Digestate from an Agricultural Biogas Plant as a Factor Shaping Soil Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment
2.2. Physicochemical Properties of the Soil Used in the Experiment
2.3. Characteristics of Digestate from the Agricultural Biogas Plant in Boleszyn
2.4. Methods of Laboratory Analysis
- –
- pH—potentiometric method in a KCl solution with a concentration of 1 mol dm−3, using a pH 538 laboratory pH meter and a WTW electrode [33];
- –
- EC—conductometric method using the HANNA HI8733 conductivity meter;
- –
- HAC and SBC—Kappen method [33];
- –
- exchangeable basic cations were determined on an atomic absorption spectrophotometer—AA240FS Fast Sequential Atomic Absorption Spectrometer—after previous extraction of the soil with a 1M ammonium acetate solution [33];
- –
- TC on the TOC–L (Total Organic Carbon Analyzer) device from SHIMADZU using the SSM-5000A (Solid Sample Module) adapter [34];
- –
- Ntot—Kjeldahl distillation method. For this purpose, soil and DIG samples were mineralized in concentrated sulfuric acid (VI) with the addition of hydrogen peroxide as a catalyst. Distillation was carried out on a MODEL K-355 steam distiller [35];
- –
- macronutrients (general forms): P—spectrophotometrically using the vanadium–molybdenum method [36], K, Mg, Ca, and Na—using an atomic absorption spectrophotometer—AA240FS Fast Sequential Atomic Absorption Spectrometer [37]. These determinations were made after prior mineralization of the samples in concentrated sulfuric acid (VI) with the addition of hydrogen peroxide;
- –
- –
- trace elements (forms close to total) using an atomic absorption spectrophotometer—AA240FS Fast Sequential Atomic Absorption Spectrometer [37], using MERCK standards. Before determination, the analytical material (soil, LD, SD) was mineralized in a MARS 6 microwave oven (CEM Corporation, USA) in MARSXpress Teflon vessels according to the US–EPA3051 methodology, using acids, 65% HNO3 and 38% HCl, in a ratio of 3:1 [37,39]. To control the accuracy of the obtained results, the reference material CRM0120-50G (Trace Metals—Sandy Loam 2) was analyzed in parallel;
- –
2.5. Statistical Analysis
3. Results
3.1. Sorption Properties of Soil and the Content of Exchangeable Cations
3.2. The Content of Exchangeable Cations
3.3. pH and EC Value as well as TC, Ntot, and C:N Ratio Content
3.4. Content of Digestible Macronutrients (Kav, Pav, Mgav)
3.5. Content of Trace Elements
3.6. The Share of Available Forms of Trace Elements in Their Total Content
3.7. Correlations between the Content of Available Forms of Trace Elements and Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taurino, R.; Lancellotti, I.; Tatàno, F.; Carchesio, M.; Pozzi, P. Mechanical and chemical resistance of composite materials with addition of anaerobic digestate. Compos. Part B Eng. 2016, 92, 259–264. [Google Scholar] [CrossRef]
- Seminario-Córdova, R.; Rojas-Ortega, R. Renewable energy sources and energy production: A bibliometric analysis of the last five years. Sustainability 2023, 15, 10499. [Google Scholar] [CrossRef]
- Rahman, M.M. Environmental degradation: The role of electricity consumption, economic growth and globalisation. J. Environ. Manag. 2020, 253, 109742. [Google Scholar] [CrossRef] [PubMed]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R.A. Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Miłek, D.; Nowak, P.; Latosińska, J. The Development of Renewable Energy Sources in the European Union in the Light of the European Green Deal. Energies 2022, 15, 5576. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Rene, E.R.; Dupont, C.; Wongrod, S.; van Hullebusch, E.D. Anaerobic digestion of fruit waste mixed with sewage sludge digestate biochar: Influence on biomethane production. Front. Energy Res. 2020, 8, 31–45. [Google Scholar] [CrossRef]
