A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems
Abstract
:1. Introduction
1.1. How Much vs. When?
1.2. Measuring Evapotranspiration
2. Coarse-Scale ET Estimates
2.1. Original Penman–Monteith
2.2. Surface Energy Balance
2.3. Reference ET and Crop Coefficients
2.4. Eddy Covariance
2.5. Soil Moisture Sensors
2.6. Pan Evaporation Method
3. Fine-Scale ET Estimates
3.1. Lysimeters
3.2. Sap Flow Sensors and Microtensiometers
3.3. Gas Exchange Measurement Systems
3.4. Infrared Temperature Measurement Systems
3.5. High-Resolution Irrigation Models
4. Distribution Systems
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Jägermeyr, J.; Pastor, A.; Biemans, H.; Gerten, D. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nat. Commun. 2017, 8, 15900. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Zheng, D.; Zhang, L.; Zhu, G. Estimation of global irrigation water use by the integration of multiple satellite observations. Water Resour. Res. 2022, 58, e2021WR030031. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Did You Know …? Facts and Figures About. 2014. Available online: http://www.fao.org/nr/water/aquastat/didyouknow/index3.stm (accessed on 24 November 2016).
- Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high-resolution map derived from remote sensing, crop inventories, and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321–334. [Google Scholar] [CrossRef]
- Meier, J.; Zabel, F.; Mauser, W. A global approach to estimate irrigated areas—A comparison between different data and statistics. Hydrol. Earth Syst. Sci. 2018, 22, 1119–1133. [Google Scholar] [CrossRef]
- Smith, M. Yield response to water: The original FAO water production function. In Crop Yield Response to Water; Steduto, P., Hsiao, T.C., Fereres, E., Raes, D., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; pp. 19–32. [Google Scholar]
- Llamas, M.R.; Martínez-Santos, P. Intensive Groundwater Use: Silent Revolution and Potential Source of Social Conflicts. J. Water Resour. Plan. Manag. 2005, 131, 337–341. [Google Scholar] [CrossRef]
- Fulton, J.; Norton, M.; Shilling, F. Water-indexed benefits and impacts of California almonds. Ecol. Indic. 2019, 96, 711–717. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water footprint of wheat in Iraq. Water 2019, 11, 535. [Google Scholar] [CrossRef]
- Schwankl, L.; Prichard, T.; Fulton, A. Almond Irrigation Improvement Continuum; Almond Board of California: Modesto, CA, USA, 2020; p. 3. [Google Scholar]
- Geisel, P.; Farnham, D.; Vossen, P. California Master Gardener Handbook; University of California, Division of Agriculture and Natural Resources: Berkeley, CA, USA, 2002. [Google Scholar]
- Howitt, R.E.; MacWan, D.; Medellin-Azuara, J.; Lund, J.R.; Sumner, D.A. Economic Analysis of the 2015 Drought for California Agriculture. Center for Watershed Sciences, University of California–Davis. 2015. Available online: https://watershed.ucdavis.edu/sites/g/files/dgvnsk8531/files/products/2021-05/Final_Drought%20Report_08182015_Full_Report_WithAppendices.pdf (accessed on 8 June 2023).
- Kogan, F.; Guo, W.; Yang, W. Drought and food security prediction from NOAA new generation of operational satellites. Geomat. Nat. Hazards Risk 2019, 10, 651–666. [Google Scholar] [CrossRef]
- Irmak, S.; Rathje, W.R. Plant Growth and Yield as Affected by Wet Soil Conditions Due to Flooding or Over-Irrigation. 2008. Available online: https://cropwatch.unl.edu/documents/g1904.pdf (accessed on 9 June 2022).
