The Influence of Green Manure Planting on the Spectroscopic Characteristics of Dissolved Organic Matter in Freshwater-Leached Saline–Alkali Soil at Different Depths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Ultraviolet–Visible Absorption Spectroscopy and Three-Dimensional Fluorescence Spectroscopy Measurement of Soil Leachate DOM
2.4. Parameter Analysis
2.4.1. Ultraviolet–Visible Absorption Spectroscopy Characteristic Parameters
2.4.2. EEMs–PARAFAC
2.4.3. Three-Dimensional Fluorescence Analysis
2.4.4. Other Data Analyses
3. Results and Analysis
3.1. Changes in UV Parameters of DOM in Soil Leachate
3.1.1. UV254 and UV253/UV203
3.1.2. α300 and α355
3.1.3. SUVA254 and SUVA260
3.1.4. SR
3.2. Distribution of Fluorescent Components in Soil Leachate DOM
3.3. Relative Proportions of Fluorescent Components in Soil Leachate DOM
3.4. Fluorescence Spectral Characteristics of DOM in Soil Leachates
3.4.1. FI
3.4.2. HIX
3.4.3. BIX
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, H.Y.; Zhu, Z.L.; Li, X.H.; Yang, L.P.; Zhang, Z. Analysis on Distribution, Utilization Status and Governance Effect of Saline-Alkali Soil in Shandong Province. Shandong Agric. Sci. 2017, 49, 134–139. [Google Scholar]
- Zhao, Q.; Zhang, X.J.; Ning, X.G.; Cao, W.D. Influence of winter green manure on wind erosion in farmland of north China. J. Arid Land Resour. Environ. 2016, 30, 120–124. [Google Scholar]
- Song, X.; Su, Y.; Zheng, J.; Zhang, Z.; Liang, Z.; Tang, Z. Study on the effects of salt tolerance type, soil salinity and soil characteristics on the element composition of Chenopodiaceae halophytes. Plants 2022, 11, 1288. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.Q.; Li, G.; Wei, Y. Spectral characteristics and spatiotemporal variation of DOM in Peri-urban Critical Zone. Environ. Chem. 2020, 39, 455–466. [Google Scholar]
- McIntyre, A.M.; Guéguen, C. Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere 2013, 90, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F.; Kong, F.L.; Xi, M.; Li, Y. Leaching of soil salt with different leaching water volumes in aquaculture ponds of Jiaozhou Bay. Chin. J. Ecol. 2018, 37, 1127–1134. [Google Scholar]
- Mcdowell, W.H. Dissolved organic matter in soils-future directions and unanswered questions. Geoderma 2003, 113, 179–186. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.-H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Rattan, L. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar]
- Kalbitz, K.; Schmerwitz, J.; Schwesig, D.; Matzner, E. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 2003, 113, 273–291. [Google Scholar] [CrossRef]