- Vitti, A.; Elshafie, H.S.; Logozzo, G.; Marzario, S.; Scopa, A.; Camele, I.; Nuzzaci, M. Physico-chemical characterization and biological activities of a digestate and a more stabilized digestate-derived compost from agro-waste. Plants 2021, 10, 386–401. [Google Scholar] [CrossRef]
- Wiater, J.; Horysz, M. Organic waste as a substrat in biogas production. J. Ecolog. Eng. 2017, 18, 226–234. [Google Scholar] [CrossRef]
- Pappalardo, G.; Trimarchi, E.; Selvagg, R. Assessment of economic viability and production costs for the innovative microfiltered digestate. J. Environ. Manag. 2023, 332, 117360–117366. [Google Scholar] [CrossRef] [PubMed]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.H.; Eich-Greatorex, S. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recycl. Org. Waste Agric. 2018, 7, 49–58. [Google Scholar] [CrossRef]
- Tambone, F.; Adani, F.; Gigliotti, G.; Volpe, D.; Fabbri, C.; Provenzano, M.R. Organic matter characterization during the anaerobic digestion of different biomasses by means of CPMAS 13C NMR spectroscopy. Biomass Bioenergy 2013, 48, 111–120. [Google Scholar] [CrossRef]
- Stürmer, B.; Pfundtner, E.; Kirchmeyr, F.; Uschnig, S. Legal requirements for digestate as fertilizer in Austria and the European Union compared to actual technical parameters. J. Environ. Manag. 2020, 253, 109756. [Google Scholar] [CrossRef] [PubMed]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sus. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Najera, I.; Baixauli, C.; Caravaca, F.; Roldan, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Pappalardo, G.; Selvaggi, R.; Pecorino, B. Biomethane production potential in Southern Italy: An empirical approach. Renew. Sustain. Energy Rev. 2022, 158, 112190. [Google Scholar] [CrossRef]
- Coppola, A.; Iannuario, S.; Chinnici, G.; Di Vita, G.; Pappalardo, G.; D’Amico, M. Endogenous and exogenous determinants of agricultural productivity: What is the most relevant for the competitiveness of the Italian agricultural systems? Agris. Online Pap. Econ. Inform. 2018, 10, 33–47. [Google Scholar] [CrossRef]
- Ministerstwo Rolnictwa i Rozwoju Wsi. Act on Fertilizers and Fertilization of July 10, 2007 (Journal of Laws of 2007, No. 147, Item 1033. Prepared on the Basis of Journal of Laws of 2023, Items 569, 1597); Ministerstwo Rolnictwa i Rozwoju Wsi: Warszawa, Poland, 2007. [Google Scholar]
- Ministerstwo Rolnictwa i Rozwoju Wsi. Regulation of the Minister of Agriculture and Rural Development of June 18, 2008 on the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization. Journal Laws 2008. No. 119, item 765; Ministerstwo Rolnictwa i Rozwoju Wsi: Warszawa, Poland, 2008. [Google Scholar]
- Ministerstwo Rolnictwa i Rozwoju Wsi. Regulation of the Minister of Agriculture and Rural Development of October 12, 2023 on a detailed list of substrates that can be used in agricultural biogas plants. Journal Laws 2023. item 2230; Ministerstwo Rolnictwa i Rozwoju Wsi: Warszawa, Poland, 2023. [Google Scholar]
- Pietruszka, A.; Maślanko, M.; Ciecholewska-Juśko, D. Sanitization of Biomass in Agricultural Biogas Plants Depends on the Type of Substrates. Animals 2023, 13, 855. [Google Scholar] [CrossRef]
- Bayazitova, Z.E.; Kurmanbayeva, A.S.; Tleuova, Z.O.; Temirbekova, N.G. Application of the thermophilic fermentation method to obtain environmentally friendly organic fertilizer. J. Ecol. Eng. 2023, 24, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, D.; Manojlović, M.; Čabilovski, R.; Ilić, Z.S.; Petković, K.; Štrbac, M.; Vijuk, M. Digestate and manure use in kohlrabi production: Impact on plant-available nutrients and heavy metals in soil, yield, and mineral composition. Agronomy 2022, 12, 871–889. [Google Scholar] [CrossRef]