- Bambach, N.; Kustas, W.; Alfieri, J.; Gao, F.; Prueger, J.; Hipps, L.; McKee, L.; Castro, S.J.; Alsina, M.M.; McElrone, A.J. Inter-annual variability of land surface fluxes across vineyards: The role of climate, phenology, and irrigation management. Irrig. Sci. 2022, 40, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Stewart, W.; Fulton, A.; Krueger, W.; Lampinen, B.; Shackel, K. Regulated deficit irrigation reduces water use of almonds without affecting yield. Calif. Agric. 2011, 65, 90–95. [Google Scholar] [CrossRef]
- Ko-Madden, C.T.; Upadhyaya, S.K.; Kizer, E.E.; Drechsler, K.M.; Rojo, F.; Meyers, J.N.; Schramm, A.E. Precision irrigation in wine grape using a proximal leaf monitor system for measuring plant water status. In Proceedings of the 2017 ASABE Annual International Meeting, Spokane, WA, USA, 16–19 July 2017; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017; p. 1. [Google Scholar]
- Gharsallah, O.; Facchi, A.; Gandolfi, C. Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agric. Water Manag. 2013, 130, 119–130. [Google Scholar] [CrossRef]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Prenger, J.; Fynn, R.; Hansen, R. A comparison of four evapotranspiration models in a greenhouse environment. Trans. ASAE 2002, 45, 1779. [Google Scholar] [CrossRef]
- Subedi, A.; Chávez, J.L. Crop Evapotranspiration (ET) Estimation Models: A Review and Discussion of the Applicability and Limitations of ET Methods. J. Agric. Sci. 2015, 7, 50. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Li, Z.; Roy, D.; Zhang, H.; Vermote, E.; Huang, H. Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals across Chinese Cities and Implications for Medium Spatial Resolution Urban Aerosol Monitoring. Remote Sens. 2019, 11, 122. [Google Scholar] [CrossRef]
- Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Gurusinghe, S.; Hasey, J.; Kester, D.; Krueger, B.; Lampinen, B.; et al. Plant Water Status as an Index of Irrigation Need in Deciduous Fruit Trees. HortTechnology 1997, 7, 23–29. [Google Scholar] [CrossRef]
- Ortuño, M.F.; García-Orellana, Y.; Conejero, W.; Ruiz-Sánchez, M.C.; Alarcón, J.J.; Torrecillas, A. Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees 2006, 20, 1–8. [Google Scholar] [CrossRef]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Kisekka, I. Orchard Water Management. In Advanced Automation for Tree Fruit Orchards and Vineyards; Vougioukas, S.G., Zhang, Q., Eds.; Agriculture Automation and Control; Springer: Cham, Switzerland, 2023; p. 3. [Google Scholar] [CrossRef]
- Pagay, V. Evaluating a novel microtensiometer for continuous trunk water potential measurements in field-grown irrigated grapevines. Irrig. Sci. 2022, 40, 45–54. [Google Scholar] [CrossRef]
- FloraPulse. FloraPulse: Stem Water Potential Sensors. 2024. Available online: https://www.florapulse.com/ (accessed on 18 April 2024).
- Huguet, J.G.; Li, S.H.; Lorendeau, J.Y.; Pelloux, G. Specific micromorphometric reactions of fruit trees to water stress and irrigation scheduling automation. J. Hortic. Sci. 1992, 67, 631–640. [Google Scholar] [CrossRef]
- Cabibel, B.; Isberie, C. Flux de sève et alimentation hydrique de cerisiers irrigués ou non en localisation. Agronomie 1997, 17, 97–112. [Google Scholar] [CrossRef]
- Cohen, M.; Goldhamer, D.; Fereres, E.; Girona, J.; Mata, M. Assessment of peach tree responses to irrigation water deficits by continuous monitoring of trunk diameter changes. J. Hortic. Sci. Biotechnol. 2001, 76, 55–60. [Google Scholar] [CrossRef]
- Green, S.R.; Clothier, B.E. Water use of kiwifruit vines and apple trees by the heat-pulse technique. J. Exp. Bot. 1988, 39, 115–123. [Google Scholar] [CrossRef]
- Blanco, V.; Kalcsits, L. Microtensiometers Accurately Measure Stem Water Potential in Woody Perennials. Plants 2021, 10, 2780. [Google Scholar] [CrossRef] [PubMed]
- Lakso, A.N.; Santiago, M.; Stroock, A.D. Monitoring Stem Water Potential with an Embedded Microtensiometer to Inform Irrigation Scheduling in Fruit Crops. Horticulturae 2022, 8, 1207. [Google Scholar] [CrossRef]
