Antifungal and Allelopathic Effects of Essential Oil from Calyptranthes concinna DC. Dried Leaves and of Its Major Constituent Elemicin
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material and EO Extraction
2.2. GC-MS and GC-FID Analyses
2.3. Antifungal Assays
2.4. Statistical Analysis
2.5. Allelopathic Assays
3. Results and Discussion
3.1. Chemical Composition of Cc-EO
3.2. Antifungal Effects of Cc-EO and Elemicin against Phytopathogenic Fungi
3.3. Allelopathic Effects of Cc-EO and Elemicin against L. sativa Seeds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowanski, S.; Kudlewska, M.; Marciniak, P.; Rosinski, G. Synthetic insecticide—Is there an alternative? Pol. J. Environ. Stud. 2014, 23, 291–302. [Google Scholar]
- Devi, P.I.; Manjula, M.; Bhavani, R.V. Agrochemicals, environment, and human health. Annu. Rev. Environ. Resour. 2022, 47, 399–421. [Google Scholar] [CrossRef]
- Sparks, T.C.; Duke, S.O. Structure simplification of natural products as a lead generation approach in agrochemical discovery. J. Agric. Food Chem. 2021, 69, 8324–8346. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Martínez-Zamora, L.; Peñalver, R.; Marín-Iniesta, F.; Taboada-Rodríguez, A.; López-Gómez, A.; Martínez-Hernández, G.B. Applications of plant bioactive compounds as replacers of synthetic additives in the food industry. Foods 2024, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Lajayer, B.A.; Hadian, J.; Astatkie, T. Applications of essential oils and plant extract in different industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.A.; Silva, R.S.; Oliveira, M.R.; Guimarães, A.C.; Takeara, R. Chemical composition and biological activities of essential oils from Myrtaceae species growing in Amazon: An update review. J. Essent. Oil Res. 2023, 35, 103–116. [Google Scholar] [CrossRef]
- Costa, M.S.; Araújo, N.J.S.; Freitas, T.S.; Cunha, F.A.B.; Amaral, W.; Deschamps, C.; Confortin, C.; Silva, L.E.; Coutinho, H.D.M. GC-FID analysis and antibacterial activity of the Calyptranthes concinna essential oil against MDR bacterial strains. Separations 2020, 7, 10. [Google Scholar] [CrossRef]
- Marchiori, J.N.C.; Brum, E.T. Wood anatomy of Calyptranthes concinna DC. (Myrtaceae). Ciênc. Rural 1997, 27, 217–222. [Google Scholar] [CrossRef]
- Parikh, L.; Agindotan, B.O.; Burrows, M.E. Antifungal activity of plant-derived essential oils on pathogens of pulse crops. Plant Dis. 2021, 105, 1692–1701. [Google Scholar] [CrossRef]