- Häfner, F.; Hartung, J.; Möller, K. Digestate composition affecting N fertiliser value and C mineralisation. Waste Biomass Valorization 2022, 13, 3445–3462. [Google Scholar] [CrossRef]
- Radawiec, W.; Dubicki, M.; Karwowska, A.; Żelazna, K.; Gołaszewski, J. Biochar from a digestate as an energy product and soil improver. Agric. Eng. 2014, 3, 149–156. [Google Scholar] [CrossRef]
- Van Midden, C.; Harris, J.; Shaw, L.; Sizmur, T.; Pawlet, M. The impact of anaerobic digestate on soil life: A review. Appl. Soil Ecol. 2023, 191, 105066–105078. [Google Scholar] [CrossRef]
- Slepetiene, A.; Volungevicius, J.; Jurgutis, L.; Liaudanskiene, I.; Amaleviciute-Volunge, K.; Slepetys, J.; Ceseviciene, J. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Manag. 2020, 102, 441–451. [Google Scholar] [CrossRef] [PubMed]
- García-López, A.M.; Delgado, A.; Anjos, O.; Horta, C. Digestate Not Only Affects Nutrient Availability but Also Soil Quality Indicators. Agronomy 2023, 13, 1308. [Google Scholar] [CrossRef]
- Ministerstwo Rolnictwa i Rozwoju Wsi. Act of 20 July 2017, Water Law. Journal U. 2017. Item 1566 (Prepared on the Basis of: Journal of Laws of 2021, Items 2233, 2368, of 2022, Items 88, 258, 855); Ministerstwo Rolnictwa i Rozwoju Wsi: Warszawa, Poland, 2021.
- OSN Action Program. Available online: http://nowy.dodr.pl/IV/7/file/2013/1/2.pdf (accessed on 1 March 2023).
- Karczewska, A.; Kabała, C. Methodology of Laboratory Analyzes of Soils and Plants; University of Life Sciences: Wrocław, Poland, 2008. [Google Scholar]
- Shimadzu. Shimadzu Analytical and Measuring Instruments. User’s Manual; Shimadzu Corporation: Kyoto, Japan, 2016. [Google Scholar]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties (Agronomy 9); Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plants Properties, 1st ed.; Institute of Environmental Protection: Warsaw, Poland, 1991. [Google Scholar]
- US Environmental Protection Agency. Method 3051. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; US Environmental Protection Agency: Washington, DC, USA, 2007; Available online: https://settek.com/documents/EPAMethods/PDF/EPA-Method-3051.pdf (accessed on 10 February 2023).
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchun-gen über die chemische bodenanalyse als grundlage für die beurteilung des nährstoffzustandes der böden. II. Chemische extractionsmethoden zur phospor-und kaliumbestimmung. Ann. R. Agric. Coll. Swed. 1960, 26, 199–215. [Google Scholar]
- CEM Corporation. CEM Mars 6 Operation Manual; CEM Corporation: Matthews, NC, USA, 2017. [Google Scholar]
- Rolka, E.; Wyszkowski, M. Availability of trace elements in soil with simulated cadmium, lead and zinc pollution. Minerals 2021, 11, 879. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Bakuła, T.; Rolka, E.; Klasa, A. Effect of Mineral–Microbial Deodorizing Preparation on the Value of Poultry Manure as Soil Amendment. Int. J. Environ. Res. Public Health. 2022, 19, 16639. [Google Scholar] [CrossRef] [PubMed]
- Burdzy, J. Statistical Tables; Lublin University of Technology Publishing House: Lublin, Poland, 1999. [Google Scholar]
- Microsoft. MS Excel® for Microsoft 365 MSO; Microsoft Corporation: Albuquerque, NM, USA, 2021. [Google Scholar]
- TIBCO Software Inc. Statistica Version 13; Data Analysis Software System; Tibco Software Inc.: Palo Alto, CA, USA, 2021; Available online: http://statistica.io (accessed on 15 March 2023).