- Donovan, L.; Linton, M.; Richards, J. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 2001, 129, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Fulton, A.; Grant, J.; Buchner, R.; Connell, J. Using the Pressure Chamber for Irrigation Management in Walnut, Almond and Prune; UC ANR: Berkeley, CA, USA, 2014. [Google Scholar] [CrossRef]
- Allen, L.H. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Qual. 1990, 19, 15–34. [Google Scholar] [CrossRef]
- Katsoulas, N.; Stanghellini, C. Modelling crop transpiration in greenhouses: Different models for different applications. Agronomy 2019, 9, 392. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Chatterjee, C. Modeling the dynamics of evapotranspiration using Variable Infiltration Capacity model and regionally calibrated Hargreaves approach. Irrig. Sci. 2018, 36, 289–300. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Monteith, J.L.; Szeicz, G.; Waggoner, P.E. The Measurement and Control of Stomatal Resistance in the Field. J. Appl. Ecol. 1965, 2, 345. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Steiner, J.L.; Howell, T.A.; Schneider, A.D. Lysimetric Evaluation of Daily Potential Evapotranspiration Models for Grain Sorghum. Agron. J. 1991, 83, 240–247. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Poblete-Echeverrıa, C.; Brisson, N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric. For. Meteorol. 2010, 150, 276–286. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Turan, M.A.; Hassan, A.; Elkarim, A.; Taban, N.; Taban, S. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. Afr. J. Agric. Res. 2009, 4, 893–897. [Google Scholar]
- Morille, B.; Migeon, C.; Bournet, P. Is the Penman–Monteith model adapted to predict crop transpiration under greenhouse conditions? Application to a New Guinea Impatiens crop. Sci. Hortic. 2013, 152, 80–91. [Google Scholar] [CrossRef]
- Balendonck, J.; Sapounas, A.A.; Kempkes, F.; Van Os, E.A.; Van Der Schoor, R.; Van Tuijl BA, J.; Keizer LC, P. Using a wireless sensor network to determine climate heterogeneity of a greenhouse environment. Acta Hortic. 2014, 1037, 539–546. [Google Scholar] [CrossRef]
- Stanghellini, C. Transpiration of Greenhouse Crops: An Aid to Climate Management. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1987. [Google Scholar]
- Villarreal-Guerrero, F.; Kacira, M.; Fitz-Rodríguez, E.; Kubota, C.; Giacomelli, G.A.; Linker, R.; Arbel, A. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high-pressure fogging. Sci. Hortic. 2012, 134, 210–221. [Google Scholar] [CrossRef]
- Yan, H.; Huang, S.; Zhang, C.; Gerrits, M.C.; Wang, G.; Zhang, J.; Zhao, B.; Acquah, S.J.; Wu, H.; Fu, H. Parameterization and Application of Stanghellini Model for Estimating Greenhouse Cucumber Transpiration. Water 2020, 12, 517. [Google Scholar] [CrossRef]
- Fynn, R.P.; Al-shooshan, A.; Short, T.H.; McMahon, R.W. Evapotranspiration Measurement and Modeling for a Potted Chrysanthemum Crop. Trans. ASAE 1993, 36, 1907–1913. [Google Scholar] [CrossRef]
- Priestley CH, B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather. Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Donatelli, M.; Bellocchi, G.; Carlini, L. Sharing knowledge via software components: Models on reference evapotranspiration. Eur. J. Agron. 2006, 24, 186–192. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Local Calibration of the Hargreaves and Priestley-Taylor Equations for Estimating Reference Evapotranspiration in Arid and Cold Climates of Iran Based on the Penman-Monteith Model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Pereira, A.R.; Villa Nova, N.A. Analysis of the Priestley-Taylor parameter. Agric. For. Meteorol. 1992, 61, 1–9. [Google Scholar] [CrossRef]
- Tolk, J.A.; Evett, S.R.; Howell, T.A. Advection Influences on Evapotranspiration of Alfalfa in a Semiarid Climate. Agron. J. 2006, 98, 1646–1654. [Google Scholar] [CrossRef]
- Lhomme, J.P. A theoretical basis for the Priestley-Taylor coefficient. Bound.-Layer Meteorol. 1997, 82, 179–191. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Ambient Air Temperature. In Proceedings of the American Society of Agricultural Engineering Annual International Meeting, Chicago, IL, USA; 1985; pp. 96–99. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19872430095 (accessed on 18 April 2024).