- Macías, F.A.; Molonillo, J.M.G.; Varela, R.M.; Galindo, J.C.G. Allelopathy—A natural alternative for weed control. Pest Mang. Sci. 2007, 63, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.A.S.; Vieira, T.M.; Esperandim, V.R.; Martins, C.H.G.; Magalhães, L.G.; Miranda, M.L.D.; Crotti, A.E.M. Antibacterial, antiparasitic, and cytotoxic activities of chemical characterized essential oil of Chrysopogon zizanioides roots. Pharmaceuticals 2022, 15, 967. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing: Carol Stream, IL, USA, 2007; p. 804. [Google Scholar]
- Sahi, I.Y.; Khalid, A.N. In vitro biological control of Fusarium oxysporum causing wilt in Capsicum annuum. Mycopath 2007, 5, 85–88. [Google Scholar]
- Kobori, N.N.; Mascarin, G.M.; Jackson, M.A.; Schisler, D.A. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biol. 2015, 119, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Adjou, E.S.; Sandrine, K.; Edwige, D.A.; Sohounhloue, D.C.K.; Soumanou, M.M. Antifungal activity of Ocimum canum essential oil against toxinogenic fungi isolated from peanut seeds in post-harvest in Benin. Int. Res. J. Biological Sci. 2012, 1, 20–26. [Google Scholar]
- Pinto, C.M.F.; Maffia, L.A.; Casali, V.W.D.; Cardoso, A.A. In vitro effect of plant leaf extracts on mycelial growth and sclerotial germination of Sclerotinia cepivorum. J. Phytopathol. 1998, 146, 421–425. [Google Scholar] [CrossRef]
- Jalaei, Z.; Fattahi, M.; Aramideh, S. Allelopathic and insecticidal activities of essential oil of Dracocephalum kotschyi Boiss. from Iran: A new chemotype with highest limonene-10-al and limonene. Ind. Crops Prod. 2015, 73, 109–117. [Google Scholar] [CrossRef]
- Bai, H.; Ni, X.; Han, J.; Luo, D.; Hu, Y.; Jin, C.; Li, Z. Phytochemical profiling and allelopathic effect of garlic essential oil on barnyard grass (Echinochloa crusgalli L.). PLoS ONE 2023, 18, e0272842. [Google Scholar] [CrossRef] [PubMed]
- Abbasi Khalaki, M.; Ghorbani, A.; Dadjou, F. Influence of nano-priming on festuca ovina seed germination and early seedling traits under drought stress, in laboratory condition. Ecopersia 2019, 7, 133–139. [Google Scholar]
- Antonelo, F.A.; Rodrigues, M.S.; Júnior, A.W.; Montanher, P.F. Chemical composition and antioxidant activity of leaf essential oil from Calyptranthes concinna DC. (Myrtaceae). Acta Sci. Biol. Sci. 2022, 44, e62438. [Google Scholar] [CrossRef]
- Limberger, R.P.; Simões-Pires, C.A.; Sobral, M.; Menut, C.; Bessiere, J.M.; Henriques, A.T. Essential oils from Calyptranthes concinna, C. lucida and C. rubella (Myrtaceae). Braz. J. Pharm. Sci. 2002, 38, 355–360. [Google Scholar] [CrossRef]
- Silveira, R.M.; Carvalho, A.F.U.; Bunger, M.O.; Gomes, M.M.; Costa, I.R. How much do the environmental conditions interfere with the essential oils of Eugenia spp. L. (Myrtaceae)? J. Braz. Chem. Soc. 2022, 33, 274–280. [Google Scholar] [CrossRef]