- Kovačić, Ð.; Lončaric, Z.; Jovic, J.; Samac, D.; Popovic, B.; Tišma, M. Digestate management and processing practices: A review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- Radawiec, W.; Gołaszewski, J.; Kalisz, B.; Przemieniecki, S. Chemical, biological and respirometry properties of soil under perennial crops fertilized with digestate. Int. Agrophys. 2023, 37, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The effectiveness of digestate use for fertilization in an agricultural cropping system. Plants 2021, 10, 1734–1747. [Google Scholar] [CrossRef] [PubMed]
- Panuccio, M.R.; Romeo, F.; Mallamaci, C.; Muscolo, M. Digestate application on two different soils: Agricultural benefit and risk. Waste Biomass Valorization 2021, 12, 4341–4353. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B.; Strzelecka, J. The impact of organic matter on the quality of agricultural soils. Stud. Rep. IUNG-PIB 2017, 54, 25–39. [Google Scholar]
- Bielińska, E.J.; Mocek, A. Sorption properties and enzymatic activity of municipal park soils in regions of varying impact of anthropologic pressure. J. Res. Appl. Agric. Eng. 2010, 55, 20–23. (In Polish) [Google Scholar]
- Stańczyk-Mazanek, E.; Piątek, M.; Kępa, U. Effect of Sewage Sludge Applied to Sandy Soils on the Sorption Complex Properties. Annu. Set Environ. Prot. 2013, 15, 2437–2451. [Google Scholar]
- Pilarska, A.A.; Piechota, T.; Szymańska, M.; Pilarski, K.; Wolna-Maruwka, A. Evaluation of the fertilizer value of digestate pulpfrom biogas plant and its composts. Sci. Nat. Technol. 2016, 10, 1–15. [Google Scholar] [CrossRef]
- Widłak, M. Natural indicator of soil salinity. Proc. ECOpole 2016, 10, 359–365. [Google Scholar] [CrossRef]
- Piątek, M.; Bartkowiak, A. Assessment of selected physicochemical properties of soil fertilized with digestate. Water-Environ. Rural. Areas 2019, 19, 55–66. [Google Scholar]
- Koszel, M.; Lorencowicz, E. Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. Proc. 2015, 7, 119–124. [Google Scholar] [CrossRef]
- Fuchs, J.G.; Schleiss, K. Effects of compost and digestate on environment and plant production—Results of two research projects. In Proceedings of the Internationale Conference ORBIT 2008, Wageningen, The Netherlands, 13–15 October 2008; Rodic-Wiersma, L., Barth, J., Bidlingmayer, W., De Bertoldi, M., Diaz, L.F., Eds.; ORBIT Association: London, UK, 2018. [Google Scholar]
- Odlare, M.; Pell, M.; Svensson, K. Changes in soil chemical and microbiological properties during 4 years ofapplication of various organic residues. Waste Manag. 2008, 28, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Makádi, M.; Szegi, T.; Tomócsik, A.; Orosz, V.; Michéli, E.; Ferenczy, A.; Biró, B. Impact of digestate application on chemical and microbiological properties of two different textured soils. Commun. Soil Sci. Plant Anal. 2016, 47, 167–178. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Amalevičiūtė-Volungė, K.; Volungevičius, J.; Šlepetys, J. The effect of digestate fertilisation on grass biogas yield and soil properties in field-biomass-biogas-field renewable energy production approach in Lithuania. Biomass Bioenergy 2021, 153, 106211. [Google Scholar] [CrossRef]