- McDowell, W.H.; Currie, W.S.; Aber, J.D.; Yano, Y. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut. 1998, 105, 175–182. [Google Scholar] [CrossRef]
- Williams, B.L.; Edwards, A.C. Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils. Chem. Ecol. 1993, 8, 203–215. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, H.; Huang, W. Effects of rice straw-derived dissolved organic matter on pyrene sorption by soil. Environ. Toxicol. Chem. 2010, 29, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.L.; Liang, M.Q.; He, G.Y.; Zong, Y.N.; Tang, J.F. Fluorescent Dissolved Organic Matter and Its Correlation with Water Quality in a Urban River: A Case Study of the Lujiang River in Beilun Ningbo. Environ. Sci. 2018, 39, 1560–1567. [Google Scholar]
- Wang, C.Y.; Zhou, J.B.; Wang, X.; Xia, Z.M. Contents and Biodegradation of Soluble Organic Carbon in Different Plant Residues from the Loess Plateau. Environ. Sci. 2011, 32, 1139–1145. [Google Scholar]
- Zhou, S.; Sun, Y.; Zhang, Y.; Zhan, J.; Wang, H.; Huang, T.; Cong, H.; Cui, J.; Li, Z. Seasonal variations of ultraviolet-visible and excitation emission matrix spectroscopy characteristics of overlying water dissolved organic matter in Zhoucun Reservoir, Shandong Province. J. Lake Sci. 2019, 31, 1344–1356. [Google Scholar]
- Fan, C.H.; Xin, Y.B.; Yuan, W.J. Spectral Characteristics of Dissolved Orqanic Matter (DOM) in Leachate Released From Agricultural Soil Irrigated With Reclaimed Water. Spectrosc. Spectr. Anal. 2022, 42, 2432–2436. [Google Scholar]
- Musadji, N.; Lemée, L.; Caner, L.; Porel, G.; Poinot, P.; Geffroy-Rodier, C. Spectral characteristics of soil dissolved organic matter: Long-term effects of exogenous organic matter on soil organic matter and spatial-temporal changes. Chemosphere 2020, 240, 124808. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liang, C.; Shen, G.; Lv, J.; Wu, H. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China. Chemosphere 2017, 176, 108–116. [Google Scholar] [CrossRef]
- Qin, W.D.; Jia, L.M.; Liu, Z.K.; Zhi, J.F.; Cao, W.D. Effect of Cultivar of Winter Green Manure and Seeding Method on Soil Nutrients and Quality and Yield of Sequent Peanut. Acta Agric. Boreali-Sin. 2015, 30, 168–172. [Google Scholar]
- Zhu, X.; Wen, Z.; Zhao, B.; Liu, C.; Xing, J.; Dong, J.; Ding, H.; Hong, L. Effects of Planting Green Manure on Dynamic Changes of Saline Soil Nutrients and Soluble Salt Ions. Southwest China J. Agric. Sci. 2017, 30, 1894–1898. [Google Scholar]
- Li, Z.S.; Lian, X.J.; Wang, W.; Zhao, T.K.; Li, H.J. Research progress of green manure in China. Pratacultural Sci. 2013, 30, 1135–1140. [Google Scholar]