- Hargreaves, G.H.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Kumari, N.; Srivastava, A. An Approach for Estimation of Evapotranspiration by Standardizing Parsimonious Method. Agric. Res. 2020, 9, 301–309. [Google Scholar] [CrossRef]
- Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [Google Scholar] [CrossRef]
- Talsma, C.J.; Good, S.P.; Jimenez, C.; Martens, B.; Fisher, J.B.; Miralles, D.G.; McCabe, M.F.; Purdy, A.J. Partitioning of evapotranspiration in remote sensing-based models. Agric. For. Meteorol. 2018, 260–261, 131–143. [Google Scholar] [CrossRef]
- Alfieri, J.G.; Kustas, W.P.; Prueger, J.H.; McKee, L.G.; Hipps, L.E.; Bambach, N. The vertical turbulent structure within the surface boundary layer above a Vineyard in California’s Central Valley during, G.R.A.P.E.X. Irrig. Sci. 2022, 40, 481–496. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef]
- Rienth, M.; Scholasch, T. State-of-the-art of tools and methods to assess vine water status. OENO One 2019, 53, 639–659. [Google Scholar] [CrossRef]
- Anapalli, S.S.; Ma, Y.; Marek, G.W.; Porter, D.O.; Gowda, P.H.; Howell, T.A.; Moorhead, J.E. Application of an energy balance method for estimating evapotranspiration in cropping systems. Agric. Water Manag. 2018, 204, 107–117. [Google Scholar] [CrossRef]
- Burchard-Levine, V.; Nieto, H.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; Prueger, J.H.; Hipps, L.E.; Bambach-Ortiz, N.; McElrone, A.J.; Castro, S.J.; et al. Application of a remote-sensing three-source energy balance model to improve evapotranspiration partitioning in vineyards. Irrig. Sci. 2022, 40, 593–608. [Google Scholar] [CrossRef]
- Kustas, W.P. Estimates of evapotranspiration with a one-layer and 2-layer model of heat-transfer over partial canopy cover. J. Appl. Meteorol. 1990, 29, 704–715. [Google Scholar] [CrossRef]
- Bastiaanssen WG, M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Safre, A.L.S.; Nassar, A.; Torres-Rua, A.; Aboutalebi, M.; Saad, J.C.C.; Manzione, R.L.; Teixeira, A.H.d.C.; Prueger, J.H.; McKee, L.G.; Alfieri, J.G.; et al. Performance of Sentinel-2 SAFER ET model for daily and seasonal estimation of grapevine water consumption. Irrig. Sci. 2022, 40, 635–654. [Google Scholar] [CrossRef]
- Senay, G.; Budde, M.; Verdin, J.; Melesse, A. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef]
- Reyes-González, A.; Kjaersgaard, J.; Trooien, T.; Reta-Sánchez, D.G.; Sánchez-Duarte, J.I.; Preciado-Rangel, P.; Fortis-Hernández, M. Comparison of Leaf Area Index, Surface Temperature, and Actual Evapotranspiration Estimated Using the METRIC Model and In Situ Measurements. Sensors 2019, 19, 1857. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Mu, Q.; Jones, L.A.; Goetz, S.J.; Running, S.W. Satellite-based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol. 2009, 379, 92–110. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46, W09522. [Google Scholar] [CrossRef]
- Hu, X.; Shi, L.; Lin, G.; Lin, L. Comparison of physical-based, data-driven and hybrid modeling approaches for evapotranspiration estimation. J. Hydrol. 2021, 601, 126592. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Behboudian, M.H.; Singh, Z. Water Relations and Irrigation Scheduling in Grapevine. In Horticultural Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 189–225. [Google Scholar] [CrossRef]
- Water Balance Irrigation Scheduling Using CIMIS ETo: Department of Land, Air, and Water Resources—UC Davis. Available online: https://lawr.ucdavis.edu/cooperative-extension/irrigation/drought-tips/water-balance-irrigation-scheduling-using-cimis-eto (accessed on 17 May 2021).
- Jackson, J.L.; Morgan, K.T.; Lusher, W.R. Citrus cold weather protection and irrigation scheduling tools using Florida automated weather network data. Proc. Fla. State Hortic. Soc. 2008, 121, 75–80. [Google Scholar] [CrossRef]
- Andales, A.A.; Bauder, T.A.; Doesken, N.J. The Colorado Agricultural Meteorological Network (CoAgMet) and Crop ET Reports. 2014. Available online: https://extension.colostate.edu/ (accessed on 18 April 2024).
- Brown, P.W.; Yitayew, M. Near-real time weather information for irrigation management in Arizona. In Planning Now for Irrigation and Drainage in the 21st Century; ASCE: Reston, VA, USA, 1988; pp. 708–715. [Google Scholar]
- Badr, G.; Hoogenboom, G.; Davenport, J.; Smithyman, J. Estimating growing season length using vegetation indices based on remote sensing: A case study for vineyards in Washington State. Trans. ASABE 2015, 58, 551–564. [Google Scholar]
- Webb, C.P. Bureau of Meteorology Reference Evapotranspiration Calculations. 2010. Available online: https://core.ac.uk/download/pdf/219474634.pdf (accessed on 18 April 2024).