- Tan, F.; Zhu, Q.; Guo, X.; He, L. Effects of digestate on biomass of a selected energy crop and soil properties. J. Sci. Food Agric. 2021, 101, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Urbanowska, A.; Kotas, P.; Kabsch-Korbutowicz, M. Characteristics and Management Methods of Digestate from Biogas Plants. Environ. Prot. 2019, 41, 39–45. [Google Scholar]
- Colombo, C.; Palumbo, G.; He, J.Z.; Pinton, R.; Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants and microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar] [CrossRef]
- Joka, M.; Sztyłowicz, E.; Ofman, P. Assessment of heavy metal content in products of methane fermentation of agricultural biogas plant “Ryboły”. Constr. Environ. Eng. 2016, 7, 233–237. [Google Scholar]
- Skwaryło-Bednarz, B.; Kwapisz, M.; Onuch, J.; Krzepiło, A. Assessment of the content of heavy metals and catalase activity in soils located in protected zone of the Roztocze National Park. Acta Agrophysica 2014, 21, 351–359. [Google Scholar]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Yield, content and nutrient uptake by winter wheat and spring barley in response to applications of digestate, cattle slurry and NPK mineral fertilizers. Arch. Agron. Soil Sci. 2020, 66, 1481–1496. [Google Scholar] [CrossRef]
- Czekała, W. Digestate as a source of nutrients: Nitrogen and its fractions. Water 2022, 14, 4067. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K. Anaerobic digestate management for carbon neutrality and fertilizer use: A review of current practices and future opportunities. Biomass Bioenergy 2024, 180, 106991–107014. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Sum of base cations (SBC) | mmol kg−1 | 15.33 |
Hydrolitic acidity (HAC) | mmol kg−1 | 23.00 |
Cation exchange capacity (CEC) | mmol kg−1 | 38.33 |
Base saturation (BS) | % | 39.86 |
Soil reaction (pHKCl) | −log10(H+) | 4.60 |
Electrical conductivity (EC) | μS cm−1 | 108.2 |
Total carbon (TC) | % | 0.408 |
Total nitrogen (Ntot) | % | 0.061 |
C/N | ratio | 6.73 |
Exchangeable cations: | ||
Magnesium (Mg2+) | mg kg−1 | 0.643 |
Potassium (K+) | mg kg−1 | 110.9 |
Calcium (Ca2+) | mg kg−1 | 457.8 |
Sodium (Na+) | mg kg−1 | 17.27 |
Bioavailable macronutrients: | ||
Phosphorus (Pav) | mg kg−1 | 85.00 |
Potassium (Kav) | mg kg−1 | 87.00 |
Magnesium (Mgav) | mg kg−1 | 30.00 |
Element | Total Forms (TF) | Available Forms (AF) | The Share of AF in TF |
---|---|---|---|
mg kg−1 (in Dry Mass) | % | ||
Fe | 6938.3 | 800.2 | 11.54 |
Mn | 244.1 | 80.69 | 33.06 |
Zn | 20.52 | 11.11 | 54.14 |
Cu | 6.333 | 1.051 | 16.60 |