- Subaedah, S.; Aladin, A.; Nirwana. Fertilization of nitrogen, phosphor and application of green manure of Crotalaria juncea in increasing yield of maize in marginal dry land. Agric. Agric. Sci. Procedia 2016, 9, 22–25. [Google Scholar] [CrossRef]
- Li, H.; Fan, Z.; Wang, Q.; Wang, G.; Yin, W.; Zhao, C.; Yu, A.; Cao, W.; Chai, Q.; Hu, F. Green manure and maize intercropping with reduced chemical N enhances productivity and carbon mitigation of farmland in arid areas. Eur. J. Agron. 2023, 145, 126788. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Hua, B.; Veum, K.; Yang, J.; Jones, J.; Deng, B. Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters. Environ. Monit. Assess. 2010, 161, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Cory, R.M.; Miller, M.P.; McKnight, D.M.; Guerard, J.J.; Miller, P.L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Methods 2010, 8, 67–78. [Google Scholar]
- Kaiser, K.; Kalbitz, K. Cycling downwards-dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Sanderman, J.; Amundson, B.R. Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils. Biogeochemistry 2008, 89, 181–198. [Google Scholar] [CrossRef]
- Liang, K. The Optical Characteristics and Influencing Factors of Soil DOM in Purple Soil Area under Different Land Uses. Master’s Thesis, Southwest University, Chongqing, China, 2020. [Google Scholar]
- Oili, K.; Veikko, K.; Aino, S. Chemical and biological characterization of dissolved organic matter derived from Norway spruce litter divided into fractions according to molecular size. Eur. J. Soil Biol. 2012, 50, 109–111. [Google Scholar]
- Qin, X.Q. Study on the Composition and Characteristics of Dissolved Organic Matter (DOM) in Soil under Different Land Uses by Using Fractionation, Spectral and Chromatographic Techniques. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2019. [Google Scholar]
- Li, Y. Composition, Spectral Characteristics and Source Analysis of Soils in Different Land Use Types. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2021. [Google Scholar]
- Wang, Y.; Kang, S.; Li, F.; Zhang, L.; Zhang, J. Saline water irrigation scheduling through a crop-water-salinity production function and a soil-water-salinity dynamic model. Pedosphere 2007, 17, 303–317. [Google Scholar] [CrossRef]
Soil Depth | Soil pH | Total Salt Quantity/(g/kg) | Organic Matter/(g/kg) | Total Nitrogen/(g/kg) | Available Phosphorus/(mg/kg) | Available Potassium/(mg/kg) |
---|---|---|---|---|---|---|
0~30 | 8.38 ± 0.02 | 1.46 ± 0.03 | 11.78 ± 0.45 | 0.82 ± 0.13 | 7.26 ± 0.75 | 284.27 ± 8.60 |
30~60 | 8.59 ± 0.03 | 1.77 ± 0.05 | 4.63 ± 0.15 | 0.56 ± 0.06 | 4.59 ± 0.16 | 201.85 ± 6.01 |