- Wani, S.P.; Anantha, K.H.; Garg, K.K.; Joshi, P.K.; Sohani, G.; Mishra, P.K.; Palanisami, K. Pradhan Mantri Krishi Sinchai Yojana: Enhancing Impact through Demand Driven Innovations; Research Report IDC-7; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT): Hyderabad, India, 2016. [Google Scholar]
- Hough, M.N.; Jones, R.J.A. The United Kingdom Meteorological Office rainfall and evaporation calculation system: MORECS version 2.0—An overview. Hydrol. Earth Syst. Sci. 1997, 1, 227–239. [Google Scholar] [CrossRef]
- Pruitt, W.O.; Doorenbos, J. Empirical calibration, a requisite for evapotranspiration formulae based on daily or longer mean climatic data? In Proceedings of the ICID Conference on Evapotranspiration, Budapest, Hungary, 26–28 May 1977. 20p. [Google Scholar]
- Bravdo, B. Water management and effect on fruit quality in grapevines. In Proceedings of the 6th Australian Wine Industry Technical Conference, Adelaide, South Australia, 14–17 July 1986; Volume 1, pp. 150–158. [Google Scholar]
- Williams, L.E.; Fidelibus, M.W. Measured and estimated water use and crop coefficients of grapevines trained to overhead trellis systems in California’s San Joaquin Valley. Irrig. Sci. 2016, 34, 431–441. [Google Scholar] [CrossRef]
- Hochberg, U.; Herrera, J.; Degu, A.; Castellarin, S.D.; Peterlunger, E.; Alberti, G.; Lazarovitch, N. Evaporative demand determines the relative transpirational sensitivity of deficit-irrigated grapevines. Irrig. Sci. 2017, 35. [Google Scholar] [CrossRef]
- Tanny, J. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Eng. 2013, 114, 26–43. [Google Scholar] [CrossRef]
- Kustas, W.P.; McElrone, A.J.; Agam, N.; Knipper, K. From vine to vineyard: The GRAPEX multi-scale remote sensing experiment for improving vineyard irrigation management. Irrig. Sci. 2022, 40, 435–444. [Google Scholar] [CrossRef]
- Chu, H.; Luo, X.; Ouyang, Z.; Chan, W.S.; Dengel, S.; Biraud, S.C.; Torn, M.S.; Metzger, S.; Kumar, J.; Arain, M.A.; et al. Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agric. For. Meteorol. 2021, 301–302, 108350. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, F.; Hu, H.; Yang, P. A comparison of methods for determining field evapotranspiration: Photosynthesis system, sap flow, and eddy covariance. Hydrol. Earth Syst. Sci. 2014, 18, 1053–1072. [Google Scholar] [CrossRef]
- Stoy, P.C.; Mauder, M.; Foken, T.; Marcolla, B.; Boegh, E.; Ibrom, A.; Arain, M.A.; Arneth, A.; Aurela, M.; Bernhofer, C.; et al. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric. For. Meteorol. 2013, 171–172, 137–152. [Google Scholar] [CrossRef]
- Eshonkulov, R.; Poyda, A.; Ingwersen, J.; Wizemann, H.-D.; Weber, T.K.D.; Kremer, P.; Högy, P.; Pulatov, A.; Streck, T. Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany. Biogeosciences 2019, 16, 521–540. [Google Scholar] [CrossRef]
- Saugier, B.; Granier, A.; Pontailler, J.Y.; Dufrene, E.; Baldocchi, D.D. Transpiration of a boreal pine forest measured by branch bag, sap flow, and micrometeorological methods. Tree Physiol. 1997, 17, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.B.; Hanson, P.J.; Baldocchi, D.D. Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle. Agric. For. Meteorol. 2000, 102, 83–103. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Flux footprints within and over forest canopies. Bound. -Layer Meteorol. 1997, 85, 273–292. [Google Scholar] [CrossRef]
- Williams, D.G.; Cable, W.; Hultine, K.; Hoedjes, J.C.B.; Yepez, E.A.; Simonneaux, V.; Er-Raki, S.; Boulet, G.; de Bruin, H.A.R.; Chehbouni, A.; et al. Evapotranspiration components determined by stable isotope, sap flow, and eddy covariance techniques. Agric. For. Meteorol. 2004, 125, 241–258. [Google Scholar] [CrossRef]
- Allison, G.B.; Barnes, C.J.; Hughes, M.W. The distribution of deuterium and 18O in dry soils. J. Hydrol. 1983, 64, 377–379. [Google Scholar] [CrossRef]