- Nascimento, L.D.; Silva, S.G.; Cascaes, M.M.; Costa, K.S.; Figueiredo, P.L.B.; Costa, C.M.L.; Andrade, E.H.A.; Faria, L.J.G. Drying effects on chemical composition and antioxidant activity of Lippia thymoides essential oil, a natural source of thymol. Molecules 2021, 26, 2621. [Google Scholar] [CrossRef] [PubMed]
- Greff, B.; Sáhó, A.; Lakatos, E.; Varga, L. Biocontrol activity of aromatic and medicinal plants and their bioactive components against soil-borne pathogens. Plants 2023, 12, 706. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.N.; Alves, J.M.; Carneiro, N.S.; Souchie, E.L.; Silva, E.A.J.; Martins, C.H.G.; Ambrosio, M.A.L.V.; Egea, M.B.; Alves, C.C.F.; Miranda, M.L.D. Chemical composition from essential oil of Cardiopetalum calophyllum Schltdl. (Annonaceae) and their antioxidant, antibacterial and antifungal activities. Rev. Virtual Quim. 2016, 8, 1433–1448. [Google Scholar] [CrossRef]
- Toigo, S.E.M.; Fernandes, C.C.; Miranda, M.L.D. Promising antifungal activity of two varieties of Capsicum chinense against Sclerotinia sclerotiorum, Rhizopus stolonifer and Colletotrichum goleosporoides. Food Sci. Technol. 2022, 42, e52722. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.A.; Bicas, J.L. Antifungal activity of essential oils of tea tree, oregano, thyme, and cinnamon, and their components. Braz. J. Food Technol. 2024, 27, e2023071. [Google Scholar] [CrossRef]
- Ahmed, H.F.A.; Seleiman, M.F.; Mohamed, I.A.A.; Taha, R.S.; Wasonga, D.O.; Battaglia, M.L. Activity of essential oils and plant extracts as biofungicides for suppresion of soil-borne fungi associeted with root rot and wilt of marigold (Calendula officinalis L.). Horticulturae 2023, 9, 222. [Google Scholar] [CrossRef]
- Santos, C.; Melo, M.C.; Ruiz, A.L.T.G.; Foglio, M.A. Antiproliferative activity from five Myrtaceae essential oils. Res. Soc. Develop. 2023, 12, e14612340536. [Google Scholar] [CrossRef]
- Khruengsai, S.; Pripdeevech, P.; Tanapichatsakul, C.; Srisuwannapa, C.; D’Souza, P.E.; Panuwet, P. Antifungal properties of volatile organic compounds produced by Daldinia eschscholtzii MFLUCC 19-0493 isolated from Barleria prionitis leaves against Colletotrichum acutatum and its post-harvest infections on strawberry fruits. PeerJ 2021, 18, 1–23. [Google Scholar] [CrossRef]
- Jayasinghe, L.; Kumarihamy, B.M.M.; Jayarathna, K.H.R.N.; Udishani, N.W.M.G.; Bandara, B.M.R.; Hara, N.; Fujimoto, Y. Antifungal constituents of the stem bark of Bridelia retusa. Phytochemistry 2003, 62, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Park, C.J.; Kim, H.S.; Lee, D.W.; Kim, J.; Choi, Y.H. Identification of antifungal constituents of essential oils extracted from Boesenbergia pulcherrima against Fusarium wilt (Fusarium oxysporum). Appl. Biol. Chem. 2020, 63, 34. [Google Scholar] [CrossRef]