60~90 | 8.78 ± 0.03 | 2.22 ± 0.02 | 2.70 ± 0.08 | 0.39 ± 0.01 | 2.43 ± 0.16 | 185.39 ± 6.34 |
Sampling Date | Treatment | Depth (cm) | UV254 (cm−1) | UV253/UV203 | α300 (m−1) | α355 (m−1) | SUVA254 L·(mg·m)−1 | SUVA260 L·(mg·m)−1 | SR |
---|---|---|---|---|---|---|---|---|---|
4.30 | T1 | 0–30 | 0.186 ± 0.010 | 0.037 ± 0.003 | 29.94 ± 3.14 | 7.37 ± 0.90 | 4.73 ± 0.23 | 4.35 ± 0.20 | 0.80 ± 0.01 |
30–60 | 0.178 ± 0.005 | 0.026 ± 0.001 | 21.99 ± 0.49 | 7.37 ± 0.48 | 4.86 ± 0.29 | 4.49 ± 0.28 | 0.49 ± 0.04 | ||
60–90 | 0.126 ± 0.011 | 0.012 ± 0.004 | 14.39 ± 1.47 | 4.26 ± 0.49 | 4.28 ± 0.28 | 3.98 ± 0.10 | 0.85 ± 0.08 | ||
T2 | 0–30 | 0.266 ± 0.022 | 0.073 ± 0.006 | 29.71 ± 2.61 | 10.36 ± 0.62 | 4.90 ± 0.43 | 4.61 ± 0.36 | 0.73 ± 0.04 | |
30–60 | 0.186 ± 0.040 | 0.033 ± 0.002 | 20.84 ± 1.40 | 6.91 ± 0.65 | 3.39 ± 0.30 | 3.20 ± 0.35 | 0.64 ± 0.03 | ||
60–90 | 0.165 ± 0.018 | 0.006 ± 0.003 | 20.15 ± 1.07 | 7.02 ± 0.44 | 3.04 ± 0.04 | 3.75 ± 0.06 | 0.90 ± 0.01 | ||
T3 | 0–30 | 0.111 ± 0.028 | 0.011 ± 0.003 | 13.13 ± 1.91 | 3.80 ± 0.13 | 3.75 ± 0.39 | 3.45 ± 0.16 | 0.79 ± 0.01 | |
30–60 | 0.155 ± 0.036 | 0.024 ± 0.001 | 16.35 ± 1.54 | 6.45 ± 0.60 | 2.14 ± 0.22 | 1.97 ± 0.22 | 0.51 ± 0.01 | ||
60–90 | 0.104 ± 0.011 | 0.007 ± 0.002 | 12.32 ± 1.79 | 3.57 ± 0.49 | 2.20 ± 0.10 | 2.02 ± 0.08 | 0.86 ± 0.02 | ||
5.2 | T1 | 0–30 | 0.217 ± 0.009 | 0.042 ± 0.003 | 31.09 ± 2.64 | 7.72 ± 0.44 | 3.79 ± 0.45 | 3.37 ± 0.27 | 0.82 ± 0.05 |
30–60 | 0.211 ± 0.030 | 0.022 ± 0.003 | 31.21 ± 2.00 | 13.13 ± 0.98 | 4.22 ± 0.37 | 3.86 ± 0.46 | 0.45 ± 0.09 | ||
60–90 | 0.087 ± 0.010 | 0.012 ± 0.004 | 12.67 ± 1.26 | 2.42 ± 0.18 | 2.81 ± 0.18 | 2.45 ± 0.10 | 0.96 ± 0.02 | ||
T2 | 0–30 | 0.270 ± 0.005 | 0.116 ± 0.004 | 40.65 ± 2.77 | 16.93 ± 1.39 | 4.23 ± 0.34 | 3.84 ± 0.17 | 0.85 ± 0.04 | |
30–60 | 0.106 ± 0.014 | 0.015 ± 0.001 | 13.13 ± 0.91 | 4.15 ± 0.27 | 2.08 ± 0.19 | 1.91 ± 0.22 | 0.87 ± 0.03 | ||
60–90 | 0.088 ± 0.010 | 0.006 ± 0.003 | 8.18 ± 0.44 | 1.96 ± 0.11 | 1.94 ± 0.22 | 1.73 ± 0.17 | 0.98 ± 0.05 | ||
T3 | 0–30 | 0.140 ± 0.010 | 0.020 ± 0.003 | 16.24 ± 0.16 | 5.53 ± 0.01 | 2.50 ± 0.27 | 2.31 ± 0.36 | 0.95 ± 0.03 | |
30–60 | 0.121 ± 0.017 | 0.016 ± 0.002 | 15.66 ± 1.42 | 6.56 ± 0.69 | 2.29 ± 0.31 | 2.07 ± 0.14 | 0.62 ± 0.11 | ||
60–90 | 0.070 ± 0.020 | 0.007 ± 0.002 | 9.56 ± 0.42 | 2.53 ± 0.13 | 1.94 ± 0.16 | 1.76 ± 0.15 | 0.96 ± 0.08 | ||
5.4 | T1 | 0–30 | 0.268 ± 0.001 | 0.042 ± 0.002 | 32.36 ± 3.03 | 11.86 ± 1.14 | 2.95 ± 0.24 | 2.79 ± 0.18 | 0.97 ± 0.12 |
30–60 | 0.178 ± 0.031 | 0.018 ± 0.003 | 24.76 ± 1.50 | 6.68 ± 0.33 | 3.22 ± 0.43 | 3.00 ± 0.28 | 0.75 ± 0.04 | ||
60–90 | 0.089 ± 0.004 | 0.012 ± 0.001 | 12.78 ± 1.00 | 2.53 ± 0.17 | 2.24 ± 0.27 | 2.00 ± 0.18 | 1.10 ± 0.02 | ||