Pb | 49.04 | 5.954 | 12.14 |
Cd | 0.280 | 0.038 | 13.57 |
Ni | 8.933 | 0.160 | 1.79 |
Cr | 62.14 | 3.967 | 6.38 |
Co | 4.340 | 0.193 | 4.45 |
Elements | Liquid Digestate (LD) | Solid Digestate (SD) | ||
---|---|---|---|---|
Electrical conductivity (EC in mS cm−1) | 21.70 | 3.40 | ||
Soil reaction (pH in H2O) | 7.90 | 8.25 | ||
Content of dry matter (%) | 3.75 | 91.91 | ||
Macronutrient Content | ||||
Elements | in Dry Mass | in Fresh Mass | in Dry Mass | in Fresh Mass |
TC (%) | 25.21 | 0.95 | 33.04 | 30.12 |
Ntot (%) | 12.13 | 0.46 | 2.50 | 2.28 |
C:N (ratio) | 2.08 | 2.07 | 13.22 | 13.21 |
P (g kg−1) | 9.60 | 0.36 | 10.69 | 9.75 |
K (g kg−1) | 104.8 | 3.93 | 12.98 | 11.83 |
Mg (g kg−1) | 3.12 | 0.12 | 4.56 | 4.16 |
Ca (g kg−1) | 14.37 | 0.54 | 17.90 | 16.31 |
Na (g kg−1) | 41.36 | 1.55 | 5.72 | 5.22 |
Trace Element Content—Total Forms (mg kg−1, in Dry Mass) | ||||
Fe | 2195.0 | 82.31 | 5145.8 | 4690.8 |
Mn | 153.8 | 5.77 | 223.4 | 203.7 |
Zn | 222.4 | 8.34 | 229.4 | 209.1 |
Cu | 38.63 | 1.45 | 32.96 | 30.0 |
Pb | 97.50 | 3.66 | 87.50 | 79.76 |
Cd | 2.417 | 0.09 | 2.58 | 2.36 |
Co | 11.25 | 0.42 | 11.25 | 10.26 |
Ni | 14.50 | 0.54 | 15.17 | 13.83 |
Cr | 1.93 | 0.07 | 3.80 | 3.46 |
Doses of DIG in mg N kg−1 of Soil | Treatments | Mean for Doses | Treatments | Mean for Doses | Treatments | Mean for Doses | Treatments | Mean for Doses | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LD | SD | LD | SD | LD | SD | LD | SD | |||||
HAC (mmol kg−1 of Soil) | SBC (mmol kg−1 of Soil) | CEC (mmol kg−1 of Soil) | BS (%) | |||||||||
0 | 25.00 b | 25.00 b | 25.00 C | 22.00 a b | 22.00 a b | 22.00 A | 47.00 ab | 47.00 ab | 47.00 B | 46.82 abc | 46.82 abc | 46.82 A |
28 | 23.50 ac | 24.00 ab | 23.75 AB | 22.00 ab | 19.33 a | 20.67 A | 45.50 abc | 43.33 c | 44.42 B | 48.36 abc | 44.51 a | 46.44 A |
56 | 23.50 ac | 24.00 ab | 23.75 AB | 19.33 a | 23.33 b | 21.33 A | 42.83 c | 47.33 ab | 45.08 B | 45.05 ab | 49.22 bc | 47.13 A |
84 | 24.50 ab | 24.50 ab | 24.50 BC | 23.33 b | 22.00 ab | 22.67 A | 47.83 b | 46.50 ab | 47.17 B | 48.71 abc | 47.32 abc | 48.02 A |
112 | 22.50 c | 24.00 ab | 23.25 A | 22.00 ab | 20.67 ab | 21.33 A | 44.50 ac | 44.67 ac | 44.58 B | 49.44 c | 46.17 abc | 47.80 A |
Mean for Series | 23.80 A | 24.30 A | 24.05 | 21.73 A | 21.47 A | 21.60 | 45.53 A | 45.77 A | 45.65 | 47.68 A | 46.81 A | 47.24 |
Selected Soil Properties | Content of Available Metals | ||||||||
---|---|---|---|---|---|---|---|---|---|
Feav | Mnav | Znav | Cuav | Pbav | Cdav | Niav | Crav | Coav | |
pH | 0.685 ** | 0.579 n.s. | 0.540 n.s. | 0.618 * | 0.384 n.s. | –0.281 n.s. | 0.103 n.s. | –0.472 n.s. | 0.413 n.s. |
EC | 0.612 * | 0.631 * | 0.552 n.s. | 0.471 n.s. | 0.489 n.s. | 0.139 n.s. | –0.218 n.s. | –0.402 n.s. | 0.177 n.s. |
HAC | –0.751 ** | –0.380 n.s. | –0.225 n.s. | –0.372 n.s. | –0.246 n.s. | 0.378 n.s. | 0.013 n.s. | 0.326 n.s. | –0.306 n.s. |