- Al-Qahtani, W.H.; Dinakarkumar, Y.; Arokiyaraj, S.; Saravanakumar, V.; Rajabathar, J.R.; Arjun, K.; Gayathri, P.K.; Appaturi, J.N. Phyto-chemical and biological activity of Myristica fragrans, an ayurvedic medicinal plant in Southern India and its ingredient analysis. Saudi J. Biol. Sci. 2022, 29, 3815–3821. [Google Scholar] [CrossRef] [PubMed]
- Ismail, J.; Shebaby, W.N.; Daher, J.; Boulos, J.C.; Taleb, R.; Daher, C.F.; Mroueh, M. The wild carrot (Daucus carota): A phytochemical and pharmacological review. Plants 2024, 13, 93. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.; Sánchez-Hernández, E.; Teixeira, A.; Oliveira, R.; Cunha, A.; Martín-Ramos, P. Phytoconstituents and ergosterol biosynthesis-targeting antimicrobial activity of nutmeg (Myristica fragrans Houtt.) against phytopathogens. Molecules 2024, 29, 471. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.K.M.M.; Suttiyut, T.; Anwar, M.P.; Juraimi, A.S.; Kato-Noguchi, H. Allelopathic properties of Lamiaceae species: Prospects and challenges to use in agriculture. Plants 2022, 11, 1478. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.A.S.F.; Cardoso, M.G.; Carvalho, M.L.M.; Figueiredo, A.C.S.; Nelson, D.L.; Oliveira, C.M.; Gomes, M.S.; Andrade, J.; Souza, J.A.; Albuquerque, L.R.M. Chemical composition and allelopathic activity of Parthenium hysterophorus and Ambrosia polystachya weeds essential oils. Am. J. Plant Sci. 2014, 5, 1248–1257. [Google Scholar] [CrossRef]
- Pinto, A.P.R.; Seibert, J.B.; Santos, O.D.H.; Filho, S.A.V.; Nascimento, A.M. Chemical constituents and allelopathic activity of the essential oil from leaves of Eremanthus erythropappus. Aust. J. Bot. 2018, 66, 601–608. [Google Scholar] [CrossRef]
- Yang, K.; Yang, Y.; Wu, X.; Zheng, F.; Xu, G.; Yang, S.; Jin, G.; Clements, D.R.; Shen, S.; Zhang, F. Allelopathic potential and chemical composition of essential oil from the invasive plant Acmella radicans. Agronomy 2024, 14, 342. [Google Scholar] [CrossRef]
Retention Index (RI) | |||
---|---|---|---|
Compounds | RIexp | RIlit | RA% |
β-Pinene | 971 | 973 | 0.2 |
Sabinene | 980 | 980 | 1.0 |
cis-β-Ocimene | 1005 | 1007 | 0.1 |
Copaene | 1338 | 1339 | 0.3 |
β-bourbonene | 1382 | 1382 | 0.7 |
E-Caryophyllene | 1416 | 1417 | 0.5 |
Aromadendrene | 1441 | 1441 | 1.5 |
α-Humulene | 1448 | 1450 | 0.8 |
γ-Muurolene | 1477 | 1479 | 1.0 |
α-Amorphene | 1483 | 1483 | 1.0 |
β-Selinene | 1489 | 1489 | 0.1 |
Bicyclogermacrene | 1496 | 1497 | 0.5 |
δ-Amorphene | 1509 | 1511 | 1.0 |
Elemicin | 1555 | 1555 | 60.5 |