T2 | 0–30 | 0.294 ± 0.018 | 0.108 ± 0.005 | 31.09 ± 1.77 | 10.71 ± 1.09 | 2.38 ± 0.13 | 2.15 ± 0.09 | 1.06 ± 0.03 | |
30–60 | 0.093 ± 0.016 | 0.013 ± 0.003 | 11.86 ± 1.09 | 3.45 ± 0.17 | 2.38 ± 0.26 | 2.29 ± 0.16 | 1.25 ± 0.12 | ||
60–90 | 0.093 ± 0.009 | 0.010 ± 0.001 | 12.44 ± 0.65 | 3.11 ± 0.16 | 2.25 ± 0.06 | 2.03 ± 0.04 | 1.21 ± 0.02 | ||
T3 | 0–30 | 0.153 ± 0.025 | 0.045 ± 0.003 | 17.73 ± 2.28 | 6.33 ± 0.81 | 3.54 ± 0.12 | 3.26 ± 0.11 | 1.07 ± 0.02 | |
30–60 | 0.172 ± 0.017 | 0.024 ± 0.008 | 22.63 ± 1.77 | 7.63 ± 0.37 | 2.99 ± 0.43 | 2.69 ± 0.23 | 0.92 ± 0.07 | ||
60–90 | 0.141 ± 0.003 | 0.020 ± 0.005 | 18.08 ± 0.81 | 5.18 ± 0.49 | 1.52 ± 0.15 | 1.41 ± 0.04 | 1.13 ± 0.02 | ||
5.6 | T1 | 0–30 | 0.295 ± 0.009 | 0.041 ± 0.007 | 35.70 ± 2.05 | 14.39 ± 1.35 | 3.46 ± 0.04 | 3.10 ± 0.15 | 0.94 ± 0.11 |
30–60 | 0.199 ± 0.012 | 0.040 ± 0.002 | 27.06 ± 2.40 | 8.18 ± 0.64 | 2.88 ± 0.24 | 2.62 ± 0.12 | 0.69 ± 0.04 | ||
60–90 | 0.093 ± 0.016 | 0.013 ± 0.003 | 13.36 ± 1.23 | 2.30 ± 0.33 | 2.85 ± 0.21 | 2.56 ± 0.21 | 1.02 ± 0.02 | ||
T2 | 0–30 | 0.298 ± 0.016 | 0.052 ± 0.005 | 33.19 ± 1.58 | 7.25 ± 0.46 | 2.09 ± 0.02 | 1.89 ± 0.02 | 0.81 ± 0.04 | |
30–60 | 0.129 ± 0.016 | 0.013 ± 0.007 | 16.81 ± 1.77 | 5.53 ± 0.58 | 3.12 ± 0.24 | 2.84 ± 0.21 | 0.66 ± 0.11 | ||
60–90 | 0.118 ± 0.012 | 0.012 ± 0.001 | 15.66 ± 0.58 | 4.15 ± 0.47 | 3.08 ± 0.29 | 2.81 ± 0.27 | 0.95 ± 0.11 | ||
T3 | 0–30 | 0.195 ± 0.044 | 0.061 ± 0.003 | 24.41 ± 1.82 | 12.55 ± 0.72 | 2.84 ± 0.22 | 2.61 ± 0.24 | 0.85 ± 0.09 | |
30–60 | 0.189 ± 0.011 | 0.022 ± 0.002 | 23.45 ± 2.54 | 9.02 ± 0.67 | 3.03 ± 0.17 | 2.76 ± 0.21 | 0.57 ± 0.05 | ||
60–90 | 0.118 ± 0.014 | 0.012 ± 0.004 | 16.70 ± 1.35 | 5.53 ± 0.25 | 2.53 ± 0.36 | 2.27 ± 0.25 | 0.87 ± 0.11 | ||
5.9 | T1 | 0–30 | 0.243 ± 0.015 | 0.025 ± 0.001 | 29.48 ± 2.26 | 11.05 ± 0.49 | 2.81 ± 0.22 | 2.52 ± 0.15 | 0.62 ± 0.06 |
30–60 | 0.217 ± 0.018 | 0.048 ± 0.006 | 30.75 ± 1.84 | 12.09 ± 0.76 | 2.88 ± 0.29 | 2.63 ± 0.34 | 0.80 ± 0.05 | ||
60–90 | 0.063 ± 0.007 | 0.013 ± 0.002 | 9.56 ± 1.12 | 2.65 ± 0.19 | 2.45 ± 0.17 | 1.32 ± 0.13 | 1.05 ± 0.11 | ||
T2 | 0–30 | 0.272 ± 0.027 | 0.028 ± 0.001 | 36.72 ± 3.73 | 9.44 ± 0.53 | 3.05 ± 0.35 | 2.75 ± 0.13 | 0.86 ± 0.01 | |
30–60 | 0.201 ± 0.030 | 0.029 ± 0.009 | 27.41 ± 2.93 | 6.91 ± 0.27 | 2.93 ± 0.35 | 2.67 ± 0.29 | 0.98 ± 0.03 | ||
60–90 | 0.140 ± 0.009 | 0.020 ± 0.004 | 18.08 ± 1.35 | 5.07 ± 0.60 | 2.35 ± 0.05 | 1.70 ± 0.03 | 0.98 ± 0.04 | ||
T3 | 0–30 | 0.236 ± 0.001 | 0.042 ± 0.006 | 29.48 ± 0.65 | 11.17 ± 0.81 | 2.33 ± 0.36 | 2.17 ± 0.19 | 0.58 ± 0.13 | |
30–60 | 0.191 ± 0.028 | 0.040 ± 0.004 | 24.95 ± 1.19 | 8.48 ± 0.64 | 2.42 ± 0.17 | 2.28 ± 0.23 | 0.85 ± 0.04 | ||