- Stanhill, G. Evapotranspiration. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Townend, J.; Reeve, M.; Carter, A. Water release characteristics. In Soil and Environmental Analysis: Physical Methods, 2nd ed.; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Mullins, C. Matric potential. In Soil and Environmental Analysis: Physical Methods, 2nd ed.; Marcel Dekker: New York, NY, USA, 2001; pp. 17–30. [Google Scholar] [CrossRef]
- Lavoie-Lamoureux, A.; Sacco, D.; Risse, P.-A.; Lovisolo, C. Factors influencing stomatal conductance in response to water availability in grapevine: A meta-analysis. Physiol. Plant. 2017, 159, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Taghvaeian, S.; Stivers, J. Understanding Soil Water Content and Thresholds for Irrigation Management; Oklahoma Cooperative Extension Service: Stillwater, OK, USA, 2017. [Google Scholar]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Van Lier, Q.D.J. Field capacity, a valid upper limit of crop available water? Agric. Water Manag. 2017, 193, 214–220. [Google Scholar] [CrossRef]
- Tolk, J.A. Soils, Permanent Wilting Points. In Encyclopedia of Water Science; Taylor & Francis: Abingdon, UK, 2003. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop Evapotranspiration; FAO Irrigation and Drainage Paper No. 24; FAO: Rome, Italy, 1997. [Google Scholar]
- Snyder, R.L.; Orang, M.; Matyac, S.; Grismer, M.E. Simplified Estimation of Reference Evapotranspiration from Pan Evaporation Data in California. J. Irrig. Drain. Eng. 2005, 131, 249–253. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kisi, O. Monthly pan-evaporation estimation in Indian central Himalayas using different heuristic approaches and climate-based models. Comput. Electron. Agric. 2017, 143, 302–313. [Google Scholar] [CrossRef]
- Jenkins, M.R.; Mannsfeld, A.; Nikzad, S.; Lambert, J.-J.; Miller, K.; Burns, M.; Earles, J.M.; Block, D.E. Novel algorithms for high resolution prediction of canopy evapotranspiration in grapevine. OENO One 2003, 57. [Google Scholar] [CrossRef]
- Gatti, M.; Garavani, A.; Squeri, C.; Diti, I.; De Monte, A.; Scotti, C.; Poni, S. Effects of intra-vineyard variability and soil heterogeneity on vine performance, dry matter and nutrient partitioning. Precis. Agric. 2022, 23, 150–177. [Google Scholar] [CrossRef]
- Gatti, M.; Garavani, A.; Vercesi, A.; Poni, S. Ground-truthing of remotely sensed within-field variability in a cv. Barbera plot for improving vineyard management. Aust. J. Grape Wine Res. 2017, 23, 399–408. [Google Scholar] [CrossRef]
- Brillante, L.; Bois, B.; Lévêque, J.; Mathieu, O. Variations in soil-water use by grapevine according to plant water status and soil physical-chemical characteristics—A 3D spatio-temporal analysis. Eur. J. Agron. 2016, 77, 122–135. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F. Technology in precision viticulture: A state of the art review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Proffitt, A.P.B.; Hinze, C.J.; Pearse, B.; Hamilton, R.P. Generating benefits from precision viticulture through selective harvesting. In Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 891–898. [Google Scholar]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Dayer, S.; Reingwirtz, I.; McElrone, A.J.; Gambetta, G.A. Response Recovery of Grapevine to Water Deficit: From Genes to Physiology. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 223–245. [Google Scholar] [CrossRef]
- Kandra, B.; Tall, A.; Gomboš, M.; Pavelková, D. Quantification of Evapotranspiration by Calculations and Measurements Using a Lysimeter. Water 2023, 15, 373. [Google Scholar] [CrossRef]
- Hirschi, M.; Michel, D.; Lehner, I.; Seneviratne, S.I. A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration. Hydrol. Earth Syst. Sci. 2017, 21, 1809–1825. [Google Scholar] [CrossRef]
- Documentation Lysimeter Station Michalovce. Groundwater Principle Michalovce; Umwelt-Geräte-Technik GmbH: Müncheberg, Germany, 2014; Available online: http://www.ugt-online.de (accessed on 5 July 2023).
