon, S. Vfm a New Quorum Sensing System Controls the Virulence of Dickeya dadantii. Environ. Microbiol. 2013, 15, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cheng, Y.; Lv, M.; Liao, L.; Chen, Y.; Gu, Y.; Liu, S.; Jiang, Z.; Xiong, Y.; Zhang, L. The Complete Genome Sequence of Dickeya Zeae EC1 Reveals Substantial Divergence from Other Dickeya Strains and Species. BMC Genom. 2015, 16, 571. [Google Scholar] [CrossRef] [PubMed]
- Joko, T.; Subandi, A.; Kusumandari, N.; Wibowo, A.; Priyatmojo, A. Activities of Plant Cell Wall-Degrading Enzymes by Bacterial Soft Rot of Orchid. Arch. Phytopathol. Plant Prot. 2014, 47, 1239–1250. [Google Scholar] [CrossRef]
- Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Shevchik, V.E. Bacterial Pectate Lyases, Structural and Functional Diversity. Environ. Microbiol. Rep. 2014, 6, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Dittoe, D.K.; Barabote, R.D.; Rothrock, M.J.; Ricke, S.C. Assessment of a Potential Role of Dickeya dadantii DSM 18020 as a Pectinase Producer for Utilization in Poultry Diets Based on In Silico Analyses. Front. Microbiol. 2020, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, L.C.; Benevides De Jesus, L.; Vinícius, M.; Viana, C.; Silva, A.; Thiago, R.; Ramos, J.; De, S.; Soares, C.; Azevedo, V. Inside the Pan-Genome-Methods and Software Overview. Curr. Genom. 2015, 16, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Bröms, J.E.; Sjöstedt, A. Exploring the Diversity Within the Genus Francisella—An Integrated Pan-Genome and Genome-Mining Approach. Front. Microbiol. 2020, 11, 1928. [Google Scholar] [CrossRef] [PubMed]
- Toth, I.K.; Bell, K.S.; Holeva, M.C.; Birch, P.R.J. Soft Rot Erwiniae: From Genes to Genomes. Mol. Plant Pathol. 2003, 4, 17–30. [Google Scholar] [CrossRef]
- Khayi, S.; Blin, P.; Chong, T.M.; Chan, K.G.; Faure, D. Complete Genome Anatomy of the Emerging Potato Pathogen Dickeya solani Type Strain IPO 2222T. Stand. Genom. Sci. 2016, 11, 87. [Google Scholar] [CrossRef]
Attribute | Value | Soft/Database |
---|---|---|
Total reads number | 63,801 | / |
Total bases (bp) | 469,783,300 | / |
Largest (bp) | 44,699 | / |
Average length (bp) | 7363 | / |
Genome size (bp) | 4,997,541 | / |
DNA scaffolds | 1 | / |
Interpersed repeat | 116 | RepeatMasker |
Tandem repeat | 136 | Tandem Repeats Finder v4.07b |
DNA coding (bp) | 4,261,959 | / |
DNA G+C (%) | 56.5 | Bowtie2 v2.29 |
Gene/genome (%) | 85.28 | / |
Total genes | 4455 | / |
Total CDS | 4426 | Glimmer v3.02, GeneMarkS, Prodigal |
Protein-coding genes | 4277 | Pfam v31.0 |
RNA genes | 105 | tRNAscan-SE v2.0, Barrnap, Infernal |
Pseudo genes | 73 | Pseudofinder |
Genes with function prediction | 3240 | COGs, GO, KEGG, NR, Pfam, Swiss-prot |
Genes assigned to COGs | 3554 | Eggnog v4.5.1 |
No. of CAZyme genes | 154 | CAZy v6 |
Genomic islands | 14 | Islander v1.2 |
Genes with signal peptides | 1167 | SignalP v4.1 |
Genes with transmembrane helices | 1177 | Tmhmm v2.0 |
CRISPR repeats | 11 | Minced v3 |
Start | End | Strand | Gene Length (bp) | NR Description | NCBI Accession Number |
---|---|---|---|---|---|
2,103,087 | 2,102,881 | - | 207 | pectin methylesterase | WP_071604523.1 |
2,660,145 | 2,659,813 | - | 333 | pectin degradation protein kdgF | WP_013318064.1 |
2,669,921 | 2,670,619 | + | 699 | pectin acetylesterase | WP_013318072.1 |
3,644,459 | 3646,147 | + | 1689 | pectin acetylesterase | WP_038912610.1 |
3,646,232 | 3647,332 | + | 1101 | pectinesterase A | WP_038901807.1 |
641,951 | 642,985 | + | 1035 | pectate lyase | WP_013316284.1 |
2,304,528 | 2,305,847 | + | 1320 | pectate lyase | WP_013317754.1 |
2,601,010 | 2,603,740 | + | 1731 | pectate lyase | WP_038911228.1 |
2,662,510 | 2,664,141 | + | 1632 | pectate lyase | WP_038911249.1 |
2,969,777 | 2,969,517 | - | 261 | pectate lyase | WP_236616663.1 |