Spathulenol | 1577 | 1577 | 6.2 |
Caryophyllene oxide | 1580 | 1581 | 8.3 |
Globulol | 1589 | 1590 | 1.2 |
Viridiflorol | 1590 | 1590 | 0.1 |
τ-Cadinol | 1638 | 1640 | 6.0 |
α-Cadinol | 1653 | 1653 | 9.0 |
Total | 100 |
IMG Concentrations (mg/mL) of Cc-EO (%) | |||||
---|---|---|---|---|---|
Fungal Strains | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 |
Aspergillus niger | 45.2 ± 6.0 | 65.0 ± 2.8 | 70.3 ± 1.0 | 82.3 ± 0.1 | 100 ± 0.0 |
Aspergillus flavus | 46.5 ± 7.6 | 67.0 ± 2.0 | 77.9 ± 0.2 | 87.4 ± 1.0 | 100 ± 0.0 |
Aspergillus nomius | 26.3 ± 24.8 | 53.1 ± 7.4 | 65.8 ± 3.0 | 78.3 ± 0.2 | 91.4 ± 0.8 |
Penicillium digitatum | 43.8 ± 4.3 | 53.8 ± 7.0 | 70.0 ± 1.0 | 85.5 ± 1.2 | 100 ± 0.0 |
Penicillium expansum | 13.5 ± 13.0 | 25.9 ± 3.0 | 37.9 ± 0.6 | 50.2 ± 8.0 | 68.3 ± 0.7 |
Sclerotinia sclerotiorum | 13.2 ± 2.7 | 27.8 ± 2.0 | 41.7 ± 3.0 | 52.4 ± 3.0 | 71.3 ± 2.0 |
Sclerotinia rolfsii | 3.7 ± 0.8 | 12.4 ± 0.2 | 25.6 ± 0.7 | 37.1 ± 1.0 | 54.6 ± 1.0 |
Sclerotinia minor | 18.6± 8.4 | 28.5 ± 3.5 | 36.5 ± 0.3 | 48.4 ± 0.3 | 61.7 ± 0.1 |
Fusarium graminearum | 7.1 ± 5.1 | 20.3 ± 2.0 | 31.1 ± 0.1 | 45.3 ± 0.1 | 60.0 ± 3.0 |
Myrothecium verrucaria | 10.3 ± 2.6 | 20.0 ± 1.0 | 32.4 ± 0.8 | 46.0 ± 0.1 | 67.8 ± 0.5 |
Corynespora cassiicola | 49.9 ± 15.5 | 55.9 ± 0.4 | 69.8 ± 0.1 | 80.0 ± 0.1 | 100 ± 0.0 |
Erwinia psidii | 14.0 ± 2.6 | 29.3 ± 5.0 | 39.9 ± 3.0 | 50.0 ± 5.0 | 54.2 ± 7.0 |
Colletotrichum musae | 50.0 ± 5.0 | 60.3 ± 3.0 | 68.3 ± 2.0 | 80.3 ± 3.0 | 100 ± 0.0 |
Alternaria carthami | 43.8 ± 4.3 | 57.4 ± 2.0 | 66.7 ± 1.0 | 80.0 ± 0.1 | 100 ± 0.0 |
Rhizoctonia solani | 20.9 ± 4.2 | 38.8 ± 3.0 | 49.7 ± 0.2 | 60.0 ± 0.3 | 68.3 ± 1.0 |
Rhizopus stolonifer | 17.3 ± 3.0 | 27.3 ± 0.2 | 40.0 ± 1.3 | 67.9 ± 3.0 | 87.5 ± 2.0 |
Macrophomina phaseolina | 46.3 ± 6.0 | 58.0 ± 1.3 | 69.0 ± 0.7 | 81.9 ± 0.3 | 100 ± 0.0 |
Fluazinam * | 100 ± 0.0 |
IMG Concentrations (mg/mL) of Elemicin (%) | |||||
---|---|---|---|---|---|
Fungal Strains | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 |
Aspergillus niger | 51.0 ± 2.0 | 60.0 ± 0.1 | 79.5 ± 2.0 | 81.0 ± 0.1 | 89.3 ± 0.1 |
Aspergillus flavus | 51.2 ± 1.0 | 62.5 ± 3.0 | 78.1 ± 1.0 | 83.2 ± 3.0 | 90.5 ± 0.5 |
Aspergillus nomius | 53.0 ± 1.2 | 61.0 ± 0.1 | 75.4 ± 0.4 | 85.5 ± 0.3 | 93.0 ± 0.2 |
Penicillium digitatum | 53.5 ± 4.0 | 60.5 ± 1.0 | 69.3 ± 2.0 | 71.3 ± 2.0 | 80.3 ± 1.0 |
Penicillium expansum | 51.1 ± 0.3 | 67.5 ± 0.3 | 77.3 ± 1.0 | 87.4 ± 0.1 | 95.5 ± 0.1 |
Sclerotinia sclerotiorum | 50.8 ± 4.0 | 57.8 ± 1.0 | 70.1 ± 0.2 | 78.9 ± 3.0 | 87.2 ± 3.0 |
Sclerotinia rolfsii | 57.0 ± 1.0 | 65.9 ± 2.0 | 72.3 ± 0.6 | 82.0 ± 2.0 | 91.8 ± 0.3 |
Sclerotinia minor | 55.0 ± 0.3 | 63.4 ± 1.0 | 75.9 ± 1.0 | 87.1 ± 0.3 | 96.1 ± 0.1 |