- Steppe, K.; Vandegehuchte, M.; Tognetti, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Des Sci. For. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Lascano, R.J. A General System to Measure and Calculate Daily Crop Water Use. Agron. J. 2000, 92, 821–832. [Google Scholar] [CrossRef]
- Lascano, R.J.; Goebel, T.S.; Booker, J.; Baker, J.T.; Iii DC, G. The Stem Heat Balance Method to Measure Transpiration: Evaluation of a New Sensor. Agric. Sci. 2016, 7, 9. [Google Scholar] [CrossRef]
- Lakso, A.N.; Zhu, S.; Santiago, M.; Shackel, K.; Volkov, V.; Stroock, A.D. A microtensiometer sensor to continuously monitor stem water potentials in woody plants—Design and field testing. Acta Hortic. 2022, 1335, 317–324. [Google Scholar] [CrossRef]
- Shackel, K.A. Water relations of woody perennial plant species. OENO One 2007, 41, 121–129. [Google Scholar] [CrossRef]
- Parkinson, K.J.; Day, W.; Leach, J.E. A Portable System for Measuring the Photosynthesis and Transpiration of Graminaceous Leaves. J. Exp. Bot. 1980, 31, 1441–1453. [Google Scholar] [CrossRef]
- PP Systems. CIRAS-4 Portable Photosynthesis System. Available online: https://ppsystems.com/ciras4-portable-photosynthesis-system/ (accessed on 22 July 2023).
- Tiezen, L.L.; Johnson, D.A.; Caldwell, M.M. A portable system for the measurement of photosynthesis using carbon-14 dioxide. Photosynthetica 1974, 8, 151–160. [Google Scholar]
- Salter, W.T.; Gilbert, M.E.; Buckley, T.N. A multiplexed gas exchange system for increased throughput of photosynthetic capacity measurements. Plant Methods 2018, 14, 80. [Google Scholar] [CrossRef]
- Martínez-Maldonado, F.E.; Castaño-Marín, A.M.; Góez-Vinasco, G.A.; Marin, F.R. Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.). Climate 2022, 10, 127. [Google Scholar] [CrossRef]
- Xue, J.; Anderson, M.C.; Gao, F.; Hain, C.; Knipper, K.R.; Yang, Y.; Kustas, W.P.; Yang, Y.; Bambach, N.; McElrone, A.J.; et al. Improving the spatiotemporal resolution of remotely sensed ET information for water management through Landsat, Sentinel-2, ECOSTRESS, and VIIRS data fusion. Rrig. Sci. 2022, 40, 609–634. [Google Scholar] [CrossRef] [PubMed]
- Still, C.J.; Sibley, A.; Page, G.; Meinzer, F.C.; Sevanto, S. When a cuvette is not a canopy: A caution about measuring leaf temperature during gas exchange measurements. Agric. For. Meteorol. 2019, 279, 107737. [Google Scholar] [CrossRef]
- Tarnopolsky, M.; Seginer, I. Leaf temperature error from heat conduction along thermocouple wires. Agric. For. Meteorol. 1999, 93, 185–194. [Google Scholar] [CrossRef]
- Yu, L.; Wang, W.; Zhang, X.; Zheng, W. A Review on Leaf Temperature Sensor: Measurement Methods and Application. In Computer and Computing Technologies in Agriculture IX; Li, D., Li, Z., Eds.; Springer: Cham, Switzerland, 2016; Volume 478, pp. 216–230. [Google Scholar]
- Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Olenskyj, A.; Sams, B.; Fei, Z.; Singh, V.; Raja, P.; Bornhorst, G.; Earles, J.M. End-to-end deep learning for directly estimating grape yield from ground-based imagery. arXiv 2022, arXiv:2208.02394. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Gao, F.; Knipper, K.; Kustas, W.P.; Anderson, M.C.; Alsina, M.d.M.; Sanchez, L.A.; Karnieli, A. Time-series clustering of remote sensing retrievals for defining management zones in a vineyard. Irrig. Sci. 2022, 40, 801–815. [Google Scholar] [CrossRef]
- Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M.G.; Cingolani, R.; Scrosati, B. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901–4906. [Google Scholar] [CrossRef]
- Marini, R.; Mikhaylov, K.; Pasolini, G.; Buratti, C. Low-Power Wide-Area Networks: Comparison of LoRaWAN and NB-IoT Performance. IEEE Internet Things J. 2022, 9, 21051–21063. [Google Scholar] [CrossRef]
- Lalle, Y.; Fourati, L.C.; Fourati, M.; Barraca, J.P. A comparative study of LoRaWAN, SigFox, and NB-IoT for smart water grid. In Proceedings of the Global Information Infrastructure and Networking Symposium (GIIS), Paris, France, 18–20 December 2019; pp. 1–6. [Google Scholar]