3,195,491 | 3,194,214 | - | 1278 | pectate lyase | WP_038911484.1 |
3,496,622 | 3,497,656 | + | 1035 | pectate lyase | WP_038911625.1 |
3,639,868 | 3,641,046 | + | 1179 | pectate lyase | WP_038911695.1 |
3,641,501 | 3,642,592 | + | 1092 | pectate lyase | WP_038901804.1 |
3,643,235 | 3,644,413 | + | 1179 | pectate lyase | WP_038901806.1 |
4,487,239 | 4,488,139 | + | 901 | pectate lyase | WP_013319745.1 |
4,488,910 | 4,490,034 | + | 1125 | pectate lyase | WP_013319746.1 |
4,490,187 | 4,491,464 | + | 1278 | pectate lyase | WP_038902797.1 |
4,941,191 | 4,940,799 | - | 393 | pectate lyase | WP_050570305.1 |
4,943,003 | 4,941,177 | - | 1827 | pectate lyase | WP_050570305.1 |
Region | Type | Start | End | Most Similar Known Cluster | Similarity | |
---|---|---|---|---|---|---|
Cluster 1 | NRPS-like, hserlactone | 85,823 | 149,802 | minimycin | NRP + saccharide | 60% |
Cluster 2 | isocyanide | 1,121,850 | 1,163,613 | |||
Cluster 3 | NI-siderophore | 1,702,827 | 1,740,012 | |||
Cluster 4 | T1PKS, NRPS | 1,832,521 | 1,955,354 | N-myristoyl-D-asparagine/cis-7-tetradecenoyl-D-asparagine/(R)-N1-((S)-5-oxohexan-2-yl)-2-tetradecanamidosuccin-amide | NRP + polyketide:modu-lar type I polyketide + polyketide:trans-AT type I polyketide | 13% |
Cluster 5 | RiPP-like | 1,972,125 | 1,983,156 | |||
Cluster 6 | thiopeptide | 2,245,373 | 2,271,871 | O-antigen | saccharide | 14% |
Cluster 7 | NRPS, trans-AT PKS | 3,183,925 | 3,260,793 | tolaasin I/tolaasin F | NRP:lipopeptide | 40% |
Cluster 8 | NRP-metallo-phore, NRPS | 3,414,984 | 3,472,341 | trichrysobactin/cyclic trichrysobactin/chrysob-actin/dichrysobactin | NRP | 100% |
Cluster 9 | betalactone | 4,167,204 | 4,190,994 | bonnevillamide D/bonnevillamide E | NRP | 6% |
Cluster 10 | cyanobactin | 4,468,690 | 4,490,651 |
Genome Assembly Characteristics | D. dadantii DSM 18020 | D. dadantii 898 | D. dadantii 3937 |
---|---|---|---|
Accession number | CP023467 | AOOE00000000 | CP002038 |
Level | Complete genome | Draft genome | Complete genome |
Number of chromosomes | 1 | 1 | 1 |
Number of scaffolds | 1 | 12 | 1 |
Number of contigs | 1 | 52 | 1 |
Genome coverage | 94.0X | 19.0X | - |
Genome size (Mb) | 4.998 | 4.938 | 4.923 |
Contig N50 (bp) | 4,997,541 | 191,282 | 4,922,802 |
Scaffold N50 (bp) | 4,997,541 | 4,829,443 | 4,922,802 |
GC content (%) | 56.5 | 56.5 | 56.5 |
ORF | 5476 | 4591 | - |
Total number of genes | 4455 | 4443 | 4429 |
Proteins | 4277 | 4261 | 4242 |
Pesudo genes | 73 | 107 | 79 |
rRNA | 22 | 7 | 22 |
tRNA | 75 | 62 | 75 |
Other RNA | 8 | 6 | 20 |
Sequencing technology | PacBio | 454 | |
Assembly method | HGAP3 v. Sep-2015 | Newbler v. 2.5.3; MINIMUS v. 2.0.8 | Celera assembler; SeqMan II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Xu, J.; Song, Z.; Li, W.; Li, J.; Xu, Z.; Chen, F.; Qiu, H.; Wang, T. High-Quality Complete Genome Resource for Dickeya dadantii Type Strain DSM 18020 via PacBio Sequencing. Agronomy 2024, 14, 1342. https://doi.org/10.3390/agronomy14071342
Cheng Y, Xu J, Song Z, Li W, Li J, Xu Z, Chen F, Qiu H, Wang T. High-Quality Complete Genome Resource for Dickeya dadantii Type Strain DSM 18020 via PacBio Sequencing. Agronomy. 2024; 14(7):1342. https://doi.org/10.3390/agronomy14071342
Chicago/Turabian StyleCheng, Yi, Jianping Xu, Zhiqiang Song, Wenting Li, Jiayang Li, Zhecheng Xu, Fengming Chen, Huajiao Qiu, and Tuhong Wang. 2024. "High-Quality Complete Genome Resource for Dickeya dadantii Type Strain DSM 18020 via PacBio Sequencing" Agronomy 14, no. 7: 1342. https://doi.org/10.3390/agronomy14071342
APA StyleCheng, Y., Xu, J., Song, Z., Li, W., Li, J., Xu, Z., Chen, F., Qiu, H., & Wang, T. (2024). High-Quality Complete Genome Resource for Dickeya dadantii Type Strain DSM 18020 via PacBio Sequencing. Agronomy, 14(7), 1342. https://doi.org/10.3390/agronomy14071342