Fusarium graminearum | 52.0 ± 3.0 | 63.0 ± 0.2 | 70.6 ± 2.0 | 77.3 ± 1.0 | 83.7 ± 3.0 |
Myrothecium verrucaria | 56.3 ± 2.0 | 65.9 ± 2.0 | 73.4 ± 0.5 | 79.0 ± 5.0 | 84.5 ± 0.1 |
Corynespora cassiicola | 51.0 ± 0.1 | 60.1 ± 1.2 | 67.9 ± 2.0 | 76.9 ± 2.0 | 82.3 ± 3.0 |
Erwinia psidii | 52.3 ± 2.0 | 62.6 ± 2.0 | 73.1 ± 2.0 | 83.2 ± 0.5 | 92.1 ± 0.4 |
Colletotrichum musae | 58.0 ± 4.0 | 67.0 ± 1.0 | 78.0 ± 3.0 | 85.6 ± 0.1 | 95.3 ± 1.0 |
Alternaria carthami | 55.2 ± 1.0 | 64.4 ± 2.0 | 72.2 ± 0.1 | 80.9 ± 2.0 | 90.1 ± 0.2 |
Rhizoctonia solani | 54.0 ± 1.0 | 68.3 ± 2.0 | 76.6 ± 2.0 | 87.9 ± 0.8 | 98.0 ± 1.4 |
Rhizopus stolonifer | 56.0 ± 0.4 | 65.0 ± 3.0 | 73.9 ± 1.0 | 83.3 ± 2.0 | 92.3 ± 0.1 |
Macrophomina phaseolina | 57.7 ± 0.1 | 69.9 ± 2.0 | 77.8 ± 2.0 | 88.4 ± 1.0 | 99.3 ± 0.3 |
Fluazinam * | 100 ± 0.0 |
Cc-EO Concentrations (mg/mL) | Shoot Growth (cm) | Germination (%) |
---|---|---|
Control | 2.35 ± 0.07 | 100 |
0.018 | 2.33 ± 0.11 | 45.8 ± 0.1 |
0.035 | 1.84 ± 0.12 | 16.7 ± 0.5 |
0.07 | 1.05 ± 0.15 | 7.9 ± 0.05 |
0.14 | 0.55 ± 0.1 | 4.3 ± 0.02 |
0.28 | 0.30 ± 0.02 | 2.5 ± 0.1 |
Elemicin Concentrations (mg/mL) | Shoot Growth (cm) | Germination (%) |
---|---|---|
Control | 2.35 ± 0.07 | 100 |
0.018 | 2.20 ± 0.15 | 45.0 ± 0.1 |
0.035 | 1.70 ± 0.01 | 15.5 ± 0.5 |
0.07 | 0.98 ± 0.03 | 6.2 ± 0.05 |
0.14 | 0.40 ± 0.1 | 3.3 ± 0.1 |
0.28 | 0.25 ± 0.02 | 2.1 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, C.C.; Dias, A.L.B.; Santos, J.G.d.; da Silva, I.J.M.M.; Miranda, M.L.D. Antifungal and Allelopathic Effects of Essential Oil from Calyptranthes concinna DC. Dried Leaves and of Its Major Constituent Elemicin. Agronomy 2024, 14, 1527. https://doi.org/10.3390/agronomy14071527
Fernandes CC, Dias ALB, Santos JGd, da Silva IJMM, Miranda MLD. Antifungal and Allelopathic Effects of Essential Oil from Calyptranthes concinna DC. Dried Leaves and of Its Major Constituent Elemicin. Agronomy. 2024; 14(7):1527. https://doi.org/10.3390/agronomy14071527
Chicago/Turabian StyleFernandes, Cassia C., Alline L. B. Dias, Jaciel G. dos Santos, Irles J. M. M. da Silva, and Mayker L. D. Miranda. 2024. "Antifungal and Allelopathic Effects of Essential Oil from Calyptranthes concinna DC. Dried Leaves and of Its Major Constituent Elemicin" Agronomy 14, no. 7: 1527. https://doi.org/10.3390/agronomy14071527
APA StyleFernandes, C. C., Dias, A. L. B., Santos, J. G. d., da Silva, I. J. M. M., & Miranda, M. L. D. (2024). Antifungal and Allelopathic Effects of Essential Oil from Calyptranthes concinna DC. Dried Leaves and of Its Major Constituent Elemicin. Agronomy, 14(7), 1527. https://doi.org/10.3390/agronomy14071527