- Liberg, O.; Sundberg, M.; Johan, E.W.; Sachs, B.J. Cellular Internet of Things: Technologies Standards and Performance; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Persia, S.; Carciofi, C.; Faccioli, M. NB-IoT and LoRA connectivity analysis for M2M/IoT smart grids applications. In Proceedings of the IEEE AEIT International Annual Conference, Cagliari, Italy, 20–22 September 2017; pp. 1–6. [Google Scholar]
- Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage and capacity analysis of Sigfox LoRa GPRS and NB-IoT. In Proceedings of the IEEE 85th Vehicular Technology Conference, Sydney, NSW, Australia, 4–7 June 2017. [Google Scholar]
- Lauridsen, M.; Nguyen, H.; Vejlgaard, B.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage comparison of GPRS, NB-IoT, LoRa, and SigFox in a 7800 km area. In Proceedings of the IEEE 85th Vehicular Technology Conference, Sydney, NSW, Australia, 4–7 June 2017. [Google Scholar]
- Ribeiro, L.; Tokikawa, D.; Rebelatto, J.; Brante, G. Comparison between LoRa and NB-IoT coverage in urban and rural Southern Brazil regions. Ann. Telecommun. 2020, 75, 755–766. [Google Scholar] [CrossRef]
- AL-agele, H.A.; Jashami, H.; Nackley, L.; Higgins, C. A Variable Rate Drip Irrigation Prototype for Precision Irrigation. Agronomy 2021, 11, 2493. [Google Scholar] [CrossRef]
- Kustas, W.P.; Nieto, H.; Garcia-Tejera, O.; Bambach, N.; McElrone, A.J.; Gao, F.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.; Torres-Rua, A.; et al. Impact of advection on two-source energy balance (TSEB) canopy transpiration parameterization for vineyards in the California Central Valley. Irrig. Sci. 2022, 40, 575–591. [Google Scholar] [CrossRef]
Model | Resolution | Time Step | Application | ||
---|---|---|---|---|---|
Footprint | Number of Plants | ||||
Coarse | Surface Energy Balance, Remotely or Proximally Sensed | 10 m or greater | Multiple | Monthly, weekly, daily, hourly | Open field |
Original Penman–Monteith | 10 m or greater | Multiple | Daily | Open field | |
Stanghellini | 10 m or greater | Multiple | Hourly | Greenhouse or indoor | |
Priestly–Taylor | 10 m or greater | Multiple | Daily | Open field | |
Hargreaves and Samani | 10 m or greater | Multiple | Daily | Open field | |
Reference ET and Crop Coefficients | 100 m or greater | Multiple | Hourly | Open field | |
Eddy Covariance | 10 m or greater | Multiple | Hourly | Open field | |
Soil Moisture Sensors | 10 m or greater | Multiple | Hourly | Open field, greenhouse, or indoor | |
Pan Evaporation | 10 m or greater | Multiple | Daily or hourly | Open field | |
Fine | Lysimeters | Area of Lysimeter | Single or Multiple | Two minutes or less | Open field, greenhouse, or indoor |
Sap Flow Sensors | 1–6 m | Single | Hourly | Open field, greenhouse, or indoor | |
Gas Exchange Measurements | Less than 1 m | Single | Two minutes or less | Open field, greenhouse, or indoor | |
Infrared Temperature Measurements | Less than 1 m | Single | Hourly | Open field, greenhouse, or indoor | |
High-Resolution Irrigation Models and Low-Cost Sensors | 1–6 m | Single or Multiple | Two minutes | Open field |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenkins, M.; Block, D.E. A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems. Agronomy 2024, 14, 1355. https://doi.org/10.3390/agronomy14071355
Jenkins M, Block DE. A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems. Agronomy. 2024; 14(7):1355. https://doi.org/10.3390/agronomy14071355
Chicago/Turabian StyleJenkins, Matthew, and David E. Block. 2024. "A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems" Agronomy 14, no. 7: 1355. https://doi.org/10.3390/agronomy14071355
APA StyleJenkins, M., & Block, D. E. (2024). A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems. Agronomy, 14(7), 1355. https://doi.org/10.3390/agronomy14071355