SBC | 0.088 n.s. | 0.247 n.s. | 0.068 n.s. | –0.016 n.s. | 0.145 n.s. | 0.417 n.s. | –0.395 n.s. | –0.049 n.s. | –0.193 n.s. |
CEC | –0.319 n.s. | 0.014 n.s. | –0.060 n.s. | –0.210 n.s. | –0.004 n.s. | 0.560 * | –0.335 n.s. | 0.130 n.s. | –0.328 n.s. |
BS | 0.450 n.s. | 0.370 n.s. | 0.160 n.s. | 0.151 n.s. | 0.235 n.s. | 0.198 n.s. | –0.382 n.s. | –0.173 n.s. | –0.033 n.s. |
Ntot | 0.356 n.s. | 0.677 * | 0.263 n.s. | 0.621 * | 0.598 * | –0.080 n.s. | 0.447 n.s. | –0.794 ** | 0.496 n.s. |
TC | 0.322 n.s. | 0.314 n.s. | 0.346 n.s. | 0.442 n.s. | 0.367 n.s. | –0.449 n.s. | 0.491 n.s. | –0.255 n.s. | 0.374 n.s. |
Selected Soil Properties | Content of Available Metals | ||||||||
---|---|---|---|---|---|---|---|---|---|
Feav | Mnav | Znav | Cuav | Pbav | Cdav | Niav | Crav | Coav | |
pH | –0.405 n.s. | –0.005 n.s. | –0.276 n.s. | 0.517 n.s. | 0.783 ** | 0.588 * | 0.421 n.s. | –0.739 ** | 0.435 n.s. |
EC | –0.260 n.s. | –0.004 n.s. | –0.384 n.s. | 0.513 n.s. | 0.527 n.s. | 0.124 n.s. | 0.092 n.s. | –0.648 * | 0.449 n.s. |
HAC | –0.030 n.s. | –0.184 n.s. | 0.090 n.s. | –0.492 n.s. | –0.349 n.s. | 0.000 n.s. | –0.088 n.s. | 0.455 n.s. | –0.554 * |
SBC | 0.035 n.s. | 0.366 n.s. | –0.048 n.s. | –0.394 n.s. | 0.248 n.s. | 0.367 n.s. | 0.689 ** | 0.051 n.s. | 0.334 n.s. |
CEC | 0.024 n.s. | 0.287 n.s. | –0.020 n.s. | –0.501 n.s. | 0.132 n.s. | 0.340 n.s. | 0.612 * | 0.174 n.s. | 0.155 n.s. |
BS | 0.052 n.s. | 0.384 n.s. | –0.080 n.s. | –0.294 n.s. | 0.321 n.s. | 0.377 n.s. | 0.705 ** | –0.043 n.s. | 0.465 n.s. |
Ntot | 0.196 n.s. | 0.367 n.s. | –0.073 n.s. | 0.389 n.s. | 0.457 n.s. | 0.250 n.s. | 0.289 n.s. | –0.497 n.s. | 0.568 * |
TC | –0.216 n.s. | –0.014 n.s. | –0.249 n.s. | –0.405 n.s. | –0.082 n.s. | –0.030 n.s. | 0.067 n.s. | 0.373 n.s. | –0.404 n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolka, E.; Wyszkowski, M.; Żołnowski, A.C.; Skorwider-Namiotko, A.; Szostek, R.; Wyżlic, K.; Borowski, M. Digestate from an Agricultural Biogas Plant as a Factor Shaping Soil Properties. Agronomy 2024, 14, 1528. https://doi.org/10.3390/agronomy14071528
Rolka E, Wyszkowski M, Żołnowski AC, Skorwider-Namiotko A, Szostek R, Wyżlic K, Borowski M. Digestate from an Agricultural Biogas Plant as a Factor Shaping Soil Properties. Agronomy. 2024; 14(7):1528. https://doi.org/10.3390/agronomy14071528
Chicago/Turabian StyleRolka, Elżbieta, Mirosław Wyszkowski, Andrzej Cezary Żołnowski, Anna Skorwider-Namiotko, Radosław Szostek, Kinga Wyżlic, and Mikołaj Borowski. 2024. "Digestate from an Agricultural Biogas Plant as a Factor Shaping Soil Properties" Agronomy 14, no. 7: 1528. https://doi.org/10.3390/agronomy14071528
APA StyleRolka, E., Wyszkowski, M., Żołnowski, A. C., Skorwider-Namiotko, A., Szostek, R., Wyżlic, K., & Borowski, M. (2024). Digestate from an Agricultural Biogas Plant as a Factor Shaping Soil Properties. Agronomy, 14(7), 1528. https://doi.org/10.3390/agronomy14071528