60–90 | 0.167 ± 0.012 | 0.030 ± 0.003 | 19.00 ± 0.86 | 5.53 ± 0.55 | 2.39 ± 0.28 | 2.20 ± 0.19 | 1.04 ± 0.09 | ||
5.12 | T1 | 0–30 | 0.209 ± 0.018 | 0.038 ± 0.006 | 26.14 ± 1.65 | 7.95 ± 0.47 | 3.80 ± 0.31 | 3.41 ± 0.26 | 0.51 ± 0.03 |
30–60 | 0.268 ± 0.010 | 0.038 ± 0.004 | 36.16 ± 2.26 | 12.44 ± 0.93 | 2.41 ± 0.14 | 2.14 ± 0.21 | 0.70 ± 0.07 | ||
60–90 | 0.101 ± 0.008 | 0.014 ± 0.003 | 10.59 ± 0.21 | 2.76 ± 0.16 | 1.80 ± 0.14 | 1.62 ± 0.14 | 0.85 ± 0.02 | ||
T2 | 0–30 | 0.227 ± 0.003 | 0.033 ± 0.003 | 32.47 ± 1.63 | 7.02 ± 0.81 | 2.84 ± 0.11 | 2.52 ± 0.07 | 0.69 ± 0.02 | |
30–60 | 0.161 ± 0.015 | 0.017 ± 0.005 | 23.38 ± 2.44 | 5.18 ± 0.76 | 2.80 ± 0.19 | 2.48 ± 0.19 | 0.73 ± 0.06 | ||
60–90 | 0.123 ± 0.017 | 0.013 ± 0.007 | 15.43 ± 0.44 | 3.80 ± 0.11 | 1.85 ± 0.12 | 1.23 ± 0.11 | 0.70 ± 0.07 | ||
T3 | 0–30 | 0.189 ± 0.018 | 0.030 ± 0.006 | 26.02 ± 2.61 | 7.37 ± 0.33 | 2.34 ± 0.26 | 2.17 ± 0.25 | 0.53 ± 0.01 | |
30–60 | 0.185 ± 0.015 | 0.027 ± 0.006 | 22.07 ± 0.75 | 8.06 ± 0.95 | 2.61 ± 0.32 | 2.41 ± 0.11 | 0.58 ± 0.12 | ||
60–90 | 0.142 ± 0.017 | 0.020 ± 0.007 | 17.22 ± 1.93 | 4.61 ± 0.36 | 3.29 ± 0.08 | 2.96 ± 0.15 | 0.75 ± 0.05 |
Component | Ex/nm | Em/nm | Fluorescence Peak | Substances |
---|---|---|---|---|
C1 | 320 | 405 | C | Humic-like material (visible-light fulvic acid) |
C2 | 355 | 455 | C | Humic-like material (humic acid) |
C3 | 270 (290) | 280 | B | Protein-like material (tyrosine-like amino acids) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yin, C.; Wang, J.; Ji, X.; Liu, X. The Influence of Green Manure Planting on the Spectroscopic Characteristics of Dissolved Organic Matter in Freshwater-Leached Saline–Alkali Soil at Different Depths. Agronomy 2024, 14, 1546. https://doi.org/10.3390/agronomy14071546
Wang Y, Yin C, Wang J, Ji X, Liu X. The Influence of Green Manure Planting on the Spectroscopic Characteristics of Dissolved Organic Matter in Freshwater-Leached Saline–Alkali Soil at Different Depths. Agronomy. 2024; 14(7):1546. https://doi.org/10.3390/agronomy14071546
Chicago/Turabian StyleWang, Yuhao, Chengjie Yin, Jingkuan Wang, Xiaohui Ji, and Xinwei Liu. 2024. "The Influence of Green Manure Planting on the Spectroscopic Characteristics of Dissolved Organic Matter in Freshwater-Leached Saline–Alkali Soil at Different Depths" Agronomy 14, no. 7: 1546. https://doi.org/10.3390/agronomy14071546
APA StyleWang, Y., Yin, C., Wang, J., Ji, X., & Liu, X. (2024). The Influence of Green Manure Planting on the Spectroscopic Characteristics of Dissolved Organic Matter in Freshwater-Leached Saline–Alkali Soil at Different Depths. Agronomy, 14(7), 1546. https://doi.org/10.3390/agronomy14071546